Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.010
Filtrar
1.
Arthritis Res Ther ; 26(1): 167, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342381

RESUMO

BACKGROUND: Small extracellular vesicles (sEV) derived from synovial fibroblasts (SF) represent a novel molecular mechanism regulating cartilage erosion in osteoarthritis (OA). However, a comprehensive evaluation using disease relevant cells has not been undertaken. The aim of this study was to isolate and characterise sEV from OA SF and to look at their ability to regulate OA chondrocyte effector responses relevant to disease. Profiling of micro (mi) RNA signatures in sEV and parental OA SF cells was performed. METHODS: SF and chondrocytes were isolated from OA synovial membrane and cartilage respectively (n = 9). sEV were isolated from OA SF (± IL-1ß) conditioned media by ultracentrifugation and characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Particle size was confirmed by nanoparticle tracking analysis (NTA). sEV regulation of OA chondrocyte and cartilage effector response was evaluated using qPCR, ELISA and sulphated glycosaminoglycan assay (sGAG). RNA-sequencing was used to establish miRNA signatures in isolated sEV from OA SF. RESULTS: OA SF derived sEV were readily taken up by OA chondrocytes, with increased expression of the catabolic gene MMP 13 (p < 0.01) and decreased expression of the anabolic genes aggrecan and COL2A1 (p < 0.01) observed. Treatment with sEV derived from IL-1ß stimulated OA SF significantly decreased expression of aggrecan and COL2A1 (p < 0.001) and increased SOX 9 gene expression (p < 0.05). OA chondrocytes cultured with sEV from either non-stimulated or IL-1ß treated OA SF, resulted in a significant increase in the secretion of IL-6, IL-8 and MMP-3 (p < 0.01). Cartilage explants cultured with sEV from SF (± IL-1ß) had a significant increase in the release of sGAG (p < 0.01). miRNA signatures differed between parental SF cells and isolated sEV. The recently identified osteoclastogenic regulator miR182, along with miR4472-2, miR1302-3, miR6720, miR6087 and miR4532 were enriched in sEV compared to parental cells, p < 0.01. Signatures were similar in sEVs derived from non-stimulated or IL-1ß stimulated SF. CONCLUSIONS: OA SF sEV regulate chondrocyte inflammatory and remodelling responses. OA SF sEV have unique signatures compared to parental cells which do not alter with IL-1ß stimulation. This study provides insight into a novel regulatory mechanism within the OA joint which could inform future targeted therapy.


Assuntos
Condrócitos , Vesículas Extracelulares , Fibroblastos , MicroRNAs , Osteoartrite , Membrana Sinovial , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Células Cultivadas , Idoso , Masculino , Feminino , Pessoa de Meia-Idade
2.
Sci Adv ; 10(39): eadj1252, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321281

RESUMO

This study performed an in-depth investigation into the myeloid cellular landscape in the synovium of patients with rheumatoid arthritis (RA), "individuals at risk" of RA, and healthy controls (HC). Flow cytometric analysis demonstrated the presence of a CD40-expressing CD206+CD163+ macrophage population dominating the inflamed RA synovium, associated with disease activity and treatment response. In-depth RNA sequencing and metabolic analysis demonstrated that this macrophage population is transcriptionally distinct, displaying unique inflammatory and tissue-resident gene signatures, has a stable bioenergetic profile, and regulates stromal cell responses. Single-cell RNA sequencing profiling of 67,908 RA and HC synovial tissue cells identified nine transcriptionally distinct macrophage clusters. IL-1B+CCL20+ and SPP1+MT2A+ are the principal macrophage clusters in RA synovium, displaying heightened CD40 gene expression, capable of shaping stromal cell responses, and are importantly enriched before disease onset. Combined, these findings identify the presence of an early pathogenic myeloid signature that shapes the RA joint microenvironment and represents a unique opportunity for early diagnosis and therapeutic intervention.


Assuntos
Artrite Reumatoide , Homeostase , Macrófagos , Membrana Sinovial , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Perfilação da Expressão Gênica
3.
Front Immunol ; 15: 1408501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324139

RESUMO

Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.


Assuntos
Artrite Reumatoide , Dispositivos Lab-On-A-Chip , Membrana Sinovial , Humanos , Membrana Sinovial/patologia , Animais
4.
J Pineal Res ; 76(6): e13009, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315577

RESUMO

Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.


Assuntos
Artrite Reumatoide , Fibroblastos , Melatonina , Músculo Esquelético , Melatonina/farmacologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/tratamento farmacológico , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/efeitos dos fármacos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/tratamento farmacológico , Masculino , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Camundongos Endogâmicos DBA
5.
Elife ; 132024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235454

RESUMO

miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1ß but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.


Assuntos
MicroRNAs , Animais , Camundongos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
6.
Autoimmunity ; 57(1): 2387076, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39229919

RESUMO

OBJECTIVE: This study aims to explore the effect of NONHSAT042241 on the function of rheumatoid arthritis -fibroblast-like synoviocyte (RA-FLS) and the underlying mechanisms. METHODS: RA-FLS was treated with NONHSAT042241 overexpression and NONHSAT042241 knockdown lentiviruses. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry, Transwell assay, western-blot, ELISA, and qRT-PCR were used to measure the changes of cell proliferation, apoptosis, invasion, secretion of inflammatory cytokines and matrix metalloproteinases (MMPs). Fluorescent in situ hybridization (FISH) assay, RNA pull-down assay, mass spectrometry (MS) and RNA immunoprecipitation (RIP) were used to find the target proteins that bond to NONHSAT042241, and western-blot was used to detect the expression of related proteins of Wnt/ß-catenin signaling pathway. RESULTS: Overexpression of NONHSAT042241 inhibited the proliferation of RA-FLS (p < 0.05), invasion, secretion of pro-inflammatory factors (IL-1and IL-6) and MMPs (MMP-1 and MMP-3) (p < 0.05), and elevated the level of pro-apoptotic factors (Bax and cleaved caspase3), while NONHSAT042241 knockdown had the opposite effect. NONHSAT042241 can directly bind to hnRNP D, and down-regulated the expression of ß-catenin (p < 0.05), p-GSK-3ß (p < 0.05), Cyclin D1 (p < 0.05), PCNA (p < 0.05), and thus reduced the cell proliferation. CONCLUSION: NONHSAT042241 may inhibit FLS-mediated rheumatoid synovial proliferation, inflammation and aggression. The underlying mechanisms may be that NONHSAT042241 inhibits the activity of Wnt/ß-catenin signaling.


Assuntos
Artrite Reumatoide , Proliferação de Células , Inflamação , RNA Longo não Codificante , Sinoviócitos , Via de Sinalização Wnt , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Apoptose , beta Catenina/metabolismo , Células Cultivadas
7.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337384

RESUMO

Hemophilia, which is a rare disease, results from congenital deficiencies of coagulation factors VIII and IX, respectively, leading to spontaneous bleeding into joints, resulting in hemophilic arthropathy (HA). HA involves complex processes, including synovial proliferation, angiogenesis, and tissue remodeling. Despite ongoing research, factors contributing to HA progression, especially in adults with severe HA experiencing joint pain, remain unclear. Blood markers, particularly collagen-related ones, have been explored to assess joint health in hemophilia. For example, markers like CTX-I and CTX-II reflect bone and cartilage turnover, respectively. Studies indicate elevated levels of certain markers post-bleeding episodes, suggesting joint health changes. However, longitudinal studies on collagen turnover and basement membrane or endothelial cell markers in relation to joint outcomes, particularly during painful episodes, are scarce. Given the role of the CX3CL1/CX3XR1 axis in arthritis, other studies investigate its involvement in HA. The importance of different inflammatory and bone damage biomarkers should be assessed, alongside articular cartilage and synovial membrane morphology, aiming to enhance understanding of hemophilic arthropathy progression.


Assuntos
Biomarcadores , Hemofilia A , Humanos , Hemofilia A/complicações , Hemofilia A/metabolismo , Hemofilia A/patologia , Hemartrose/metabolismo , Hemartrose/etiologia , Hemartrose/patologia , Artropatias/metabolismo , Artropatias/patologia , Artropatias/etiologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
8.
Life Sci ; 354: 122947, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39117138

RESUMO

Temporomandibular joint osteoarthritis (TMJOA) is considered to be a low-grade inflammatory disease involving multiple joint tissues. The crosstalk between synovium and cartilage plays an important role in TMJOA. Synovial cells are a group of heterogeneous cells and synovial microenvironment is mainly composed of synovial fibroblasts (SF) and synovial macrophages. In TMJOA, SF and synovial macrophages release a large number of inflammatory cytokines and extracellular vesicles and promote cartilage destruction. Cartilage wear particles stimulate SF proliferation and macrophages activation and exacerbate synovitis. In TMJOA, chondrocytes and synovial cells exhibit increased glycolytic activity and lactate secretion, leading to impaired chondrocyte matrix synthesis. Additionally, the synovium contains mesenchymal stem cells, which are the seed cells for cartilage repair in TMJOA. Co-culture of chondrocytes and synovial mesenchymal stem cells enhances the chondrogenic differentiation of stem cells. This review discusses the pathological changes of synovium in TMJOA, the means of crosstalk between synovium and cartilage, and their influence on each other. Based on the crosstalk between synovium and cartilage in TMJOA, we illustrate the treatment strategies for improving synovial microenvironment, including reducing cell adhesion, utilizing extracellular vesicles to deliver biomolecules, regulating cellular metabolism and targeting inflammatory cytokines.


Assuntos
Microambiente Celular , Condrócitos , Osteoartrite , Membrana Sinovial , Articulação Temporomandibular , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Condrócitos/metabolismo , Condrócitos/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Animais , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/terapia , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Citocinas/metabolismo , Macrófagos/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia
9.
Front Immunol ; 15: 1381272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139555

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with a complex pathological mechanism involving autoimmune response, local inflammation and bone destruction. Metabolic pathways play an important role in immune-related diseases and their immune responses. The pathogenesis of rheumatoid arthritis may be related to its metabolic dysregulation. Moreover, histological techniques, including genomics, transcriptomics, proteomics and metabolomics, provide powerful tools for comprehensive analysis of molecular changes in biological systems. The present study explores the molecular and metabolic mechanisms of RA, emphasizing the central role of metabolic dysregulation in the RA disease process and highlighting the complexity of metabolic pathways, particularly metabolic remodeling in synovial tissues and its association with cytokine-mediated inflammation. This paper reveals the potential of histological techniques in identifying metabolically relevant therapeutic targets in RA; specifically, we summarize the genetic basis of RA and the dysregulated metabolic pathways, and explore their functional significance in the context of immune cell activation and differentiation. This study demonstrates the critical role of histological techniques in decoding the complex metabolic network of RA and discusses the integration of histological data with other types of biological data.


Assuntos
Artrite Reumatoide , Biomarcadores , Metabolômica , Proteômica , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Humanos , Metabolômica/métodos , Proteômica/métodos , Genômica/métodos , Animais , Redes e Vias Metabólicas , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Multiômica
10.
Cell Death Dis ; 15(8): 584, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122678

RESUMO

TNF is a potent cytokine known for its involvement in physiology and pathology. In Rheumatoid Arthritis (RA), persistent TNF signals cause aberrant activation of synovial fibroblasts (SFs), the resident cells crucially involved in the inflammatory and destructive responses of the affected synovial membrane. However, the molecular switches that control the pathogenic activation of SFs remain poorly defined. Cyld is a major component of deubiquitination (DUB) machinery regulating the signaling responses towards survival/inflammation and programmed necrosis that induced by cytokines, growth factors and microbial products. Herein, we follow functional genetic approaches to understand how Cyld affects arthritogenic TNF signaling in SFs. We demonstrate that in spontaneous and induced RA models, SF-Cyld DUB deficiency deteriorates arthritic phenotypes due to increased levels of chemokines, adhesion receptors and bone-degrading enzymes generated by mutant SFs. Mechanistically, Cyld serves to restrict the TNF-induced hyperactivation of SFs by limiting Tak1-mediated signaling, and, therefore, leading to supervised NF-κB and JNK activity. However, Cyld is not critically involved in the regulation of TNF-induced death of SFs. Our results identify SF-Cyld as a regulator of TNF-mediated arthritis and inform the signaling landscape underpinning the SF responses.


Assuntos
Artrite Reumatoide , Enzima Desubiquitinante CYLD , Fibroblastos , Quinase I-kappa B , MAP Quinase Quinase Quinases , Transdução de Sinais , Membrana Sinovial , Fibroblastos/metabolismo , Fibroblastos/patologia , Enzima Desubiquitinante CYLD/metabolismo , Enzima Desubiquitinante CYLD/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Animais , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Camundongos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Humanos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
J Transl Med ; 22(1): 715, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090667

RESUMO

BACKGROUND: Synovial fibrosis is a common complication of knee osteoarthritis (KOA), a pathological process characterized by myofibroblast activation and excessive extracellular matrix (ECM) deposition. Fibroblast-like synoviocytes (FLSs) are implicated in KOA pathogenesis, contributing to synovial fibrosis through diverse mechanisms. Nuclear protein 1 (NUPR1) is a recently identified transcription factor with crucial roles in various fibrotic diseases. However, its molecular determinants in KOA synovial fibrosis remain unknown. This study aims to investigate the role of NUPR1 in KOA synovial fibrosis through in vivo and in vitro experiments. METHODS: We examined NUPR1 expression in the murine synovium and determined the impact of NUPR1 on synovial fibrosis by knockdown models in the destabilization of the medial meniscus (DMM)-induced KOA mouse model. TGF-ß was employed to induce fibrotic response and myofibroblast activation in mouse FLSs, and the role and molecular mechanisms in synovial fibrosis were evaluated under conditions of NUPR1 downexpression. Additionally, the pharmacological effect of NUPR1 inhibitor in synovial fibrosis was assessed using a surgically induced mouse KOA model. RESULTS: We found that NUPR1 expression increased in the murine synovium after DMM surgical operation. The adeno-associated virus (AAV)-NUPR1 shRNA promoted NUPR1 deficiency, attenuating synovial fibrosis, inhibiting synovial hyperplasia, and significantly reducing the expression of pro-fibrotic molecules. Moreover, the lentivirus-mediated NUPR1 deficiency alleviated synoviocyte proliferation and inhibited fibroblast to myofibroblast transition. It also decreased the expression of fibrosis markers α-SMA, COL1A1, CTGF, Vimentin and promoted the activation of the SMAD family member 3 (SMAD3) pathway. Importantly, trifluoperazine (TFP), a NUPR1 inhibitor, attenuated synovial fibrosis in DMM mice. CONCLUSIONS: These findings indicate that NUPR1 is an antifibrotic modulator in KOA, and its effect on anti-synovial fibrosis is partially mediated by SMAD3 signaling. This study reveals a promising target for developing novel antifibrotic treatment.


Assuntos
Fibroblastos , Fibrose , Transdução de Sinais , Proteína Smad3 , Sinoviócitos , Animais , Proteína Smad3/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos Endogâmicos C57BL , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Masculino , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Modelos Animais de Doenças , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA , Proteínas de Neoplasias
12.
Cells ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39120270

RESUMO

Degenerative disorders like osteoarthritis (OA) might impair the ability of tissue-resident mesenchymal stem/stromal cells (MSCs) for tissue regeneration. As primary cells with MSC-like properties are exploited for patient-derived stem cell therapies, a detailed evaluation of their in vitro properties is needed. Here, we aimed to compare synovium-derived and bone-derived MSCs in early hip OA with those of patients without OA (non-OA). Tissues from three synovial sites of the hip (paralabral synovium, cotyloid fossa, inner surface of peripheral capsule) were collected along with peripheral trabecular bone from 16 patients undergoing hip arthroscopy (8 early OA and 8 non-OA patients). Primary cells isolated from tissues were compared using detailed in vitro analyses. Gene expression profiling was performed for the skeletal stem cell markers podoplanin (PDPN), CD73, CD164 and CD146 as well as for immune-related molecules to assess their immunomodulatory potential. Synovium-derived and bone-derived MSCs from early OA patients showed comparable clonogenicity, cumulative population doublings, osteogenic, adipogenic and chondrogenic potential, and immunophenotype to those of non-OA patients. High PDPN/low CD146 profile (reminiscent of skeletal stem cells) was identified mainly for non-OA MSCs, while low PDPN/high CD146 mainly defined early OA MSCs. These data suggest that MSCs from early OA patients are not affected by degenerative changes in the hip. Moreover, the synovium represents an alternative source of MSCs for patient-derived stem cell therapies, which is comparable to bone. The expression profile reminiscent of skeletal stem cells suggests the combination of low PDPN and high CD146 as potential biomarkers in early OA.


Assuntos
Células-Tronco Mesenquimais , Membrana Sinovial , Humanos , Células-Tronco Mesenquimais/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Diferenciação Celular , Idoso , Osteoartrite/patologia , Osteoartrite/metabolismo , Osso e Ossos/patologia , Osso e Ossos/metabolismo , Adulto , Biomarcadores/metabolismo , Condrogênese , Osteogênese , Células Cultivadas
13.
Pathol Res Pract ; 261: 155508, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116571

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.


Assuntos
Apoptose , Artrite Reumatoide , MicroRNAs , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Transdução de Sinais , Fibroblastos/metabolismo , Fibroblastos/patologia , Animais
14.
Sci Rep ; 14(1): 18939, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147768

RESUMO

Rheumatoid arthritis (RA) and arthrofibrosis (AF) are both chronic synovial hyperplasia diseases that result in joint stiffness and contractures. They shared similar symptoms and many common features in pathogenesis. Our study aims to perform a comprehensive analysis between RA and AF and identify novel drugs for clinical use. Based on the text mining approaches, we performed a correlation analysis of 12 common joint diseases including arthrofibrosis, gouty arthritis, infectious arthritis, juvenile idiopathic arthritis, osteoarthritis, post infectious arthropathies, post traumatic osteoarthritis, psoriatic arthritis, reactive arthritis, rheumatoid arthritis, septic arthritis, and transient arthritis. 5 bulk sequencing datasets and 4 single-cell sequencing datasets of RA and AF were integrated and analyzed. A novel drug repositioning method was found for drug screening, and text mining approaches were used to verify the identified drugs. RA and AF performed the highest gene similarity (0.77) and functional ontology similarity (0.84) among all 12 joint diseases. We figured out that they share the same key pathogenic cell including CD34 + sublining fibroblasts (CD34-SLF) and DKK3 + sublining fibroblasts (DKK3-SLF). Potential therapeutic target database (PTTD) was established with the differential expressed genes (DEGs) of these key pathogenic cells. Based on the PTTD, 15 potential drugs for AF and 16 potential drugs for RA were identified. This work provides a new perspective on AF and RA study which enhances our understanding of their pathogenesis. It also shed light on their underlying mechanism and open new avenues for drug repositioning studies.


Assuntos
Artrite Reumatoide , Fibrose , Membrana Sinovial , Humanos , Artrite Reumatoide/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Reposicionamento de Medicamentos , Microambiente Celular/efeitos dos fármacos , Mineração de Dados
15.
Arthritis Res Ther ; 26(1): 150, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160592

RESUMO

OBJECTIVE: Rheumatoid Arthritis (RA) often exhibits suboptimal treatment response despite early diagnosis and treatment. This study aimed to analyze Early Rheumatoid Arthritis (ERA) synovial biopsies through histology and immunohistochemistry (IHC) to identify predictive factors for treatment response to Methotrexate (MTX). METHODS: 140 ERA patients from the UCLouvain Arthritis Cohort underwent synovial biopsy and were monitored after initiating Disease-Modifying Antirheumatic Drug (DMARD) therapy. Histological features [Synovial Hyperplasia, Fibrinoid Necrosis (FN), Hypervascularization and Inflammatory Infiltrate] and IHC (CD3, CD20, CD138, CD68) were each semi-quantitatively assessed on a 0-3 scale with 7 levels. RESULTS: A strong association was observed between synovial CD68 and Fibrinoid Necrosis scores [r = 0.44 (0.27 - 0.56); p < 0.0001]. CD68 correlated with C-Reactive Protein (CRP), DAS28, SDAI and CDAI. Fibrinoid Necrosis score correlated with CRP and DAS28. Patients were then categorized as CD68NecrosisHIGH (CD68 + Necrosis ≥ 3) and CD68NecrosisLOW (CD68 + Necrosis < 3). CD68NecrosisHIGH exhibited higher pre-treatment disease activity [5.48 (1.6) versus 4.8 (1.7); p = 0.03] and a greater fall in DAS28 [1.99 (2.06) versus 1.1 (2.27), p = 0.03], SDAI [21.45 (IQR 23.3) versus 11.65 (IQR 17.5); p = 0.003] and CDAI [16 [14.9] versus 10.5 (20.1), p = 0.04]. CD68NecrosisHIGH patients had a higher EULAR Moderate/Good Response rate. CD68Necrosis score was incorporated into a probability matrix model together with clinical features (SJC44 and DAS28) to predict achieving a Moderate/Good EULAR Response Criteria at 3 months with a good performance (AUC 0.724). CONCLUSION: FN and CD68 + in ERA synovial biopsies identify patients with higher disease activity and predict a better treatment response at three months. A model including synovial CD68 and fibrinoid necrosis with baseline clinical features predicts EULAR response at 3 months.


Assuntos
Antirreumáticos , Artrite Reumatoide , Metotrexato , Necrose , Membrana Sinovial , Humanos , Metotrexato/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Membrana Sinovial/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Antirreumáticos/uso terapêutico , Idoso , Estudos de Coortes , Adulto , Resultado do Tratamento , Imuno-Histoquímica
16.
Nat Commun ; 15(1): 7503, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209814

RESUMO

Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder in which patients suffer from inflammatory-erosive arthritis. Recent advances on histopathology heterogeneity of RA synovial tissue revealed three distinct phenotypes based on cellular composition (pauci-immune, diffuse and lymphoid), suggesting that distinct etiologies warrant specific targeted therapy which motivates a need for cost effective phenotyping tools in preclinical and clinical settings. To this end, we developed an automated multi-scale computational pathotyping (AMSCP) pipeline for both human and mouse synovial tissue with two distinct components that can be leveraged together or independently: (1) segmentation of different tissue types to characterize tissue-level changes, and (2) cell type classification within each tissue compartment that assesses change across disease states. Here, we demonstrate the efficacy, efficiency, and robustness of the AMSCP pipeline as well as the ability to discover novel phenotypes. Taken together, we find AMSCP to be a valuable cost-effective method for both pre-clinical and clinical research.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Humanos , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Animais , Artrite Reumatoide/patologia , Artrite Reumatoide/imunologia , Camundongos , Fenótipo , Biologia Computacional/métodos , Inflamação/patologia
17.
Front Immunol ; 15: 1428773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161769

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease characterized by inflammation and hyperplasia of the synovial tissues. RA pathogenesis involves multiple cell types, genes, transcription factors (TFs) and networks. Yet, little is known about the TFs, and key drivers and networks regulating cell function and disease at the synovial tissue level, which is the site of disease. In the present study, we used available RNA-seq databases generated from synovial tissues and developed a novel approach to elucidate cell type-specific regulatory networks on synovial tissue genes in RA. We leverage established computational methodologies to infer sample-specific gene regulatory networks and applied statistical methods to compare network properties across phenotypic groups (RA versus osteoarthritis). We developed computational approaches to rank TFs based on their contribution to the observed phenotypic differences between RA and controls across different cell types. We identified 18 (fibroblast-like synoviocyte), 16 (T cells), 19 (B cells) and 11 (monocyte) key regulators in RA synovial tissues. Interestingly, fibroblast-like synoviocyte (FLS) and B cells were driven by multiple independent co-regulatory TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (B cells). However, monocytes were collectively governed by a single cluster of TF drivers, responsible for the main phenotypic differences between RA and controls, which included RFX5, IRF9, CREB5. Among several cell subset and pathway changes, we also detected reduced presence of Natural killer T (NKT) cells and eosinophils in RA synovial tissues. Overall, our novel approach identified new and previously unsuspected Key driver genes (KDG), TF and networks and should help better understanding individual cell regulation and co-regulatory networks in RA pathogenesis, as well as potentially generate new targets for treatment.


Assuntos
Artrite Reumatoide , Redes Reguladoras de Genes , Membrana Sinovial , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Sinoviócitos/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Regulação da Expressão Gênica , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transcriptoma
18.
Int Immunopharmacol ; 141: 112863, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146779

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes persistent inflammation involving the joints, cartilage, and synovium. In individuals with RA, alterations in the composition of intestinal bacteria suggest the vital role of gut microbiota in immune dysfunction. Multiple therapies commonly used to treat RA can also alter the diversity of gut microbiota, further suggesting the modulation of gut microbiota as a prevention or treatment for RA. Therefore, a better understanding of the changes in the gut microbiota that accompany RA should facilitate the development of novel therapeutic approaches. In this study, B. coagulans BACO-17 not only significantly reduced paw swelling, arthritis scores, and hind paw and forepaw thicknesses but also protected articular cartilage and the synovium against RA degeneration, with a corresponding downregulation of TNF-α expression. The inhibition or even reversing of RA progression highlights B. coagulans BACO-17 as a novel therapeutic for RA worth investigating.


Assuntos
Artrite Reumatoide , Bacillus coagulans , Progressão da Doença , Microbioma Gastrointestinal , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Probióticos/uso terapêutico , Humanos , Camundongos , Ratos , Condrócitos/efeitos dos fármacos , Condrócitos/imunologia
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167341, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39025373

RESUMO

Fibroblast-like synoviocytes (FLS) plays an important role in synovial inflammation and joint damage in rheumatoid arthritis (RA). As the most abundant mRNA modification, N6-methyladenosine (m6A) is involved in the development of various diseases; however, its role in RA remains to be defined. In this study, we reported the elevated expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in FLS and synovium from RA patients. Functionally, FTO knockdown or treatment with FB23-2, an inhibitor of the mRNA m6A demethylase FTO, inhibited the migration, invasion and inflammatory response of RA FLS, however, FTO-overexpressed RA FLS exhibited increased migration, invasion and inflammatory response. We further demonstrated that FTO promoted ADAMTS15 mRNA stability in an m6A-IGF2BP1 dependent manner. Notably, the severity of arthritis was significantly reduced in CIA mice with FB23-2 administration or CIA rats with intra-articular injection of FTO shRNA. Our results illustrate the contribution of FTO-mediated m6A modification to joint damage and inflammation in RA and suggest that FTO might be a potential therapeutic target in RA.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Artrite Reumatoide , Inflamação , Metilação de RNA , Animais , Humanos , Camundongos , Ratos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia
20.
Biochem Biophys Res Commun ; 729: 150354, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981403

RESUMO

Intra-articular injection of mesenchymal stem cells (MSCs) is envisioned as a solution for knee osteoarthritis (OA). Although synovial MSCs (SyMSCs) are promising for cartilage regeneration, the clinical choice is usually adipose MSCs (AdMSCs). However, the similarities/differences in the mode of action between SyMSCs and AdMSCs remain unclear. Here, we compared factors secreted by human SyMSCs and AdMSCs after injection into OA knees. Human SyMSCs or AdMSCs were injected into the knees of rat partial meniscectomy models. The next day, the knee joints were collected to analyze the distribution of injected MSCs and transcriptome changes in the human MSCs and rat synovium. Non-injected MSCs were mixed with rat synovium as a control. After injection, no difference was apparent in intra-articular distribution of the SyMSCs or AdMSCs. RNA sequencing demonstrated an enrichment of cytokine-cytokine receptor interaction-related genes in both human SyMSCs and AdMSCs after injection. Differentially expressed genes (DEGs) specific to SyMSCs were associated with cartilage matrix synthesis and homeostasis. PCR analysis of the matrisome-related DEGs showed significantly higher expression of PRG4 in SyMSCs than in AdMSCs after injection. Immunostaining also confirmed a significantly greater expression of lubricin by SyMSCs than by AdMSCs. These findings indicate that SyMSCs will be a more promising treatment for OA.


Assuntos
Tecido Adiposo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Membrana Sinovial , Animais , Células-Tronco Mesenquimais/metabolismo , Humanos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/genética , Ratos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Injeções Intra-Articulares , Masculino , Ratos Sprague-Dawley , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células Cultivadas , Proteoglicanas/metabolismo , Proteoglicanas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...