Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563425

RESUMO

We found several blood biomarkers through computational secretome analyses, including aldo-keto reductase family 1 member B10 (AKR1B10), which reflected the progression of nonalcoholic fatty liver disease (NAFLD). After confirming that hepatic AKR1B10 reflected the progression of NAFLD in a subgroup with NAFLD, we evaluated the diagnostic accuracy of plasma AKR1B10 and other biomarkers for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis in replication cohort. We enrolled healthy control subjects and patients with biopsy-proven NAFLD (n = 102) and evaluated the performance of various diagnostic markers. Plasma AKR1B10 performed well in the diagnosis of NASH with an area under the receiver operating characteristic (AUROC) curve of 0.834 and a cutoff value of 1078.2 pg/mL, as well as advanced fibrosis (AUROC curve value of 0.914 and cutoff level 1078.2 pg/mL), with further improvement in combination with C3. When we monitored a subgroup of obese patients who underwent bariatric surgery (n = 35), plasma AKR1B10 decreased dramatically, and 40.0% of patients with NASH at baseline showed a decrease in plasma AKR1B10 levels to below the cutoff level after the surgery. In an independent validation study, we proved that plasma AKR1B10 was a specific biomarker of NAFLD progression across varying degrees of renal dysfunction. Despite perfect correlation between plasma and serum levels of AKR1B10 in paired sample analysis, its serum level was 1.4-fold higher than that in plasma. Plasma AKR1B10 alone and in combination with C3 could be a useful noninvasive biomarker for the diagnosis of NASH and hepatic fibrosis.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Membro B10 da Família 1 de alfa-Ceto Redutase/sangue , Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Biomarcadores , Fibrose , Humanos , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia
2.
Int J Med Sci ; 17(9): 1246-1256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547320

RESUMO

Sorafenib is the standard systemic treatment for advanced hepatocellular carcinoma (HCC), and improving its therapeutic effects is crucial for addressing cancer aggression. We previously reported that epalrestat, an aldo-keto reductase 1B10 inhibitor, enhanced sorafenib's inhibitory effects on HCC xenograft in nude mice. This study aimed to elucidate the mechanism of epalrestat's anti-tumour enhancing effects on sorafenib. HepG2 cells were treated with sorafenib, epalrestat, and their combination. Cell proliferation was assessed with Cell Counting Kit-8 and colony formation assays. AKR1B10 supernate concentration and enzyme activity were detected by ELISA assay and the decrease of optical density of NADPH at 340 nm. Cell cycle and apoptosis analyses were performed with flow cytometry. Western blots clarified the molecular mechanism underlying effects on cell cycle, apoptosis, and autophagy. The anti-tumour mechanism was then validated in vivo through TUNEL and immunohistochemistry staining of HCC xenograft sections. Epalrestat combined with sorafenib inhibited HepG2 cellular proliferation in vitro, arrested the cell cycle at G0/G1, and promoted apoptosis and autophagy. Treatment with a specific mTOR activator MHY-1485 increased mTOR phosphorylation, while suppressing apoptosis and autophagy. Consistent with in vitro results, data from the HCC-xenograft nude mouse model also indicated that combined treatment inhibited the mTOR pathway and promoted apoptosis and autophagy. In conclusion, epalrestat heightens sorafenib's anti-cancer effects via blocking the mTOR pathway, thus inducing cell cycle arrest, apoptosis, and autophagy.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Rodanina/análogos & derivados , Sorafenibe/farmacologia , Tiazolidinas/farmacologia , Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Células Hep G2 , Xenoenxertos , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Rodanina/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
3.
Mol Carcinog ; 57(10): 1300-1310, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29846015

RESUMO

Aldo-keto reductase 1B10 (AKR1B10) is upregulated in breast cancer and promotes tumor growth and metastasis. However, little is known of the molecular mechanisms of action. Herein we report that AKR1B10 activates lipid second messengers to stimulate cell proliferation. Our data showed that ectopic expression of AKR1B10 in breast cancer cells MCF-7 promoted lipogenesis and enhanced levels of lipid second messengers, including phosphatidylinositol bisphosphate (PIP2), diacylglycerol (DAG), and inositol triphosphate (IP3). In contrast, silencing of AKR1B10 in breast cancer cells BT-20 and colon cancer cells HCT-8 led to decrease of these lipid messengers. Qualitative analyses by liquid chromatography-mass spectrum (LC-MS) revealed that AKR1B10 regulated the cellular levels of total DAG and majority of subspecies. This in turn modulated the phosphorylation of protein kinase C (PKC) isoforms PKCδ (Thr505), PKCµ (Ser744/748), and PKCα/ßII (Thr638/641) and activity of the PKC-mediated c-Raf/MEK/ERK signaling cascade. A pan inhibitor of PKC (Go6983) blocked ERK1/2 activation by AKR1B10. In these cells, phospho-p90RSK, phospho-MSK, and Cyclin D1 expression was increased by AKR1B10, and pharmacological inhibition of the ERK signaling cascade with MEK1/2 inhibitors U0126 and PD98059 eradicated induction of phospho-p90RSK, phospho-MSK, and Cyclin D1. In breast cancer cells, AKR1B10 promoted the clonogenic growth and proliferation of breast cancer cells in two-dimension (2D) and three-dimension (3D) cultures and tumor growth in immunodeficient female nude mice through activation of the PKC/ERK pathway. These data suggest that AKR1B10 stimulates breast cancer cell growth and proliferation through activation of DAG-mediated PKC/ERK signaling pathway.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Neoplasias da Mama/metabolismo , Diglicerídeos/metabolismo , Sistemas do Segundo Mensageiro , Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Lipogênese , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos Nus , Proteína Quinase C/metabolismo , Transplante Heterólogo , Carga Tumoral
4.
Cancer Sci ; 109(6): 1970-1980, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29617059

RESUMO

2-Deoxyglucose (2DG) is a non-metabolizable glucose analog currently in clinical trials to determine its efficacy in enhancing the therapeutic effects of radiotherapy and chemotherapy of several types of cancers. It is thought to preferentially kill cancer cells by inhibiting glycolysis because cancer cells are more dependent on glycolysis for their energy needs than normal cells. However, we found that the toxicity of 2DG in cancer cells is mediated by the enzymatic activities of AKR1B1 and/or AKR1B10 (AKR1Bs), which are often overexpressed in cancer cells. Our results show that 2DG kills cancer cells because, in the process of being reduced by AKR1Bs, depletion of their cofactor NADPH leads to the depletion of glutathione (GSH) and cell death. Furthermore, we showed that compounds that are better substrates for AKR1Bs than 2DG are more effective than 2DG in killing cancer cells that overexpressed these 2 enzymes. As cancer cells can be induced to overexpress AKR1Bs, the anticancer mechanism we identified can be applied to treat a large variety of cancers. This should greatly facilitate the development of novel anticancer drugs.


Assuntos
Aldeído Redutase/metabolismo , Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Desoxiglucose/farmacologia , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Aldeído Redutase/genética , Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose/metabolismo , Glicólise/efeitos dos fármacos , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo
5.
Dig Dis Sci ; 63(4): 934-944, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383608

RESUMO

BACKGROUND: The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. AIMS: To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. METHODS: Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. RESULTS: The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. CONCLUSIONS: Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.


Assuntos
Aldeído Redutase/metabolismo , Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Aldo-Ceto Redutases/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Aldeído Redutase/genética , Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Aldo-Ceto Redutases/genética , Animais , Biomarcadores/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344
6.
Oncotarget ; 8(20): 33694-33703, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28402270

RESUMO

BACKGROUND: Aldo-keto reductase family 1, member B10 (AKR1B10), is known to be significantly induced in the cells of various cancers such as breast cancer. However, the mechanisms of AKR1B10 promoting tumorigenesis in breast cancer remain unclear. In the present study, we demonstrated the potential role and mechanism of AKR1B10 in the invasion and migration of breast cancer cells. METHODS: The expression level of AKR1B10 in breast carcinoma, para-carcinoma and cancer tissues were detected by immunohistochemical evaluation and real-time polymerase chain reaction (RT-PCR), and the correlationships between AKR1B10 expression and clinicopathological features in breast cancer patients (n=131) were investigated. AKR1B10 was ectopically expressed in MCF-7 cells or silenced in BT-20 cells. The roles of AKR1B10 expression in the migration and invasion of MCF-7 cells and BT-20 cells were explored by wound healing assay, transwell migration assay and transwell matrigel invasion assay, and finally the activation level of extracellular signal-regulated kinase 1/2 (EKR1/2) activation and the expression level of matrix metalloproteinase-2 (MMP2) and vimentin in MCF-7 and BT-20 cells were measured by western blot. RESULTS: We found that AKR1B10 expression was increased in malignant tissues, which was correlated positively with tumor size, lymph node metastasis (p<0.05). MCF-7/AKR1B10 cells displayed a higher ability of migration (43.57±1.04%) compared with MCF-7/vector cells (29.12±1.34%) in wound healing assay, and the migrated cell number of MCF-7/AKR1B10 was more (418.43±9.62) than that of MCF-7/vector (222.43±17.75) in transwell migration assay without matrigel. We furtherly confirmed MCF-7/AKR1B10 cells invaded faster compared with MCF-7/vector cells by transwell matrigel invasion assay. Finally, we found AKR1B10 induced the migration and invasion of MCF-7 and BT-20 cells by activating EKR signaling, which promoted the expressions of MMP2 and vimentin. PD98059, a specific inhibitor of the activation of MEK, blocked the migration and invasion by inhibiting the expression of MMP2 and vimentin. CONCLUSIONS: AKR1B10 is overexpressed in breast cancer, and promotes the migration and invasion of MCF-7 and BT-20 cells by activating ERK signaling pathway.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Adulto , Idoso , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Expressão Gênica , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...