Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 997
Filtrar
1.
Mol Brain ; 17(1): 50, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095918

RESUMO

Neuroactive steroids (NASs) directly affect neuronal excitability. Despite their role in the nervous system is intimately linked to pain control, knowledge is currently limited. This study investigates the peripheral involvement of NASs in chronic ischemic pain by targeting the cytochrome P450 side-chain cleavage enzyme (P450scc). Using a rat model of hind limb thrombus-induced ischemic pain (TIIP), we observed an increase in P450scc expression in the ischemic hind paw skin. Inhibiting P450scc with intraplantar aminoglutethimide (AMG) administration from post-operative day 0 to 3 significantly reduced the development of mechanical allodynia. However, AMG administration from post-operative day 3 to 6 did not affect established mechanical allodynia. In addition, we explored the role of the peripheral sigma-1 receptor (Sig-1R) by co-administering PRE-084 (PRE), a Sig-1R agonist, with AMG. PRE reversed the analgesic effects of AMG during the induction phase. These findings indicate that inhibiting steroidogenesis with AMG alleviates peripheral ischemic pain during the induction phase via Sig-1Rs.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Isquemia , Ratos Sprague-Dawley , Receptores sigma , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/complicações , Masculino , Isquemia/complicações , Isquemia/patologia , Receptores sigma/antagonistas & inibidores , Receptores sigma/metabolismo , Receptor Sigma-1 , Dor/tratamento farmacológico , Dor/complicações , Dor/etiologia , Dor/patologia , Membro Posterior/efeitos dos fármacos , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628350

RESUMO

Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 ± 2% and 54 ± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 ± 4% and 128 ± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil-treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.


Assuntos
Membro Posterior , Isquemia , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Citrato de Sildenafila , Animais , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Isquemia/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Citrato de Sildenafila/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989866

RESUMO

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Assuntos
Analgesia/métodos , Hipocinesia/fisiopatologia , Musaranhos/metabolismo , Toxinas Biológicas/metabolismo , Peçonhas/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/fisiopatologia , Dor/prevenção & controle , Homologia de Sequência de Aminoácidos , Musaranhos/genética , Trombina/antagonistas & inibidores , Trombina/metabolismo , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/genética , Peçonhas/genética
4.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948061

RESUMO

Cell-derived matrix (CDM) has proven its therapeutic potential and been utilized as a promising resource in tissue regeneration. In this study, we prepared a human fibroblast-derived matrix (FDM) by decellularization of in vitro cultured cells and transformed the FDM into a nano-sized suspended formulation (sFDM) using ultrasonication. The sFDM was then homogeneously mixed with Pluronic F127 and hyaluronic acid (HA), to effectively administer sFDM into target sites. Both sFDM and sFDM containing hydrogel (PH/sFDM) were characterized via immunofluorescence, sol-gel transition, rheological analysis, and biochemical factors array. We found that PH/sFDM hydrogel has biocompatible, mechanically stable, injectable properties and can be easily administered into the external and internal target regions. sFDM itself holds diverse bioactive molecules. Interestingly, sFDM-containing serum-free media helped maintain the metabolic activity of endothelial cells significantly better than those in serum-free condition. PH/sFDM also promoted vascular endothelial growth factor (VEGF) secretion from monocytes in vitro. Moreover, when we evaluated therapeutic effects of PH/sFDM via the murine full-thickness skin wound model, regenerative potential of PH/sFDM was supported by epidermal thickness, significantly more neovessel formation, and enhanced mature collagen deposition. The hindlimb ischemia model also found some therapeutic improvements, as assessed by accelerated blood reperfusion and substantially diminished necrosis and fibrosis in the gastrocnemius and tibialis muscles. Together, based on sFDM holding a strong therapeutic potential, our engineered hydrogel (PH/sFDM) should be a promising candidate in tissue engineering and regenerative medicine.


Assuntos
Matriz Extracelular/química , Fibroblastos/química , Membro Posterior/lesões , Ácido Hialurônico/farmacologia , Isquemia/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Membro Posterior/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Hidrogéis , Isquemia/etiologia , Masculino , Camundongos , Tamanho da Partícula , Poloxâmero/química , Medicina Regenerativa , Reologia , Células THP-1 , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Med ; 27(1): 127, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654365

RESUMO

OBJECTIVE: D-Serine is a crucial endogenous co-agonist of N-methyl-D-aspartate receptors (NMDARs) in the central nervous system and can affect the function of the brain derived neurotrophic factor (BDNF) system, which plays an essential role in modulating synaptic plasticity. The current study aimed to systematically evaluate the role and mechanisms of D-serine in depressive behavior in nucleus accumbens (NAc). METHODS: D-Serine concentration in the chronic social defeat stress (CSDS) model in NAc was measured using high-performance liquid chromatography (HPLC). The antidepressant-like effects of D-serine were identified using forced swim test (FST) and tail suspension test (TST) in control mice and then assessed in CSDS model. We applied social interaction and sucrose preference tests to identify the susceptibility of CSDS model. Western blotting was further performed to assess the changes of BDNF signaling cascade in NAc after CSDS and D-serine treatment. The BDNF signaling inhibitor (K252a) was also used to clarify the antidepressant-like mechanism of D-serine. Moreover, D-serine effects on synaptic plasticity in NAc were investigated using electrophysiological methods. RESULTS: D-Serine concentration was decreased in depression susceptible mice in NAc. D-Serine injections into NAc exhibited antidepressant-like effects in FST and TST without affecting the locomotor activity of mice. D-Serine was also effective in CSDS model of depression. Moreover, D-serine down-regulated the BDNF signaling pathway in NAc during CSDS procedure. Furthermore, BDNF signaling inhibitor (K252a) enhanced the antidepressant effects of D-serine. We also found that D-serine was essential for NMDARs-dependent long-term depression (LTD). CONCLUSION: D-Serine exerts antidepressant-like effects in mice mediated through restraining the BDNF signaling pathway and regulating synaptic plasticity in NAc.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Serina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Depressão/metabolismo , Depressão/fisiopatologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Elevação dos Membros Posteriores/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Serina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
6.
ACS Appl Mater Interfaces ; 13(38): 45224-45235, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519480

RESUMO

Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by blockages of the arteries supplying the lower extremities. Ischemia initiates oxidative damage and mitochondrial dysfunction in the legs of PAD patients, causing injury to the tissues of the leg, significant decline in walking performance, leg pain while walking, and in the most severe cases, nonhealing ulcers and gangrene. Current clinical trials based on cells/stem cells, the trophic factor, or gene therapy systems have shown some promising results for the treatment of PAD. Biomaterial matrices have been explored in animal models of PAD to enhance these therapies. However, current biomaterial approaches have not fully met the essential requirements for minimally invasive intramuscular delivery to the leg. Ideally, a biomaterial should present properties to ameliorate oxidative stress/damage and failure of angiogenesis. Recently, we have created a thermosensitive hyaluronic acid (HA) hydrogel with antioxidant capacity and skeletal muscle-matching stiffness. Here, we further optimized HA hydrogels with the cell adhesion peptide RGD to facilitate the development of vascular-like structures in vitro. The optimized HA hydrogel reduced intracellular reactive oxygen species levels and preserved vascular-like structures against H2O2-induced damage in vitro. HA hydrogels also provided prolonged release of the vascular endothelial growth factor (VEGF). After injection into rat ischemic hindlimb muscles, this VEGF-releasing hydrogel reduced lipid oxidation, regulated oxidative-related genes, enhanced local blood flow in the muscle, and improved running capacity of the treated rats. Our HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.


Assuntos
Antioxidantes/uso terapêutico , Ácido Hialurônico/uso terapêutico , Hidrogéis/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Doença Arterial Periférica/tratamento farmacológico , Animais , Antioxidantes/química , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Ácido Hialurônico/química , Hidrogéis/química , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença Arterial Periférica/patologia , Ratos
7.
Commun Biol ; 4(1): 933, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413463

RESUMO

During duration spaceflight, or after their return to earth, astronauts have often suffered from gait instability and cerebellar ataxia. Here, we use a mouse model of hindlimb unloading (HU) to explore a mechanism of how reduced hindlimb burden may contribute to motor deficits. The results showed that these mice which have experienced HU for 2 weeks exhibit a rapid accumulation of formaldehyde in the gastrocnemius muscle and fastigial nucleus of cerebellum. The activation of semicarbazide-sensitive amine oxidase and sarcosine dehydrogenase induced by HU-stress contributed to formaldehyde generation and loss of the abilities to maintain balance and coordinate motor activities. Further, knockout of formaldehyde dehydrogenase (FDH-/-) in mice caused formaldehyde accumulation in the muscle and cerebellum that was associated with motor deficits. Remarkably, formaldehyde injection into the gastrocnemius muscle led to gait instability; especially, microinfusion of formaldehyde into the fastigial nucleus directly induced the same symptoms as HU-induced acute ataxia. Hence, excessive formaldehyde damages motor functions of the muscle and cerebellum.


Assuntos
Formaldeído/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Membro Posterior/efeitos dos fármacos , Animais , Masculino , Camundongos
8.
Bioengineered ; 12(1): 3900-3911, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288810

RESUMO

In vertebrates, 5'-Hoxd genes (Hoxd9), which are expressed in the hindlimb bud mesenchyme, participate in limb growth and patterning in early embryonic development. In the present study, We investigated the mechanisms by which ATRA regulates cultured E12.5 rat embryo hindlimb bud mesenchymal cells (rEHBMCs). Following exposure to ATRA over 24 h, mRNA and protein expression levels of HoxD9 were evaluated by reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), and western blotting. Flow cytometry was used to detect apoptosis. ATRA inhibited the condensation and proliferation, and promoted the apoptosis rate of the rEHBMCs in a dose-dependent manner. Sox9 and Col2a1 in rEHBMCs were downregulated by ATRA in a dose-dependent manner at both mRNA and protein levels. Similarly, HoxD9 was downregulated by ATRA in a dose-dependent manner, in parallel with the cartilage-specific molecules Sox9 and Col2a1. Both qPCR and western blotting showed that both Shh and Gli3 were downregulated. Overexpression of HoxD9 reversed the effects of ATRA. These results demonstrate that ATRA suppresses chondrogenesis in rEHBMCs by inhibiting the expression of HoxD9 and its downstream protein targets, including Sox9 and Col2a1. This effect may also be correlated with inhibition of the Shh-Gli3 signaling pathway.


Assuntos
Condrogênese/efeitos dos fármacos , Membro Posterior , Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Tretinoína/farmacologia , Animais , Células Cultivadas , Pé Torto Equinovaro , Embrião de Mamíferos/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Neoplasias/metabolismo , Ratos
9.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199392

RESUMO

Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.


Assuntos
Locomoção/genética , Receptor 5-HT2A de Serotonina/genética , Receptores de Serotonina/genética , Traumatismos da Medula Espinal/genética , Animais , Ciproeptadina/farmacologia , Estimulação Elétrica , Eletromiografia , Membro Anterior/efeitos dos fármacos , Membro Anterior/fisiopatologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Locomoção/efeitos dos fármacos , Região Lombossacral/fisiopatologia , Ratos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Serotonina/genética , Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiopatologia
10.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259041

RESUMO

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Assuntos
Débito Cardíaco/efeitos dos fármacos , Diterpenos/farmacologia , Membro Posterior/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Débito Cardíaco/fisiologia , Diterpenos/administração & dosagem , Cães , Coração/efeitos dos fármacos , Coração/fisiopatologia , Membro Posterior/fisiopatologia , Isquemia/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...