Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.595
Filtrar
1.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971740

RESUMO

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Assuntos
Transferência Genética Horizontal , Mercúrio , Óperon , Simbiose , Transcriptoma , Mercúrio/metabolismo , Mercúrio/toxicidade , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiologia do Solo
2.
J Agric Food Chem ; 72(28): 15985-15997, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959496

RESUMO

Liver disease has become an important risk factor for global health. Resveratrol (Res) is a natural polyphenol which is widely found in foods and has a variety of biological activities. This study investigated the role of the microbiota-gut-liver axis in the Res relieving the liver fibrosis induced by inorganic mercury exposure. Twenty-eight mice were divided into four groups (n = 7) and treated with mercuric chloride and/or Res for 24 weeks, respectively. The results showed that Res mitigated the ileum injury induced by inorganic mercury and restrained LPS and alcohol entering the body circulation. Network pharmacological and molecular analyses showed that Res alleviated oxidative stress, metabolism disorders, inflammation, and hepatic stellate cell activation in the liver. In conclusion, Res alleviates liver fibrosis induced by inorganic mercury via activating the Sirt1/PGC-1α signaling pathway and regulating the microbial-gut-liver axis, particularly, increasing the relative enrichment of Bifidobacterium in the intestinal tract.


Assuntos
Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resveratrol , Transdução de Sinais , Sirtuína 1 , Animais , Camundongos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Environ Toxicol Chem ; 43(8): 1844-1854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856099

RESUMO

In birds, mercury embryotoxicity can occur through the transfer of mercury from the female to her eggs. Maternal transfer of mercury can vary by egg position in the laying sequence, with first-laid eggs often exhibiting greater mercury concentrations than subsequently laid eggs. We studied egg mercury concentration, mercury burden (total amount of mercury in the egg), and egg morphometrics by egg position in the laying sequence for two songbirds: tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon). Egg mercury concentration in the second egg laid was 14% lower for tree swallows and 6% lower for house wrens in comparison with the first egg laid. These results indicate that in both species, after an initial relatively high transfer of mercury into the first egg laid, a smaller amount of mercury was transferred to the second egg laid. This lower mercury concentration persisted among all subsequently laid eggs (eggs three to eight) in tree swallows (all were 14%-16% lower than egg 1), but mercury concentrations in subsequently laid house wren eggs (eggs three to seven) returned to levels observed in the first egg laid (all were 1% lower to 3% greater than egg 1). Egg size increased with position in the laying sequence in both species; the predicted volume of egg 7 was 5% and 6% greater than that of egg 1 in tree swallows and house wrens, respectively. This change was caused by a significant increase in egg width, but not egg length, with position in the laying sequence. The percentage of decline in mercury concentration with position in the laying sequence was considerably lower in tree swallows and house wrens compared with other bird taxonomic groups, suggesting that there are key differences in the maternal transfer of mercury into songbird eggs compared with other birds. Finally, we performed simulations to evaluate how within-clutch variation in egg mercury concentrations affected estimates of mean mercury concentrations in each clutch and the overall sampled population, which has direct implications for sampling designs. Environ Toxicol Chem 2024;43:1844-1854. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Mercúrio , Óvulo , Aves Canoras , Animais , Mercúrio/metabolismo , Feminino , Óvulo/química , Aves Canoras/metabolismo , Poluentes Ambientais/toxicidade
4.
Environ Microbiol ; 26(6): e16669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922750

RESUMO

Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.


Assuntos
Archaea , Bactérias , Sedimentos Geológicos , Mercúrio , Compostos de Metilmercúrio , Rios , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Metagenômica , Humanos , Genoma Bacteriano , Genoma Arqueal , Ecossistema , Microbiota
5.
Sci Total Environ ; 944: 173707, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866170

RESUMO

Farmland mercury (Hg) pollution poses a significant threat to human health, but there is a lack of highly efficient phytoextraction for its remediation at present. This study investigates the impact of poly-γ-glutamic acid (γ-PGA) on the phytoextraction capabilities of Pennisetum giganteum (P. giganteum) in Hg-contaminated soil. Our research indicates that amending γ-PGA to soil markedly enhances the assimilation of soil Hg by P. giganteum and transformation of Hg within itself, with observed increases in Hg concentrations in roots, stems, and leaves by 1.1, 4.3, and 18.9 times, respectively, compared to the control. This enhancement is attributed to that γ-PGA can facilitate the hydrophilic and bioavailable of soil Hg. Besides, γ-PGA can stimulate the abundance of Hg-resistance bacteria Proteobacteria in the rhizosphere of P. giganteum, thus increasing the mobility and uptake of soil Hg by P. giganteum roots. Moreover, the hydrophilic nature of Hg-γ-PGA complexes supports their transport via the apoplastic pathway, across the epidermis, and through the Casparian strip, eventually leading to immobilization in the mesophyll tissues. This study provides novel insights into the mechanisms of Hg phytoextraction, demonstrating that γ-PGA significantly enhances the effectiveness of P. giganteum in Hg uptake and translocation. The findings suggest a promising approach for the remediation of Hg-contaminated soil, offering a sustainable and efficient strategy for environmental management and health risk mitigation.


Assuntos
Biodegradação Ambiental , Mercúrio , Pennisetum , Ácido Poliglutâmico , Poluentes do Solo , Poluentes do Solo/metabolismo , Mercúrio/metabolismo , Pennisetum/metabolismo , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Solo/química
6.
Environ Int ; 189: 108813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878502

RESUMO

Mercury is a highly toxic trace metal that can accumulate in aquatic ecosystems and when resent at high concentrations can pose risks to both aquatic life and humans consuming contaminated fish. This research explores the use of the metalloregulatory protein MerR, known for its high affinity and selectivity toward mercury, in a novel application. Through a cell surface engineering approach, MerR was displayed on cells of green alga Chlamydomonas reinhardtii. A hydroxyproline-rich GP1 protein was used as an anchor to construct the engineered strains GP1-MerR that expresses the fluorescent protein mVenus. The surface engineered GP1-MerR strain led up to five folds higher Hg2+ accumulation compared to the WT strain at concentration range from 10-9 to 10-7 M Hg2+. The binding of Hg2+ via MerR was specific and did not get significantly affected by major freshwater water quality variables such as Ca2+ and dissolved organic matter. The presence of other trace metals (Zn2+, Cu2+, Ni2+, Pb2+, Cd2+) in a same concentration range even resulted in 30-40 % increase in the accumulated Hg. Further, the engineered cells also demonstrated the ability to accumulate Hg2+ from the water extracts of the Hg-contaminated sediment samples. These results demonstrate a novel approach utilizing the cell surface display system in C. reinhardtii for its potential application in bioremediation.


Assuntos
Chlamydomonas reinhardtii , Mercúrio , Poluentes Químicos da Água , Chlamydomonas reinhardtii/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Proteínas de Ligação a DNA
7.
Sci Total Environ ; 945: 173791, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38862041

RESUMO

Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 µm non-oxidized and 10-15 µm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.3 µg Hg/L) and chlorpyrifos (CPF, 1.0 µg CPF/L) to adult Acartia tonsa copepods, after 24-48 h exposure. Dose-response experiments were first performed with adult female copepods exposed to oxidized MPs (0.25-4.0 mg/L), waterborne Hg (0.01-10.0 µg/L) and Ox MPs + Hg (0.25-4.0 mg oxidized MPs/L + 0.50-8.0 µg Hg/L) for 48 h, to complement previous studies that focused on the pesticide CPF. Effects were evaluated with four replicates for physiological and reproductive responses (6 females/replicate), biochemical techniques (40 individuals/replicate) and Hg/CPF bioaccumulation measurements (1000 individuals/replicate). Copepods accumulated Hg/CPF similarly from dissolved pollutants (6204 ± 2265 ng Hg/g and 1251 ± 646 ng CPF/g) and loaded MPs (3125 ± 1389 ng Hg/g and 1156 ± 266 ng CPF/g), but significantly less from loaded MA (21 ± 8 ng Hg/g and 173 ± 80 ng CPF/g). After 24-48 h, copepods exposed to MPs + Hg/CPF showed generally greater biological effects than those exposed to dissolved Hg/CPF or to MA + Hg/CPF, although differences were not statistically significant. MA + CPF had significantly lower AChE inhibition (1073.4 nmol min-1 mg-1) and MA + Hg lower GRx induction (48.8 nmol min-1 mg-1) compared to MPs + Hg/CPF and dissolved Hg/CPF (182.8-236.4 nmol min-1 mg-1 of AChE and 74.1-101.7 nmol min-1 mg-1 of GRx). Principal component analysis suggested different modes of action for Hg and CPF.


Assuntos
Clorpirifos , Copépodes , Mercúrio , Microalgas , Microplásticos , Poluentes Químicos da Água , Animais , Mercúrio/metabolismo , Mercúrio/análise , Feminino , Monitoramento Ambiental
8.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822880

RESUMO

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Assuntos
Golfinhos , Espécies em Perigo de Extinção , Monitoramento Ambiental , Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oceano Atlântico , Golfinhos/metabolismo , Fígado/metabolismo , Rim/metabolismo
9.
Environ Pollut ; 352: 124117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714231

RESUMO

Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.


Assuntos
Água Doce , Sedimentos Geológicos , Mercúrio , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Mercúrio/metabolismo , Metilação , Poluentes Químicos da Água/metabolismo , Compostos de Metilmercúrio/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Metagenoma
10.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693447

RESUMO

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Assuntos
Vaga-Lumes , Histidina , Luciferases de Vaga-Lume , Mutagênese Sítio-Dirigida , Concentração de Íons de Hidrogênio , Animais , Luciferases de Vaga-Lume/metabolismo , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Vaga-Lumes/enzimologia , Histidina/química , Histidina/metabolismo , Cor , Metais Pesados/química , Metais Pesados/metabolismo , Mercúrio/química , Mercúrio/metabolismo , Cádmio/química , Cádmio/metabolismo
11.
Mar Pollut Bull ; 203: 116471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754323

RESUMO

Mercury is a global contaminant that bioaccumulates in a tissue-specific manner in long-lived predators such as Steller sea lions (SSL). Bone is a well-preserved material amenable for studying millennial scale trends; however, little is known about the distribution and variability of total mercury concentrations ([THg]) within individual bones and among bone elements in SSL. We assessed SSL bone [THg] variability with respect to physiologic age, bone type, longitudinally within a bone, and among bone elements. Pup bones (mean ± SD; 31.4 ± 13.58 ppb) had greater [THg] than adults (7.9 ± 1.91 ppb). There were greater and more variable [THg] within individual long bones near epiphyses compared to mid-diaphysis. Pup spongy bone in ribs (62.7 ± 44.79 ppb) had greater [THg] than long bones (23.5 ± 8.83 ppb) and phalanges (19.6 ± 10.78 ppb). These differences are likely due to variability in bone composition, growth, and turnover rate. This study informs standardized sampling procedures for [THg] in bone to improve interpretations of mercury variability over time and space.


Assuntos
Osso e Ossos , Monitoramento Ambiental , Mercúrio , Leões-Marinhos , Poluentes Químicos da Água , Animais , Mercúrio/metabolismo , Leões-Marinhos/metabolismo , Osso e Ossos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
12.
Mar Pollut Bull ; 203: 116469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754322

RESUMO

This paper reports the first record of total mercury (THg) concentrations in albacore (Thunnus alalunga), one of the main tuna species caught from the Western Equatorial Atlantic Ocean and presents a preliminary comparison with other regions and tuna species. Mean, standard deviation and range of concentrations in T. alalunga (515 ± 145 ng g-1 ww; 294-930 ng g-1 ww) with 92 % being of methyl-Hg, are higher than in albacore from other Atlantic Ocean subregions despite their smaller body size. These concentrations are similar to those from the Pacific and Indian oceans, but lower than in the Mediterranean. Compared to other sympatric tuna species, concentrations are higher than those in T. albacares and similar to T. obesus. These results are discussed considering the potential differences in stable isotope values (13C and 15N) of T. alalunga populations from multiple oceanic areas and compared to other tuna species worldwide.


Assuntos
Isótopos de Carbono , Monitoramento Ambiental , Mercúrio , Isótopos de Nitrogênio , Atum , Poluentes Químicos da Água , Animais , Atum/metabolismo , Oceano Atlântico , Poluentes Químicos da Água/análise , Mercúrio/análise , Mercúrio/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise
13.
Environ Pollut ; 351: 124048, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714230

RESUMO

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.


Assuntos
Mercúrio , Mercúrio/metabolismo , Mapas de Interação de Proteínas , Proteínas de Bactérias/metabolismo , Biotransformação , Sulfatos/metabolismo , Bactérias/metabolismo , Proteômica , Bactérias Redutoras de Enxofre/metabolismo
14.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695111

RESUMO

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Assuntos
Arsênio , Extremófilos , Transferência Genética Horizontal , Rodófitas , Rodófitas/genética , Extremófilos/genética , Arsênio/metabolismo , Mercúrio/metabolismo , Estresse Fisiológico/genética , Inativação Metabólica/genética , Evolução Molecular
15.
Nat Commun ; 15(1): 4490, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802424

RESUMO

Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.


Assuntos
Dióxido de Carbono , Mudança Climática , Ecossistema , Mercúrio , Plantas , Dióxido de Carbono/metabolismo , Mercúrio/metabolismo , Plantas/metabolismo
16.
J Hazard Mater ; 472: 134446, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696958

RESUMO

Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.


Assuntos
Carvão Vegetal , Mercúrio , Compostos de Metilmercúrio , Oryza , Oxirredução , Microbiologia do Solo , Poluentes do Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Metilação , Compostos de Metilmercúrio/metabolismo , Mercúrio/metabolismo , Bactérias/metabolismo , Bactérias/genética
17.
Environ Sci Pollut Res Int ; 31(24): 35055-35068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714618

RESUMO

Mercury (Hg) is a prevalent and harmful contaminant that persists in the environment. For phytoremediation, it is important to discover which plants can bioaccumulate meaningful amounts of Hg while also tolerating its toxicity. Additionally, increasing biodiversity could create a more resilient and self-sustaining system for remediation. This study explores whether mixed populations of Lemna minor and Spirodela polyrhiza can better bioaccumulate and tolerate Hg than monocultures. Mono- and mixed cultures of L. minor and S. polyrhiza were grown in mesocosms of 0.5 µg/L or 100 µg/L Hg (HgCl2) spiked water for 96 h. Change in weight of duckweed was used to assess Hg tolerance. Diffusive gradients in thin-films (DGTs) were used as surrogate monitoring devices for bioavailable levels of Hg. For biomass growth, the mixed culture of the L. minor was greater than the monoculture at the high dose. The L. minor accumulated more Hg in the mixed culture at the low dose while the S. polyrhiza was higher in the mixed at the high dose. Hg speciation in water was modeled using Windermere Humic Aqueous Model 7 (WHAM7) to compare the bioavailable species indicated by the DGTs.  Potentially due to the controlled conditions, the WHAM7 output of bioavailable Hg was almost 1:1 to that estimated by the DGTs, indicating good predictive capability of geochemical modeling and passive sampler DGT on metal bioavailability. Overall, the mixed cultures statistically performed as well as or better than the monocultures when tolerating and bioaccumulating Hg. However, there needs to be further work to see if the significant differences translate into practical differences worth the extra resources to maintain multiple species.


Assuntos
Araceae , Biodegradação Ambiental , Mercúrio , Mercúrio/metabolismo , Araceae/metabolismo , Bioacumulação , Poluentes Químicos da Água
18.
Bioresour Technol ; 402: 130831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734262

RESUMO

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.


Assuntos
Alteromonas , Biodegradação Ambiental , Mercúrio , Mercúrio/metabolismo , Alteromonas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Água do Mar/microbiologia , Aerobiose , Compostos de Metilmercúrio/metabolismo
19.
J Hazard Mater ; 473: 134699, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795488

RESUMO

Identifying metabolism and detoxification mechanisms of Hg in biota has important implications for biomonitoring, ecotoxicology, and food safety. Compared to marine mammals and waterbirds, detoxification of MeHg in fish is understudied. Here, we investigated Hg detoxification in Atlantic bluefin tuna Thunnus thynnus using organ-specific Hg and Se speciation data, stable Hg isotope signatures, and Hg and Se particle measurements in multiple tissues. Our results provide evidence for in vivo demethylation and biomineralization of HgSe particles, particularly in spleen and kidney. We observed a maximum range of 1.83‰ for δ202Hg between spleen and lean muscle, whereas Δ199Hg values were similar across all tissues. Mean percent methylmercury ranged from 8% in spleen to 90% in lean muscle. The particulate masses of Hg and Se were higher in spleen and kidney (Hg: 61% and 59%, Se: 12% and 6%, respectively) compared to muscle (Hg: 2%, Se: 0.05%). Our data supports the hypothesis of an organ-specific, two-step detoxification of methylmercury in wild marine fish, consisting of demethylation and biomineralization, like reported for waterbirds. While mass dependent fractionation signatures were highly organ specific, stable mass independent fractionation signatures across all tissues make them potential candidates for source apportionment studies of Hg using ABFT.


Assuntos
Isótopos de Mercúrio , Compostos de Metilmercúrio , Atum , Poluentes Químicos da Água , Animais , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Atum/metabolismo , Isótopos de Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rim/metabolismo , Baço/metabolismo , Inativação Metabólica , Mercúrio/metabolismo , Mercúrio/análise , Monitoramento Ambiental/métodos , Músculos/metabolismo , Músculos/química , Selênio/metabolismo , Selênio/análise
20.
Environ Res ; 252(Pt 2): 118906, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609069

RESUMO

Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.


Assuntos
Bioacumulação , Monitoramento Ambiental , Invertebrados , Mercúrio , Rios , Mercúrio/análise , Mercúrio/metabolismo , Brasil , Animais , Rios/química , Invertebrados/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Pradaria , Cadeia Alimentar , Ecossistema , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...