Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.849
Filtrar
1.
Planta ; 260(5): 105, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325207

RESUMO

MAIN CONCLUSION: PATOL1 contributes to increasing biomass not only by effective stomatal movement but also by root meristematic activity. PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H+-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Biomassa , Raízes de Plantas , Brotos de Planta , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/fisiologia , Membrana Celular/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273306

RESUMO

Land plants grow throughout their life cycle via the continuous activity of stem cell reservoirs contained within their apical meristems. The shoot apical meristem (SAM) of Arabidopsis and other land plants responds to a variety of environmental cues, yet little is known about the response of meristems to seasonal changes in day length, or photoperiod. Here, the vegetative and reproductive growth of Arabidopsis wild-type and clavata3 (clv3) plants in different photoperiod conditions was analyzed. It was found that SAM size in wild-type Arabidopsis plants grown in long-day (LD) conditions gradually increased from embryonic to reproductive development. clv3 plants produced significantly more leaves as well as larger inflorescence meristems and more floral buds than wild-type plants in LD and short-day (SD) conditions, demonstrating that CLV3 signaling limits vegetative and inflorescence meristem activity in both photoperiods. The clv3 phenotypes were more severe in SDs, indicating a greater requirement for CLV3 restriction of SAM function when the days are short. In contrast, clv3 floral meristem size and carpel number were unchanged between LD and SD conditions, which shows that the photoperiod does not affect the regulation of floral meristem activity through the CLV3 pathway. This study reveals that CLV3 signaling specifically restricts vegetative and inflorescence meristem activity in both LD and SD photoperiods but plays a more prominent role during short days.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Meristema , Fotoperíodo , Transdução de Sinais , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo
3.
Planta ; 260(4): 104, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316298

RESUMO

MAIN CONCLUSION: Plants lacking shoot apical meristem develop with unique body shapes, suggesting rewiring of developmental genes. This loss of the meristem is likely influenced by a combination of environmental factors and evolutionary pressures. This study explores the development of plant bodies in three families (Podostemaceae, Lemnaceae, and Gesneriaceae) where the shoot apical meristem (SAM), a key structure for growth, is absent or altered. The review highlights alternative developmental strategies these plants employ. Also, we considered alternative reproduction in those species, namely through structures like turions, fronds, or modified leaves, bypassing the need for a SAM. Further, we report on studies based on the expression patterns of genes known to be involved in SAM formation and function. Interestingly, these genes are still present but expressed in atypical locations, suggesting a rewiring of developmental networks. Our view on the current literature and knowledge indicates that the loss or reduction of the SAM is driven by a combination of environmental pressures and evolutionary constraints, leading to these unique morphologies. Further research, also building on Next-Generation Sequencing, will be instrumental to explore the genetic basis for these adaptations and how environmental factors influence them.


Assuntos
Meristema , Meristema/genética , Meristema/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Evolução Biológica , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética
4.
Physiol Plant ; 176(5): e14496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223912

RESUMO

The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Solanum lycopersicum , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Mutação/genética , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(37): e2408699121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240964

RESUMO

In plants, development of all above-ground tissues relies on the shoot apical meristem (SAM) which balances cell proliferation and differentiation to allow life-long growth. To maximize fitness and survival, meristem activity is adjusted to the prevailing conditions through a poorly understood integration of developmental signals with environmental and nutritional information. Here, we show that sugar signals influence SAM function by altering the protein levels of SHOOT MERISTEMLESS (STM), a key regulator of meristem maintenance. STM is less abundant in inflorescence meristems with lower sugar content, resulting from plants being grown or treated under limiting light conditions. Additionally, sucrose but not light is sufficient to sustain STM accumulation in excised inflorescences. Plants overexpressing the α1-subunit of SUCROSE-NON-FERMENTING1-RELATED KINASE 1 (SnRK1) accumulate less STM protein under optimal light conditions, despite higher sugar accumulation in the meristem. Furthermore, SnRK1α1 interacts physically with STM and inhibits its activity in reporter assays, suggesting that SnRK1 represses STM protein function. Contrasting the absence of growth defects in SnRK1α1 overexpressors, silencing SnRK1α in the SAM leads to meristem dysfunction and severe developmental phenotypes. This is accompanied by reduced STM transcript levels, suggesting indirect effects on STM. Altogether, we demonstrate that sugars promote STM accumulation and that the SnRK1 sugar sensor plays a dual role in the SAM, limiting STM function under unfavorable conditions but being required for overall meristem organization and integrity under favorable conditions. This highlights the importance of sugars and SnRK1 signaling for the proper coordination of meristem activities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Meristema , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sacarose/metabolismo , Açúcares/metabolismo , Luz , Proteínas de Homeodomínio
6.
Plant Signal Behav ; 19(1): 2404807, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279500

RESUMO

The plant root absorbs water and nutrients, anchors the plant in the soil, and promotes plant development. Root is developed from root apical meristem (RAM), which is formed during embryo stage and is maintained by dividing stem cells. Plant hormones have a predominant role in RAM maintenance. This review evaluates the functional crosstalk among three major hormones (auxin, cytokinin, and brassinolide) in RAM development in Arabidopsis, integrating a variety of experimental data into a regulatory network and revealing multiple layers of complexity in the crosstalk among these three hormones. We also discuss possible directions for future research on the roles of hormones in regulating RAM development and maintenance.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Raízes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismo
7.
Nat Commun ; 15(1): 6930, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138172

RESUMO

Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Proteínas de Domínio MADS , Meristema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Domínio MADS/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento , Plantas Geneticamente Modificadas
8.
Nat Commun ; 15(1): 6944, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138210

RESUMO

In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.


Assuntos
Arabidopsis , Meristema , Brotos de Planta , Água , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Água/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
9.
Physiol Plant ; 176(4): e14425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982330

RESUMO

Flowering plants adjust their reproductive period to maximize the success of the offspring. Monocarpic plants, those with a single reproductive cycle that precedes plant senescence and death, tightly regulate both flowering initiation and flowering cessation. The end of the flowering period involves the arrest of the inflorescence meristem activity, known as proliferative arrest, in what has been interpreted as an evolutionary adaptation to maximize the allocation of resources to seed production and the viability of the progeny. Factors influencing proliferative arrest were described for several monocarpic plant species many decades ago, but only in the last few years studies performed in Arabidopsis have allowed to approach proliferative arrest regulation in a comprehensive manner by studying the physiology, hormone dynamics, and genetic factors involved in its regulation. However, these studies remain restricted to Arabidopsis and there is a need to expand our knowledge to other monocarpic species to propose general mechanisms controlling the process. In this work, we have characterized proliferative arrest in Pisum sativum, trying to parallel available studies in Arabidopsis to maximize this comparative framework. We have assessed quantitatively the role of fruits/seeds in the process, the influence of the positional effect of these fruits/seeds in the behavior of the inflorescence meristem, and the transcriptomic changes in the inflorescence associated with the arrested state of the meristem. Our results support a high conservation of the factors triggering arrest in pea and Arabidopsis, but also reveal differences reinforcing the need to perform similar studies in other species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Pisum sativum , Sementes , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Pisum sativum/genética , Pisum sativum/fisiologia , Pisum sativum/crescimento & desenvolvimento , Inflorescência/genética , Inflorescência/fisiologia , Inflorescência/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Dormência de Plantas/genética , Dormência de Plantas/fisiologia
10.
J Plant Res ; 137(5): 763-771, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992325

RESUMO

Mechanical forces play a crucial role in plant development, including floral development. We previously reported that the phyllotactic variation in the staminate flowers of Ceratophyllum demersum may be caused by mechanical forces on the adaxial side of floral primordia, which may be a common mechanism in angiosperms. On the basis of this result, we developed a novel experimental system for analysis of the effects of mechanical forces on the floral meristem of Arabidopsis thaliana, aiming to induce morphological changes in flowers. In this experimental system, a micromanipulator equipped with a micro device, which is shaped to conform with the contour of the abaxial side of the young floral primordium, is used to exert contact pressure on a floral primordium. In the present study, we conducted contact experiments using this system and successfully induced diverse morphological changes during floral primordial development. In several primordia, the tip of the abaxial sepal primordium was incised with two or three lobes. A different floral primordium developed an additional sepal on the abaxial side (i.e., two abaxial sepals). Additionally, we observed the fusion of sepals in some floral primordia. These results suggest that mechanical forces have multiple effects on floral development, and changes in the tensile stress pattern in the cells of floral primordia are induced by the mechanical forces exerted with the micro device. These effects, in turn, lead to morphological changes in the floral primordia.


Assuntos
Arabidopsis , Flores , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Fenômenos Biomecânicos
11.
J Exp Bot ; 75(18): 5703-5716, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38970333

RESUMO

Autopolyploidization, which refers to a polyploidization via genome duplication without hybridization, promotes growth in autotetraploids, but suppresses growth in high polyploids (autohexaploids or auto-octoploids). The mechanism underlying this growth suppression (i.e. 'high-ploidy syndrome') has not been comprehensively characterized. In this study, we conducted a kinematic analysis of the root apical meristem cells in Arabidopsis thaliana autopolyploids (diploid, tetraploid, hexaploid, and octoploid) to determine the effects of the progression of genome duplication on root growth. The results of the root growth analysis showed that tetraploidization increases the cell volume, but decreases cell proliferation. However, cell proliferation and volume growth are suppressed in high polyploids. Whole-mount fluorescence in situ hybridization analysis revealed extensive chromosome polytenization in the region where cell proliferation does not usually occur in the roots of high polyploids, which is likely to be at least partly correlated with the suppression of endoreduplication. The study findings indicate that chromosome polytenization is important for the suppressed growth of high polyploids.


Assuntos
Arabidopsis , Cromossomos de Plantas , Raízes de Plantas , Poliploidia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cromossomos de Plantas/genética , Proliferação de Células , Hibridização in Situ Fluorescente , Meristema/crescimento & desenvolvimento , Meristema/genética
12.
Methods Mol Biol ; 2812: 215-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068365

RESUMO

Plants stem cells, known as meristems, specify all patterns of growth and organ size. Differences in meristem activities contribute to diverse shoot architectures. As many architectural traits, such as branching patterns, flowering time, and fruit size, are yield determinants, meristem regulation is of fundamental importance to crop productivity. Cotton (Gossypium spp.) produces our most prevalent natural fiber that finds its way into products ranging from industrial cellulose, medical supplies, and paper currency, to a broad diversity of textiles, not least of which is our clothing. However, the cotton plant has growth habits that challenge management practices and limit harvest yield and quality. Unraveling and leveraging the genetic networks regulating meristem activities offers the potential to overcome these limitations. We use virus-based technologies in cotton to perturb signals regulating meristem fate and size. In this chapter, we describe our pipeline for altering cotton meristem dynamics and preparing, analyzing, and exploring the transcriptomes from isolated meristems.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Meristema , RNA-Seq , Transcriptoma , Meristema/genética , Meristema/crescimento & desenvolvimento , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Transcriptoma/genética , RNA-Seq/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos
13.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082949

RESUMO

In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.


Assuntos
Regulação da Expressão Gênica de Plantas , Meristema , Proteínas de Plantas , Fatores de Transcrição , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Meristema/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Mutação/genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo
14.
Biochem Soc Trans ; 52(4): 1885-1893, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39083016

RESUMO

Cytokinin (CK) is a key plant hormone, but one whose effects are often misunderstood, partly due to reliance on older data from before the molecular genetic age of plant science. In this mini-review, we examine the role of CK in controlling the reproductive shoot architecture of flowering plants. We begin with a long overdue re-examination of the role of CK in shoot branching, and discuss the relatively paucity of genetic evidence that CK does play a major role in this process. We then examine the role of CK in determining the number of inflorescences, flowers, fruit and seed that plants initiate during reproductive development, and how these are arranged in space and time. The genetic evidence for a major role of CK in controlling these processes is much clearer, and CK has profound effects in boosting the size and number of most reproductive structures. Conversely, the attenuation of CK levels during the reproductive phase likely contributes to reduced organ size seen later in flowering, and the ultimate arrest of inflorescence meristems during end-of-flowering. We finish by discussing how this information can potentially be used to improve crop yields.


Assuntos
Citocininas , Brotos de Planta , Citocininas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Flores/crescimento & desenvolvimento , Reprodução/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
15.
Planta ; 260(2): 45, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965075

RESUMO

MAIN CONCLUSION: Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.


Assuntos
Plasmodesmos , Plasmodesmos/ultraestrutura , Plasmodesmos/metabolismo , Briófitas/crescimento & desenvolvimento , Briófitas/fisiologia , Briófitas/ultraestrutura , Bryopsida/crescimento & desenvolvimento , Bryopsida/fisiologia , Bryopsida/ultraestrutura , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/fisiologia , Marchantia/ultraestrutura , Células Germinativas Vegetais/crescimento & desenvolvimento , Anthocerotophyta/fisiologia , Anthocerotophyta/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Meristema/fisiologia
16.
Planta ; 260(2): 48, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980389

RESUMO

MAIN CONCLUSION: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Citocininas , Flores , Regulação da Expressão Gênica de Plantas , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclina D3/metabolismo , Ciclina D3/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Ciclinas
17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000298

RESUMO

Moso bamboo (Phyllostachys edulis), renowned for its rapid growth, is attributed to the dynamic changes in its apical meristem. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family genes are known to play crucial roles in regulating meristem and organ formation in model plants, but their functions in Moso bamboo remain unclear. Here, we conducted a genome-wide identification of the CLE gene family of Moso bamboo and investigated their gene structure, chromosomal localization, evolutionary relationships, and expression patterns. A total of 11 PheCLE genes were identified, all of which contained a conserved CLE peptide core functional motif (Motif 1) at their C-termini. Based on Arabidopsis classification criteria, these genes were predominantly distributed in Groups A-C. Collinearity analysis unveiled significant synteny among CLE genes in Moso bamboo, rice, and maize, implying potential functional conservation during monocot evolution. Transcriptomic analysis showed significant expression of these genes in the apical tissues of Moso bamboo, including root tips, shoot tips, rhizome buds, and flower buds. Particularly, single-cell transcriptomic data and in situ hybridization further corroborated the heightened expression of PheCLE1 and PheCLE10 in the apical tissue of basal roots. Additionally, the overexpression of PheCLE1 and PheCLE10 in rice markedly promoted root growth. PheCLE1 and PheCLE10 were both located on the cell membrane. Furthermore, the upstream transcription factors NAC9 and NAC6 exhibited binding affinity toward the promoters of PheCLE1 and PheCLE10, thereby facilitating their transcriptional activation. In summary, this study not only systematically identified the CLE gene family in Moso bamboo for the first time but also emphasized their central roles in apical tissue development. This provides a valuable theoretical foundation for the further exploration of functional peptides and their signaling regulatory networks in bamboo species.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Raízes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Filogenia , Estudo de Associação Genômica Ampla , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Genoma de Planta , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Perfilação da Expressão Gênica , Família Multigênica
18.
Curr Biol ; 34(15): 3454-3472.e7, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059395

RESUMO

Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free living and grow independently of their sporophytes. In homosporous ferns such as Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS-domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.


Assuntos
Células Germinativas Vegetais , Meristema , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pteridaceae/genética , Pteridaceae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Processos de Determinação Sexual
19.
Cell Rep ; 43(7): 114466, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985681

RESUMO

Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.


Assuntos
Regulação da Expressão Gênica de Plantas , Marchantia , Meristema , Proteínas de Plantas , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Marchantia/genética , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
20.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856047

RESUMO

The shoot apical meristem is a key stem cell niche in plants, and proper stem cell maintenance is partly regulated by CLAVATA3 (CLV3). Without CLV3 meristems overgrow, but the mechanistic basis of this phenotype was unclear. A new paper in Development suggests that CLV3 modulates the physical properties of meristematic stem cells, and that these properties help shape meristem morphology. To learn more about the story behind the paper, we caught up with first author Léa Rambaud-Lavigne and corresponding authors Namrata Gundiah, Arezki Boudaoud and Pradeep Das.


Assuntos
Meristema , Meristema/crescimento & desenvolvimento , Meristema/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , História do Século XXI , Biologia do Desenvolvimento/história , História do Século XX
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...