Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.299
Filtrar
1.
Nat Commun ; 15(1): 6948, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138165

RESUMO

Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.


Assuntos
Proteínas Morfogenéticas Ósseas , Suturas Cranianas , Mesoderma , Osteogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Suturas Cranianas/metabolismo , Suturas Cranianas/embriologia , Suturas Cranianas/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Mesoderma/metabolismo , Mesoderma/embriologia , Mesoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Crânio/embriologia , Análise de Célula Única , Mutação
2.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975838

RESUMO

Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Mutação , Proteínas de Peixe-Zebra , Peixe-Zebra , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Mutação/genética , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Wnt/genética , Desenvolvimento Embrionário/genética , Dosagem de Genes , Mesoderma/metabolismo , Mesoderma/embriologia
3.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856718

RESUMO

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.


Congenital disorders are medical conditions that are present from birth. Although many congenital disorders are rare, they can have a severe impact on the quality of life of those affected. For example, congenital pulmonary airway malformation (CPAM) is a rare congenital disorder that occurs in around 1 out of every 25,000 pregnancies. In CPAM, abnormal, fluid-filled sac-like pockets of tissue, known as cysts, form within the lungs of unborn babies. After birth, these cysts become air-filled and do not behave like normal lung tissue and stop a baby's lungs from working properly. In severe cases, babies with CPAM need surgery immediately after birth. We still do not understand exactly what the underlying causes of CPAM might be. CPAM is not considered to be hereditary ­ that is, it does not appear to be passed down in families ­ nor is it obviously linked to any environmental factors. CPAM is also very difficult to study, because researchers cannot access tissue samples during the critical early stages of the disease. To overcome these difficulties, Luo et al. wanted to find a way to study CPAM in the laboratory. First, they developed a non-human animal 'model' that naturally forms CPAM-like lung cysts, using genetically modified mice where the gene for the signaling molecule Bmpr1a had been deleted in lung cells. Normally, Bmpr1a is part of a set of the molecular instructions, collectively termed BMP signaling, which guide healthy lung development early in life. However, mouse embryos lacking Bmpr1a developed abnormal lung cysts that were similar to those found in CPAM patients, suggesting that problems with BMP signalling might also trigger CPAM in humans. Luo et al. also identified several other genes in the Bmpr1a-deficient mouse lungs that had abnormal patterns of activity. All these genes were known to be controlled by BMP signaling, and to play a role in the development and organisation of lung tissue. This suggests that when these genes are not controlled properly, they could drive formation of CPAM cysts when BMP signaling is compromised. This work is a significant advance in the tools available to study CPAM. Luo et al.'s results also shed new light on the molecular mechanisms underpinning this rare disorder. In the future, Luo et al. hope this knowledge will help us develop better treatments for CPAM, or even help to prevent it altogether.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Pulmão , Mesoderma , Camundongos Knockout , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Camundongos , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/patologia , Mesoderma/embriologia , Mesoderma/metabolismo , Cistos/metabolismo , Cistos/patologia , Cistos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Pneumopatias/metabolismo , Pneumopatias/patologia , Pneumopatias/genética , Modelos Animais de Doenças
4.
Nat Commun ; 15(1): 5210, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890321

RESUMO

Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.


Assuntos
Embrião de Mamíferos , Endoderma , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Animais , Endoderma/citologia , Endoderma/metabolismo , Endoderma/embriologia , Suínos , Camundongos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Diferenciação Celular , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Transcriptoma , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Linhagem da Célula , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Transição Epitelial-Mesenquimal/genética
5.
Adv Exp Med Biol ; 1441: 145-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884709

RESUMO

The development of the inflow tract is undoubtedly one of the most complex remodeling events in the formation of the four-chambered heart. It involves the creation of two separate atrial chambers, the formation of an atrial/atrioventricular (AV) septal complex, the incorporation of the caval veins and coronary sinus into the right atrium, and the remodeling events that result in pulmonary venous return draining into the left atrium. In these processes, the atrioventricular mesenchymal complex, consisting of the major atrioventricular (AV) cushions, the mesenchymal cap on the primary atrial septum (pAS), and the dorsal mesenchymal protrusion (DMP), plays a crucial role.


Assuntos
Átrios do Coração , Animais , Humanos , Seio Coronário/embriologia , Seio Coronário/anormalidades , Coração/embriologia , Mesoderma/embriologia , Veias Pulmonares/anormalidades
6.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828908

RESUMO

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Proteínas com Domínio T , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Botões de Extremidades/metabolismo , Botões de Extremidades/embriologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Regulação para Cima/genética , Padronização Corporal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/embriologia
7.
Genes Dev ; 38(9-10): 393-414, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38834239

RESUMO

The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.


Assuntos
Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Animais , Mesoderma/embriologia , Mesoderma/metabolismo , Transdução de Sinais/genética , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Desenvolvimento Embrionário/genética , Transporte Proteico , Mutação
8.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925637

RESUMO

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Assuntos
Placa Neural , Tubo Neural , Xenopus laevis , Animais , Tubo Neural/embriologia , Tubo Neural/citologia , Tubo Neural/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Placa Neural/citologia , Xenopus laevis/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Microscopia de Força Atômica , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia
9.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856082

RESUMO

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Assuntos
Proliferação de Células , Mesoderma , Modelos Biológicos , Morfogênese , Tubo Neural , Animais , Mesoderma/embriologia , Mesoderma/citologia , Tubo Neural/embriologia , Tubo Neural/citologia , Codorniz/embriologia , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Viscosidade
10.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891790

RESUMO

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Assuntos
Proteínas Hedgehog , Costelas , Coluna Vertebral , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Costelas/metabolismo , Costelas/embriologia , Coluna Vertebral/metabolismo , Coluna Vertebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Mesoderma/embriologia , Codorniz , Somitos/metabolismo , Somitos/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Transporte
11.
Nat Commun ; 15(1): 5233, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898031

RESUMO

Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead , Mesoderma , Síndrome da Persistência do Padrão de Circulação Fetal , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Humanos , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Camundongos , Elementos Facilitadores Genéticos/genética , Mesoderma/metabolismo , Mesoderma/embriologia , Pulmão/patologia , Células Endoteliais/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Células-Tronco Embrionárias/metabolismo , Alvéolos Pulmonares/anormalidades
12.
Curr Top Dev Biol ; 160: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38937029

RESUMO

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.


Assuntos
Morfogênese , Glândulas Salivares , Glândulas Salivares/embriologia , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Animais , Humanos , Membrana Basal/metabolismo , Movimento Celular , Fenômenos Biomecânicos , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Adesão Celular
13.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760574

RESUMO

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Assuntos
Linhagem da Célula , Células Epiteliais , Glândulas Mamárias Animais , Células-Tronco Mesenquimais , Animais , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Morfogênese , Análise de Célula Única , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/embriologia
14.
J Dent Res ; 103(7): 755-764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715201

RESUMO

Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.


Assuntos
Diferenciação Celular , Mesoderma , Glândula Submandibular , Animais , Camundongos , Glândula Submandibular/embriologia , Glândula Submandibular/citologia , Mesoderma/citologia , Mesoderma/embriologia , Glândula Parótida/citologia , Glândula Parótida/embriologia , Glândula Parótida/metabolismo , Células Epiteliais , Glândulas Salivares/embriologia , Glândulas Salivares/citologia , Linhagem da Célula , Células Acinares , Epitélio/embriologia
15.
Nat Commun ; 15(1): 4550, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811547

RESUMO

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cabeça , Anfioxos , Mesoderma , Vertebrados , Animais , Mesoderma/citologia , Mesoderma/embriologia , Anfioxos/embriologia , Anfioxos/genética , Cabeça/embriologia , Vertebrados/embriologia , Vertebrados/genética , Somitos/embriologia , Somitos/citologia , Somitos/metabolismo , Evolução Biológica , Transcriptoma
16.
Curr Top Dev Biol ; 159: 232-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729677

RESUMO

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Assuntos
Padronização Corporal , Mesoderma , Animais , Padronização Corporal/genética , Mesoderma/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Diferenciação Celular , Cabeça/embriologia
17.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742434

RESUMO

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Assuntos
Receptores Notch , Somitos , Animais , Camundongos , Somitos/embriologia , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Padronização Corporal/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Relógios Biológicos/fisiologia
18.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692274

RESUMO

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linha Primitiva , Transdução de Sinais , Linha Primitiva/metabolismo , Linha Primitiva/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Transdução de Sinais/fisiologia , Animais , Mesoderma/metabolismo , Mesoderma/embriologia , Via de Sinalização Wnt/fisiologia , Proteínas Wnt/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação/fisiologia
19.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729682

RESUMO

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Somitos , Animais , Padronização Corporal/genética , Somitos/embriologia , Somitos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Transdução de Sinais , Relógios Biológicos/genética
20.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683880

RESUMO

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Assuntos
Drosophila melanogaster , Ectoderma , Gastrulação , Mesoderma , Miosina Tipo II , Animais , Mesoderma/embriologia , Mesoderma/citologia , Gastrulação/fisiologia , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Morfogênese , Padronização Corporal/fisiologia , Drosophila/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...