Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.738
Filtrar
1.
Environ Monit Assess ; 196(8): 687, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958826

RESUMO

Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18's water as "unsuitable for drinking" with values of 110.4 and 117.6. Enrichment factor (EF) recorded a "moderate enrichment" of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.


Assuntos
Água Potável , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Qualidade da Água , Abastecimento de Água , México , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água Potável/química , Rios/química , Metais Pesados/análise , Metais/análise
2.
Sci Rep ; 14(1): 14741, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926601

RESUMO

Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.


Assuntos
Camellia sinensis , Poluentes do Solo , Solo , Camellia sinensis/química , Poluentes do Solo/análise , China , Solo/química , Metais Pesados/análise , Metais Pesados/toxicidade , Folhas de Planta/química , Folhas de Planta/metabolismo , Chá/química , Monitoramento Ambiental , Metais/análise
3.
PLoS One ; 19(6): e0305398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917117

RESUMO

The Arctic faces increasing exposure to environmental chemicals such as metals, posing health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be used to quantify chemicals in the environment and in traditional foods consumed by the Inuit. However, typically, these samples are collected through invasive or terminal methods. The biomonitoring of feces could be a useful alternative to the current metal monitoring method within the Arctic. Here, we aim to 1) quantify the relationship between concentrations of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring programs to non-invasively estimate contaminant concentrations in polar bears tissues and 3) demonstrate the application of these models by examining potential exposure risk for humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were harvested from 49 polar bears through a community-based monitoring program. The samples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concentrations generally did not vary by age or sex, and many of the metals measured in feces were positively correlated with the internal tissue concentration. We developed predictive linear regression models between internal (muscle, liver, fat) and external (feces) metal concentrations and further explored the mercury and methylmercury relationships for utility risk screening. Using the cross-validated regression coefficients, we developed a conversion tool that contributes to the One Health approach by understanding the interrelated health of humans, wildlife, and the environment in the Arctic. The findings support using feces as a biomonitoring tool for assessing contaminants in polar bears. Further research is needed to validate the developed models for other regions in the Arctic and assess the impact of environmental weathering on fecal metal concentrations.


Assuntos
Fezes , Ursidae , Fezes/química , Animais , Feminino , Masculino , Regiões Árticas , Metais/análise , Monitoramento Biológico/métodos , Contaminação de Alimentos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Fígado/química , Fígado/metabolismo
4.
Environ Sci Pollut Res Int ; 31(29): 41914-41925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853229

RESUMO

During the process of industrial heating, a large amount of polycyclic aromatic hydrocarbons (PAHs) and their halogenated compounds (Cl/Br-PAHs) can be formed. However, there is still limited understanding of the chemicals from different metal smelting industrial parks. This study evaluated the seasonal variations, composition profiles, and source allocations of the atmospheric particulate-bound PAHs and Cl/Br-PAHs in different metal industrial parks in a typical industrial city in northwest China. The results showed that the main PAHs produced by metal smelting were low molecular weight isomers, and the concentrations of Cl-PAHs were lower compared to Br-PAHs. The main Br-PAHs were 1-Br-Pyr and 4-Br-Pyr, while 9-Cl-Fle, 1-Cl-Pyr, and 6-Cl-BaP were the dominated Cl-PAH isomers. No significant difference was found in the concentrations among the sites, whereas the levels of the target chemicals were higher during cold months compared to warm months. The main source of PAHs was coal combustion and gasoline vehicle emission during metal smelting, and that of Cl/Br-PAHs was also industrial coal burning. In addition to the primary source, the secondary chlorination of parent PAHs was also a significant source of Cl-PAHs in the production of high purity aluminum. This study suggests that Cl-PAHs and Br-PAHs may behave differently in the atmosphere.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Estações do Ano , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Metais/análise
5.
Environ Sci Pollut Res Int ; 31(30): 43405-43416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886271

RESUMO

This study provides new insights onto spatial and temporal trends of seafloor macro-litter in the abyssal seafloor of Sardinian channel, in central western Mediterranean (Italy). Trawl surveys were conducted at depths between 884 and 1528 m, thus focusing on one of the least investigated marine environments. None of the considered sites was litter free, with plastics being numerically dominant (57% of items), followed by metal (11%) and glass (16%). Recorded densities and weight ranged between 49.9 and 499 items km-2 and 1.4 and 1052 kg km-2. In the most contaminated sites, the weight of the litter collected in nets represented up to nine times the biomass of benthic megafauna, and, overall, in 60% of hauls macro-litter mass outweighed the biomass collected. Moreover, we report that megafauna was observed to be more abundant in sites where macro-litter presence was more severe. More studies are needed to elucidate the nature of this correlation, with biota being more abundant in hotspots of accumulation of seafloor macro-litter.


Assuntos
Biomassa , Monitoramento Ambiental , Itália , Animais , Plásticos , Mar Mediterrâneo , Metais/análise , Vidro , Pesqueiros
6.
Sci Rep ; 14(1): 13808, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877154

RESUMO

Poaching is again driving rhinos to the brink of extinction due to the demand for rhino horn products consumed for cultural, medicinal, and social purposes. Paradoxically, the same horn for which rhinos are killed may contain valuable clues about the species' health. Analyses of horn composition could reveal such useful bioindicators while elucidating what people actually ingest when they consume horn derivatives. Our goals were to quantify minerals (including metals) in rhino horn and investigate sampling factors potentially impacting results. Horns (n = 22) obtained during necropsies of white (n = 3) and black (n = 13) zoo rhinos were sampled in several locations yielding 182 specimens for analysis. Initial data exposed environmental (soil) contamination in the horn's exterior layer, but also confirmed that deep (≥ 1 cm), contaminant-free samples contained measurable concentrations of numerous minerals (n = 18). Of the factors examined in deep samples, color-associated mineral differences were the most profound with dark samples higher in zinc, copper, lead, and barium (p < 0.05). Our data demonstrate that rhino horns contain both essential and potentially toxic minerals that could be relevant to rhino health status, but low concentrations make their human health benefits or risks unlikely following consumption.


Assuntos
Cornos , Minerais , Perissodáctilos , Animais , Minerais/análise , Cornos/química , Metais/análise , Animais de Zoológico , Cobre/análise , Chumbo/análise
7.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837029

RESUMO

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Assuntos
Agricultura , Boro , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Arábia Saudita , Poluentes Químicos da Água/análise , Boro/análise , Metais/análise , Oligoelementos/análise
8.
Environ Sci Pollut Res Int ; 31(28): 40958-40975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839739

RESUMO

Elevated metal(loid) concentrations in soil and foodstuffs is a significant global issue for many densely populated countries like Bangladesh, necessitating reliable estimation for sustainable management. Therefore, a comprehensive data synthesis from the published literature might help to provide a wholistic view of metal(loid) contamination in different areas in Bangladesh. This study provided a clearer view of metal(loid) contamination status and their associated ecological and health risks in different land use and ecosystems in Bangladesh. Comprehensive analyses were performed on data gathered from 143 published articles using multiple statistical techniques including meta-analysis. Considering the potential loading of metal(loid), the data were summarized under various groups, including coastal, rural, urban and industrial regions. Also, the concentrations of seven metal(loid)s, e.g., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), and arsenic (As) in soil, sediment, cereal, vegetable, fruit, surface water and groundwater were included. Results showed that the relative concentrations of metal(loid)s in comparison to the maximum permissible limit (MPL) were mostly less than one, although they varied significantly for locations and individual metal(loid). However, the normalized cumulative relative concentrations over the MPL for all seven metal(loid)s across different environmental samples were 4.75, 2.97, 1.51 and 2.79 for coastal, industrial, rural and urban areas, respectively, which was due to the higher concentration of Cd, Cr and Cu. Similar to the metal(loid) concentrations, the average of cumulative median non-cancer risks for all metal(loid)s was in the order of industrial (6.46) > urban (4.05) > rural (3.83) > coastal (2.41). This research outcome will provide a foundation for future research on metal(loid)s and will help in pertinent policy-making by the relevant authorities in Bangladesh.


Assuntos
Monitoramento Ambiental , Metais , Poluentes do Solo , Bangladesh , Poluentes do Solo/análise , Metais/análise , Solo/química , Metais Pesados/análise , Humanos
9.
Sci Rep ; 14(1): 13662, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871786

RESUMO

The fabricated metal product industries were identified as producers of variable and heterogeneous pollution. Workers in these manufacturing facilities are exposed to multiple pollutants present at variable concentrations. Specific known adverse health effects include bladder cancer associated with metalworking fluid exposure and lung cancer associated with electroplating processes. To reduce the incidence of these adverse effects, the main challenge is to identify the most hazardous pollutants within this complex exposure environment and evaluate the corresponding health potentials. In this study, exposure indices were formulated to assess multiple metal exposures with the ultimate goal of providing relevant information for exposure reduction and control measures. Fifteen plants, including metal mold manufacturing, metal casting, and surface treatment plants, were investigated in terms of total concentration, summation of corresponding ratio to threshold limit value (STLVr), hazard index (HI), and incremental cancer risk. The results revealed that emissions of aluminum, iron, and manganese were primarily found in the metal mold manufacturing/casting plants, while emissions of chromium, nickel, and zinc were found in surface treatment plants. STLVr and HI were more useful than the total concentration for identifying hazardous metals, which were chromium and nickel, and could specify the facilities that were in need of control measures. As for cancer risk, the metal mold manufacturing/casting plants had lower risk than the surface treatment plants, and the contributing metals for these two plant types were cobalt and chromium, respectively. This study established a useful procedure to evaluate health hazards and cancer risk. The resulting information is useful for prioritizing mitigation control of multiple metal exposures.


Assuntos
Metais , Exposição Ocupacional , Exposição Ocupacional/análise , Exposição Ocupacional/efeitos adversos , Humanos , Metais/análise , Medição de Risco , Monitoramento Ambiental/métodos
10.
Chemosphere ; 361: 142483, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825246

RESUMO

Seabirds are long-range transporters of nutrients and contaminants, linking marine feeding areas with terrestrial breeding and roosting sites. By depositing nutrient-rich guano, which acts as a fertiliser, seabirds can substantially influence the terrestrial environment in which they reside. However, increasing pollution of the marine environment has resulted in guano becoming similarly polluted. Here, we determined metal and metalloid concentrations (As, Cd, Cr, Cu, Hg, Pb) in Flesh-footed Shearwater (Ardenna carneipes) guano, soil, terrestrial flora, and primary consumers and used an ecological approach to assess whether the trace elements in guano were bioaccumulating and contaminating the surrounding environment. Concentrations in guano were higher than those of other Procellariiformes documented in the literature, which may be influenced by the high amounts of plastics that this species of shearwater ingests. Soil samples from shearwater colonies had significantly higher concentrations of all metals, except for Pb, than soils from control sites and formerly occupied areas. Concentrations in terrestrial primary producers and primary consumers were not as marked, and for many contaminants there was no significant difference observed across levels of ornithogenic input. We conclude that Flesh-footed Shearwaters are transporters of marine derived contaminants to the Lord Howe Island terrestrial environment.


Assuntos
Aves , Ecossistema , Monitoramento Ambiental , Animais , Aves/metabolismo , Ilhas , Fezes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Solo/química , Metais/análise , Metais/metabolismo
11.
Ann Agric Environ Med ; 31(2): 205-211, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940104

RESUMO

INTRODUCTION AND OBJECTIVE: Snow cover serves as a unique indicator of environmental pollution in both urban and rural areas. As a seasonal cover, it accumulates various pollutants emitted into the atmosphere, thus providing insight into air pollution types and the relative contributions of different pollution sources. The aim of the study is to analyze the distribution of trace elements in snow cover to assess the anthropogenic influence on pollution levels, and better understand ecological threats. MATERIAL AND METHODS: The study was conducted in rural areas around the village of Wólka in the Lublin Province of eastern Poland, and in urban districts of the city of Lublin, capital of the Province. Samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry, the Enrichment Factor (EF), and ecological risk indices (RI), were calculated to evaluate the contamination and potential ecological risks posed by the metals. RESULTS: The findings indicate higher concentrations of metals like sodium and iron in urban areas, likely due to road salt use and industrial activity, respectively. Enrichment factors showed significant anthropogenic contributions, particularly for metals like sodium, zinc, and cadmium, which had EF values substantially above natural levels. The potential ecological risk assessment highlighted a considerable ecological threat in urban areas compared to rural settings, primarily due to higher concentrations of metals. CONCLUSIONS: The variation in metal concentrations between urban and rural snow covers reflects the impact of human activities on local environments. Urban areas showed higher pollution levels, suggesting the need for targeted pollution control policies to mitigate the adverse ecological impacts. This study underscores the importance of continuous monitoring and comprehensive risk assessments to effectively manage environmental pollution.


Assuntos
Monitoramento Ambiental , Metais , Neve , Neve/química , Polônia , Monitoramento Ambiental/métodos , Medição de Risco , Metais/análise , Humanos , Poluentes Atmosféricos/análise , Cidades , População Rural
12.
Artigo em Inglês | MEDLINE | ID: mdl-38929014

RESUMO

Metal workshops are workplaces with the substantial production of particulate matter (PM) with high metal content, which poses a significant health risk to workers. The PM produced by different metal processing techniques differs considerably in its elemental composition and size distribution and therefore poses different health risks. In some previous studies, the pollution sources were isolated under controlled conditions, while, in this study, we present a valuable alternative to characterize the pollution sources that can be applied to real working environments. Fine PM was sampled in five units (partially specializing in different techniques) of the same workshop. A total of 53 samples were collected with a temporal resolution of 30 min and 1 h. The mass concentrations were determined gravimetrically, and the elemental analysis, in which the concentrations of 14 elements were determined, was carried out using the X-ray fluorescence technique. Five sources of pollution were identified: background, steel grinding, metal active gas welding, tungsten inert gas welding, and machining. The sources were identified by positive matrix factorization, a statistical method for source apportionment. The identified sources corresponded well with the work activities in the workshop and with the actual sources described in previous studies. It is shown that positive matrix factorization can be a valuable tool for the identification and characterization of indoor sources.


Assuntos
Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Monitoramento Ambiental/métodos , Metais/análise , Metalurgia , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Espectrometria por Raios X
13.
Environ Geochem Health ; 46(7): 245, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858271

RESUMO

This article assesses the environmental impacts of aquatic biota cultivation, focusing on shrimp farming in Brazil's Northeast, as this practice has proven to be one of the main sources of economic growth in the region. For this purpose, sediment samples were collected from areas impacted and not directly impacted by shrimp farming, and concentrations of key geochemical parameters such as salinity, various elements (K, P, Cu, Mn, Pb, Zn, Al, Ca, Fe, Mg, and Na), and natural radionuclides (K-40, Ra-226 and Ra-228) were compared using statistical tools. Element concentrations were determined using ICP-OES, and naturally occurring radionuclide concentrations were obtained through gamma spectrometry. Statistical tests, such as ANOVA and/or Mann-Whitney, cluster analysis, and principal component analysis, were applied to the results. Additionally, the ERICA Tool software was employed to estimate deleterious effects on both human and non-human biota. Descriptive statistics reveal variability in sediment parameters around shrimp farming. ANOVA and Mann-Whitney tests compare concentrations of shrimp farm sediment and not directly impacted sediment, showing non-significant differences for most elements. pH and salinity, crucial for shrimp health, exhibit higher values in shrimp farm sediment. Alkali and alkaline earth metals, including K and Na, show no significant differences. Factor and cluster analyses suggest that certain elements, mainly radionuclides, are influenced by sediment variability. Hazard indices for naturally occurring radionuclides indicate negligible risk to both human and non-human biota, reinforcing the absence of adverse effects from shrimp farming activities. This study provides a comprehensive analysis of the environmental impacts of shrimp farming, emphasizing the importance of monitoring geochemical parameters for coastal environmental management.


Assuntos
Aquicultura , Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Animais , Brasil , Metais/análise , Poluentes Químicos da Água/análise , Radioisótopos/análise , Salinidade , Monitoramento Ambiental/métodos , Penaeidae/química , Concentração de Íons de Hidrogênio
14.
Sci Total Environ ; 938: 173352, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38796021

RESUMO

BACKGROUND: Metal(oid)s have been cross-sectionally associated with lung function outcomes in childhood but there is limited data on their combined effects starting in utero. Child sex may further modify these effects. OBJECTIVE: Examine associations between in utero and early life exposure to metals assessed via novel dentine biomarkers and childhood lung function and explore effect modification by child sex. METHODS: Analyses included 291 children enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study, a longitudinal birth cohort study in Mexico City. Weekly dentine levels of arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), manganese (Mn), nickel (Ni), and lead (Pb) were measured from 15 weeks pre-birth to 15 weeks post birth in deciduous children's teeth. Lung function was tested at ages 8-14 years and then modeled as age, height and sex adjusted z-scores. Associations were modeled using lagged weighted quantile sum (LWQS) regression to evaluate the potential for a time-varying mixture effect adjusting for maternal age and education at enrollment and exposure to environmental tobacco smoke in pregnancy. Models were also stratified by sex. RESULTS: We identified a window of susceptibility at 12-15 weeks pre-birth in which the metal mixture was associated with lower FVC z-scores in children aged 8-14 years. Cd and Mn were the largest contributors to the mixture effect (70 %). There was also some evidence of effect modification by sex, in which the mean weights and weighted correlations over the identified window was more evident in males when compared to females. In the male stratum, Cd, Mn and additionally Pb also dominated the mixture association. CONCLUSIONS: Prenatal metal(oid) exposure was associated with lower lung function in childhood. These findings underscore the need to consider both mixtures and windows of susceptibility to fully elucidate effects of prenatal metal(oid) exposure on childhood lung function.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Humanos , Criança , Feminino , México , Masculino , Gravidez , Adolescente , Metais/análise , Metaloides/análise , Poluentes Ambientais , Pulmão/efeitos dos fármacos , Dente/efeitos dos fármacos , Exposição Materna/estatística & dados numéricos , Estudos Longitudinais , Metais Pesados/análise , Testes de Função Respiratória
15.
Mar Pollut Bull ; 203: 116425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705004

RESUMO

To investigate the interplay between varying anthropogenic activities and sediment dynamics in an urban river (Turag, Bangladesh), this study involved 37-sediment samples from 11 different sections of the river. Neutron activation analysis and atomic absorption spectrometry were utilized to quantify the concentrations of 14 metal(oid)s (Al, Ti, Co, Fe, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn). This study revealed significant toxic metal trends, with Principal coordinate analysis explaining 62.91 % of the variance from upstream to downstream. The largest RSDs for Zn(287 %), Mn(120 %), and Cd(323 %) implies an irregular regional distribution throughout the river. The UNMIX-model and PMF-model were utilized to identify potential sources of metal(oid)s in sediments. ∼63.65-66.7 % of metal(oid)s in sediments originated from anthropogenic sources, while remaining attributed to natural sources in both models. Strikingly, all measured metal(oid)s' concentrations surpassed the threshold effect level, with Zn and Ni exceeding probable effect levels when compared to SQGs.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Bangladesh , Metais/análise , Metais Pesados/análise
16.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773003

RESUMO

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Brasil , Rios/química , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Metais/análise , Characidae , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peixes/metabolismo
17.
Environ Monit Assess ; 196(6): 589, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819722

RESUMO

The health risks associated with the consumption of staples cultivated in the subsistence food gardens along the Watut River were investigated in Papua New Guinea. Twenty soil samples and twenty-nine samples of staple foods (including banana, taro, sweet potato, and Singapore taro) were collected from the food gardens following a three-day dietary recall survey. The concentration of metals (Cr, Cu, Pb, and Ni) was analyzed in the soil and food samples using Inductively Coupled Plasma Optical Emission Spectrophotometer. The descending order of mean metal concentration in the food garden soils is as follows: Cr > Cu > Ni > Pb. The concentration of Pb in all samples and Cr in 97% of staple foods exceeded the FAO/WHO permissible limits. Approximately 87% of adult consumers of bananas (Musa sp) were found to have estimated Cr and Pb ingestion levels exceeding the permissible daily tolerable intake of metals (0.2 and 0.21 mg day-1, respectively). Hazard index values from the staples analysis indicate that the consumption of bananas (9.40) poses the highest risk of non-carcinogenic effects on adults, followed by taro (7.32), sweet potato (6.13), and Singapore taro (4.30). The consumption of taro is dangerous due to cancer risk associated with the intake of excessive Ni (2.88E-02) and Cr (8.82E-03) in adults and children compared to banana, sweet potato, and Singapore taro. Non-carcinogenic hazards of metal ingestion were found to be pronounced in the younger population, while carcinogenic effects were more serious in adults. Urgent measures must be implemented to protect communities, especially children, from the dangerous effects of heavy metal ingestion through staples in the lower Watut region.


Assuntos
Contaminação de Alimentos , Poluentes do Solo , Solo , Humanos , Poluentes do Solo/análise , Papua Nova Guiné , Contaminação de Alimentos/análise , Solo/química , Medição de Risco , Metais/análise , Monitoramento Ambiental , Rios/química , Adulto
18.
Environ Res ; 255: 119130, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735375

RESUMO

OBJECTIVES: This study aims to assess the specific PM2.5-bound metallic elements that contribute to asthma emergency department visits by using a case-crossover study design. METHODS: This study analyzed data from 11,410 asthma emergency department visits as case group and 22,820 non-asthma onset dates occurring one week and two weeks preceding the case day as controls from 2017 to 2020. PM2.5 monitoring data and 35 PM.2.5-bound metallic elements from six different regions in Taiwan were collected. Conditional logistic regression models were used to assess the relationship between asthma and PM2.5-bound metallic elements. RESULTS: Our investigation revealed a statistically significant risk of asthma emergency department visits associated with PM2.5 exposure at lag 0, 1, 2, and 3 during autumn. Additionally, PM2.5-bound hafnium (Hf), thallium (Tl), rubidium (Rb), and aluminum (Al) exhibited a consistently significant positive correlation with asthma emergency department visits at lags 1, 2, and 3. In stratified analyses by area, age, and sex, PM2.5-bound Hf showed a significant and consistent correlation. CONCLUSIONS: This study provides evidence of PM2.5-bound metallic elements effects in asthma exacerbations, particularly for Hf. It emphasizes the importance of understanding the origins of these metallic elements and pursuing emission reductions to mitigate regional health risks.


Assuntos
Poluentes Atmosféricos , Asma , Estudos Cross-Over , Serviço Hospitalar de Emergência , Material Particulado , Asma/epidemiologia , Asma/induzido quimicamente , Taiwan/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Material Particulado/análise , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Poluentes Atmosféricos/análise , Idoso , Adolescente , Adulto Jovem , Metais/análise , Criança , Exposição Ambiental/efeitos adversos , Pré-Escolar , Lactente , Visitas ao Pronto Socorro
19.
Environ Res ; 255: 119175, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768886

RESUMO

As a sink and a source of chemicals, house dust represents a relevant medium to assess indoor exposure to metal(loid)s via incidental ingestion or inhalation. However, nationally representative indoor data are scarce. Results from the Canadian House Dust Study (CHDS, 2007-2010; n = 1025) provide nationally representative mean, median and 95th percentile concentrations for 38 elements in typical urban house dust, along with their gastric bioaccessibility. Total concentrations (median/95th percentile) of carcinogenic metal(loid)s in Canadian house dust (µg g-1) are as follows: As (9.0/40), Be (0.4/0.9), Cd (3.5/17), Co (5.6/19), Cr (99/214), Ni (62/322) and Pb (100/760). Total As and Pb concentrations in house dust exceed residential soil guidelines for the protection of human health in about one-third of Canadian homes. Percent bioaccessibilities (median) are: Cd (65%) > Pb (63%) > Be âˆ¼ Ni (36%) > Co (35%) > As (20%) > Cr (15%). Lead, Cd and Co concentrations are significantly greater in older houses (< 1976). Data from two pilot studies (n = 66 + 51) further demonstrate the distinct geochemistry of house dust compared to soils, notably enrichment of carcinogenic metal(loid)s and their increased bioaccessibility. These results provide essential baseline values to refine risk assessment and inform on health risk at contaminated sites.


Assuntos
Poeira , Poluentes do Solo , Poeira/análise , Humanos , Canadá , Poluentes do Solo/análise , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Mucosa Gástrica/metabolismo , Poluição do Ar em Ambientes Fechados/análise , Carcinógenos/análise , Solo/química , Habitação , Metais/análise
20.
Sci Total Environ ; 938: 173328, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777062

RESUMO

Once known for its clean and natural environment, the lower Himalayan region is now no exception to human-induced disturbances. Rapid industrial growth in Baddi-Barotiwala (BB) industrial region has led to degradation of groundwater resources in the area. Groundwater samples were collected from 37 locations to study the groundwater chemistry, geospatial variation of 15 toxic metals in groundwater, source apportionment, metals of concern and associated health risks in the region. The results showed rock dominated hydrogeology with decreasing order of anion and cation abundance as HCO3- > Cl- > SO42- > NO3- > Br- > F- and Ca+ > Na+ > Mg2+ > K+ > Li+ respectively. Concentrations of Iron (BDL-3.6 mg/l), Nickel (BDL-0.023 mg/l), Barium (0.22-0.89 mg/l), Lead (0.0001-0.085 mg/l) and Zinc (0.006-21.4 mg/l) were found above the permissible limits at few locations. Principal component analysis (PCA) and coefficient of variance (CV) showed both geogenic and anthropogenic origin of metals in groundwater of the BB industrial region. A consistent concentration of Uranium was detected at all the sampling locations with an average value of 0.0039 mg/l and poor spatial variation indicating its natural presence. Overall, non-carcinogenic (N-CR) risk in the study area via oral pathway was high for adults and children (Hazard Index > 1) with geogenic Uranium as the major contributor (Hazard Quotient > 1) followed by Zinc, Lead and Cobalt. Carcinogenic (CR) risk in the region was high for adults having mean value above the threshold (1E-04) with Nickel and Chromium as the metals of major concern. Spatial variation of health risks was overlayed on village boundaries of the region to identify the potential industrial sources of the metals of major concern. The results highlight the need for immediate remediation of groundwater resources in order to achieve a harmonious coexistence between industrialization and human well-being.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Metais/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...