Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.286
Filtrar
1.
Environ Geochem Health ; 46(9): 307, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002001

RESUMO

This study aimed to assess the effectiveness of urban derived biochars such as Sugarcane bagasse (SB), Brinjal Stem (BS), and Citrus Peel (CP) produced at two different pyrolysis conditions (450 and 600 °C for 60 min) for soil heavy metal bioremediation potential. An ex-situ study was conducted to remediate single heavy metal-contaminated SoilRite with lead (Pb), copper (Cu), chromium (Cr) and cadmium (Cd), with biochars applied at different rates. Heavy metal status in soilrite was evaluated using various extraction methods (water-soluble, exchangeable, TCLP (Toxicity Characteristic Leaching Procedure), and PBET (Physiologically Based Extraction Tests)) to determine the biochar treatments' efficacy. The findings show that SB biochar at 450-60 are more effective in immobilizing heavy metals in water-soluble (Cd-100% Pb and Cu-70%), exchangeable (Pb:91%, Cd and Cu by 70-80%) and PBET-extracted forms (Cd-91%, Pb-80%, and Cu-75%), whereas biochar derived from BS (84%) and CP (90%) at 600-60 are more effective in immobilizing TCLP-extracted form of Pb and Cu. Urban derived biochars significantly reduced the toxicity of Pb, Cu, and Cd in various extractable forms and can stabilize and convert them into less accessible forms except for Cr. These extraction methods aid in evaluating environmental risks and influencing remediation strategies for soil heavy metal pollution. Urban biochar, as a cost-effective and eco-friendly solution, significantly solves this issue, facilitating sustainable waste management.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Metais Pesados , Pirólise , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/química , Poluentes do Solo/análise , Metais Pesados/química , Metais Pesados/análise , Recuperação e Remediação Ambiental/métodos , Citrus/química , Saccharum/química , Solo/química , Biodegradação Ambiental
2.
Ecotoxicol Environ Saf ; 281: 116648, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964065

RESUMO

The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.


Assuntos
Irrigação Agrícola , Cádmio , Chumbo , Poluentes Químicos da Água , Qualidade da Água , Adsorção , Poluentes Químicos da Água/química , Chumbo/química , Cádmio/química , Irrigação Agrícola/métodos , Purificação da Água/métodos , Metais Pesados/química , Compostos de Potássio/química , Nutrientes , Cinética
3.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970698

RESUMO

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/química , Metais Pesados/química , Solo/química , Peso Molecular , Concentração de Íons de Hidrogênio , Cádmio/química , Tartaratos/química , Malatos/química , Ácido Cítrico/química , Recuperação e Remediação Ambiental/métodos , Ácido Oxálico/química , Adsorção , Oryza/química
4.
J Environ Manage ; 365: 121600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963957

RESUMO

Electrolytic manganese residue (EMR) is known for high concentrations of Mn2+, NH4+, and heavy metals. Failure to undergo benign treatment and landfill disposal would undeniably lead to negative impacts on the quality of the surrounding ecological environment. This study sought to mitigate the latent environmental risks associated with EMR using a cooperative solidification/stabilization (S/S) method involving coal fly ash (CFA). Leveraging leaching toxicity tests, the leaching behavior of pollutants in electrolytic manganese residue-based geopolymer materials (EMRGM) was determined. At the same time, mechanistic insights into S/S processes were explored utilizing characterization techniques such as XRF, XRD, FT-IR, SEM-EDS, and XPS. Those results confirmed significant reductions in the leaching toxicities of Mn2+ and NH4+ to 4.64 µg/L and 0.99 mg/L, respectively, with all other heavy metal ions falling within the permissible limits set by relevant standards. Further analysis shows that most of NH4+ volatilizes into the air as NH3, and a small part is fixed in the EMRGM in the form of struvite; in addition to being oxidized to MnOOH and MnO2, Mn2+ will also be adsorbed and wrapped by silicon-aluminum gel together with other heavy metal elements in the form of ions or precipitation. This research undeniably provides a solid theoretical foundation for the benign treatment and resourceful utilization of EMR and CFA, two prominent industrial solid wastes.


Assuntos
Cinza de Carvão , Manganês , Cinza de Carvão/química , Manganês/química , Metais Pesados/química
5.
J Environ Manage ; 365: 121637, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968886

RESUMO

The pH of sewage sludge is a crucial factor during the hydrothermal carbonization process that influences the characteristics of the resulting products and migration of certain compounds from the solid to liquid phase. Accordingly, this work is focused on examining the pH impact during the HTC process, in particular, pH equals 2, 3, 4, 5 and 6 on the individual hydrothermally carbonized products generated at 200 °C and 2 h residence time. For this reason, the chemical and physical indicators describing the post-processing liquid and hydrochar were determined. For instance, it was observed that the phosphorus content detected in the liquid, derived at pH2, rose significantly by 80%. Furthermore, decreasing the pH of sewage sludge had a significant impact on the ash content and the calorific value of the hydrochar. Additionally, changes in the specific surface area of hydrochar were noticed: pH = 5 and pH = 6 showed an increase of 20-30%, while for lower pH values a decrease of c.a. 26% was achieved. The distribution of heavy metals between the obtained fractions in the HTC process (solid and liquid) indicated that 92 to almost 100% of the tested heavy metals were transferred to the hydrochar. A significant effect of pH on the distribution between these fractions was observed only for Zn and Ni. For instance, for pH = 2, Zn and Ni in post-processing liquid were 34% and 29%, respectively. In addition, the sequential extraction of heavy metals from hydrochar was also performed in order to identify mobile and non-mobile phases. It was noticed that the acidic environment favours a higher amount of mobile heavy metals in hydrochar. The largest effect was observed for Cd, Pb, Cr and Cu, for which, at pH = 2, their respective amounts in the mobile fraction were 2.7; 3.6; 1.8; 6.2 times higher, compared to the hydrochar without pH correction.


Assuntos
Metais Pesados , Fósforo , Esgotos , Metais Pesados/análise , Metais Pesados/química , Esgotos/química , Fósforo/química , Fósforo/análise , Concentração de Íons de Hidrogênio
6.
J Environ Manage ; 365: 121716, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968897

RESUMO

In this study, a novel piezoremediation system was developed to remediate an actual soil co-polluted by high contents of per- and polyfluoroalkyl substances (PFAS, 5725 µg/kg soil) and heavy metals (6455 mg/kg soil). Two piezocatalysts, MoS2/ceramsite (MC) and Fe3O4-MoS2/ceramsite (FMC), were synthesized using a facile hydrothermal-coprecipitation method. These two materials were employed to treat the co-contaminated soil in soil slurry environment under sonication. FMC exhibited significantly higher piezoremediation performance than MC, wherein 91.6% of PFAS, 97.8% of Cr6+ ions and 81% of total metals (Cr, Cu, Zn and Ni) were removed from the soil after 50 min of the FMC piezoremediation process. FMC also exhibited the advantages of easy separation from the slurry phase and excellent reusability. In comparison with MC, the Fe3O4-MoS2 heterojunction in FMC can stabilize MoS2 particles on the surface of ceramsite granules, promote the separation of electron/hole pairs, accelerate charge transfer, therefore enhancing piezocatalytic performance. The electron spin resonance analysis and free radical quenching tests show that •OH was the dominant oxidative radical responsible for PFAS degradation. The count of bacteria and the bacterial community structure in the treated soil can be basically restored to the initial states after 30 days of incubation under nutrient stimulation. Overall, this study not only provides a deep insight on soil remediation process, but also offers an efficient and reliable technique for simultaneous decontamination of organic and metal pollutants in soil.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Solo/química , Metais Pesados/química , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental
7.
Nat Commun ; 15(1): 5824, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992009

RESUMO

Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.


Assuntos
Metais Pesados , Polímeros , Purificação da Água , Polímeros/química , Purificação da Água/métodos , Metais Pesados/química , Metais Pesados/isolamento & purificação , Biodegradação Ambiental , Poluentes Químicos da Água/química , Cádmio/química , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Celulose/química , Dióxido de Silício/química , Íons/química
8.
Molecules ; 29(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999169

RESUMO

The progressive decline of the coal industry necessitates the development of effective treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and elevated concentrations of heavy metals. This study proposes an innovative approach leveraging sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research focused on elucidating the physiological characteristics and optimal growth conditions of SRB, particularly in relation to the pH level and temperature. The experimental findings reveal that the SRB exhibited a sulfate removal rate of 88.86% at an optimal temperature of 30 °C. Additionally, SRB gel particles were formulated using sodium alginate (SA) and carboxymethyl cellulose (CMC), and their performance was assessed under specific conditions (pH = 6, C/S = 1.5, T = 30 °C, CMC = 4.5%, BSNa = 0.4 mol/L, and cross-linking time = 9 h). Under these conditions, the SRB gel particles demonstrated an enhanced sulfate removal efficiency of 91.6%. Thermal analysis via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) provided further insights into the stability and properties of the SRB gel spheres. The findings underscore the potential of SRB-based bioremediation as a sustainable and efficient method for AMD treatment, offering a novel and environmentally friendly solution to mitigating the adverse effects of environmental contamination.


Assuntos
Biodegradação Ambiental , Mineração , Concentração de Íons de Hidrogênio , Alginatos/química , Sulfatos/química , Bactérias/metabolismo , Temperatura , Géis/química , Carboximetilcelulose Sódica/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
9.
Chemosphere ; 361: 142532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844109

RESUMO

Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage. Competitive removal was observed in binary batch experiments of Cr(III) - Pb(II), achieving 88% and 96% removal, respectively, with fast kinetics following a pseudo-second-order model. The findings of XRD, SEM, EDX, and FTIR of the slag after removal helped to elucidate the synergic removal mechanism involving ladle slag dissolution, precipitation, ion exchange, and adsorption in a tight relationship with the solution pH. Lastly, ladle slag was tested in real electroplating wastewater with the aforementioned ions at concentrations ranging from <1 to 1700 mg/L. The removal was performed in two steps, the first attained the following efficiencies: 73% for Al(III), 88% for B(III), 98% for Ba(II), 80% for Cr(III), 82% for Mg(II), 99% for Pb(II), 88% for Sr(II), and 88% for Zn(II). Visual MINTEQ simulation was utilized to identify the different species of ions present during the removal process. Furthermore, the leaching tests indicated a minimal environmental risk of secondary pollution in its application. The results promote an effective and sustainable approach to wastewater treatment within the circular economy.


Assuntos
Galvanoplastia , Metais Pesados , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Metais Pesados/isolamento & purificação , Metais Pesados/análise , Metais Pesados/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Resíduos Industriais/análise , Aço/química
10.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928423

RESUMO

In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.


Assuntos
Metais Pesados , Peptídeos , Metais Pesados/química , Peptídeos/química , Peptídeos/metabolismo , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Humanos , Poluentes do Solo/metabolismo , Poluentes do Solo/química
11.
J Environ Manage ; 363: 121392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850904

RESUMO

Lignin hydrothermal silica-carbon material served as a backbone for MgCl2 activation to prepare lignin-based silicon/magnesia biochar (ALB/Si-Mg) for Cd2+, Pb2+, Cu2+, and Zn2+ removal from water and soil environment. Characterization studies revealed a 1017.71-fold increase in the specific surface area of ALB/Si-Mg compared to the original lignin biochar (ALB), producing abundant oxygen functional groups (OC-O, Si-O, Mg-O), and mineral matter (Mg2SiO4 and MgO). Crucially, batch adsorption experiments demonstrated that the adsorption capacity of ALB/Si-Mg for Cd2+, Pb2+, Cu2+, and Zn2+ was 848.17, 665.07, 151.84, and 245.78 mg/g, which were 29.09-140.45 times of the ALB. Soil remediation experiments showed that applying ALB/Si-Mg increased soil effective silicon (109.04%-450.2%) and soil exchangeable magnesium (276.41%-878.66%), enhanced plant photosynthesis, and notably reduced the bioavailability of heavy metals in soil as well as the content of heavy metals in Pakchoi, thereby promoting Pakchoi growth and development. The presence of oxygen-containing functional groups on ALB/Si-Mg, along with Mg2SiO4 and MgO nanoparticles, enhanced the adsorption capacity for heavy metals through the promotion of heavy metal precipitation, ion exchange, and complexation mechanisms. This study establishes the groundwork for the coupling of silica and magnesium elements in biochar and the remediation of composite heavy metal environmental pollution.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Lignina , Metais Pesados , Dióxido de Silício , Metais Pesados/química , Carvão Vegetal/química , Dióxido de Silício/química , Lignina/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Magnésio/química , Solo/química , Poluentes do Solo/química
12.
Environ Sci Pollut Res Int ; 31(30): 43339-43350, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902443

RESUMO

In the construction industry, environmental behavior of aggregates has been monitored thanks to leaching tests, especially for alternative aggregates obtained from waste (e.g., construction and demolition waste, MSWI). Few studies were carried on the leaching behavior of natural aggregates, which are often not regulated for their substance release in most EU member states (as France). Leachable content of some heavy metals, halides, and sulfates on natural aggregates was investigated using up-flow percolation test EN 16637-3 and compared to threshold values. Only three samples (NS2, NG1, and NG8) show one element which exceeded threshold values (As, Zn, As, respectively), among the 19 natural aggregates tested for leaching. In this study, three natural aggregates (NG1, NS1, NS2) have been chosen because of their measurable leaching values. Total content was obtained through acid digestion. Influence of grain size on leaching results was investigated. Predominant release mechanisms were determined using EN 16637-3 - Annex D, based on percolation results such as pH, electrical conductivity, and leached content, and were then discussed. Detailed results for releases of As, Ba, Ni, Zn, SO42-, and F- were investigated. EN 16637-3 - Annex D shows some limits, especially for trace elements. The pH was found to be one of the most important factors influencing leaching release of most elements, being more important than grain size. By comparing total content with released quantities, it has been shown that As and Mo in NS2 are easily leached, hence present in a very soluble chemical form. Determining release mechanisms accurately in this study seems only possible for elements present in significant amounts.


Assuntos
Metais Pesados , Metais Pesados/análise , Metais Pesados/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , França
13.
Environ Sci Pollut Res Int ; 31(29): 42133-42143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858288

RESUMO

Phosphorus recovery from wastewater is receiving more attention due to its non-renewable property. As copper (Cu) and zinc (Zn) usually occur in livestock wastewater, this study focused on metal sorption in struvite from swine wastewater and the release properties of granular struvite in solution with varying pH conditions (2, 4, 7). The results demonstrated pH values presented a slightly decreasing trend with increasing Cu/Zn ratio, and Zn exhibited higher sorption performance on struvite crystals than that of Cu. Under the high content of metals in the wastewater, Cu/Zn ratios in the wastewater contributed to varying metal binding forms and mechanisms, resulting in the difference in the leaching properties of nutrients and metal. For the granular struvite manufactured with the adhesion of alginate, the P release percentage achieved 30.3-40.5% after 96 h in the wastewater of pH 2, whereas they were only 5.63-8.92% and 1.05-1.50% in the wastewater of pH 4 and 7, respectively. Acid wastewater contributed to the release of two metals, and the release amount of Zn was higher than that of Cu, which is associated with their sorption capacity in crystals. During the latter soil leaching test of adding granular struvite, the NH4+-N and PO43--P concentration in the effluent ranged from 0.34 to 1.26 and 0.62 to 2.56 mg/L after 96 h, respectively. However, the Cu and Zn could not be measured due to lower than the detection limit under varying treatments. Struvite might be accompanied by quicker metal leaching and slower nutrient leaching when surface sorption dominates in wastewater with lower metal concentrations.


Assuntos
Gado , Metais Pesados , Estruvita , Águas Residuárias , Águas Residuárias/química , Estruvita/química , Animais , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos , Concentração de Íons de Hidrogênio
14.
Environ Sci Pollut Res Int ; 31(31): 44254-44271, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943002

RESUMO

Efficient catalysts play a pivotal role in advancing eco-friendly water treatment strategies, particularly in the removal of diverse organic contaminants found in water-petroleum sources. This study addresses the multifaceted challenges posed by contaminants, encompassing a spectrum of heavy metals such as As, Cd, Cr, Mn, Mo, Ni, Pb, Sb, Se, and Zn alongside pollutants like oily water (OIW), total suspended solids (TSS), chemical oxygen demand (COD), dyes, and pharmaceuticals, posing threats to both aquatic and terrestrial ecosystems. Herein, we present the synthesis of biogenically derived Mn@NiO nanocomposite (NC) photocatalysts, a sustainable methodology employing an aqueous Rosmarinus officinalis L. extract, yielding particles with a size of 36.7 nm. The catalyst demonstrates exceptional efficacy in removing heavy metals, achieving rates exceeding 99-100% within 30 min, alongside notable removal efficiencies for OIW (98%), TSS (87%), and COD (98%). Furthermore, our photodegradation experiments showed remarkable efficiencies, with 94% degradation for Rose Bengal (RB) and 96% for methylene blue (MB) within 120 min. The degradation kinetics adhere to pseudo-first-order behavior, with rate constants of 0.0227 min-1 for RB and 0.0370 min-1 for MB. Additionally, the NC exhibits significant antibiotic degradation rates of 97% for cephalexin (CEX) and 96% for amoxicillin (AMOX). The enhanced photocatalytic performance is attributed to the synergistic interplay between the Mn and NiO nanostructures, augmenting responsiveness to sunlight while mitigating electron-hole pair recombination. Notably, the catalyst demonstrates outstanding stability and reusability across multiple cycles, maintaining its stable nanostructure without compromise.


Assuntos
Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Nanoestruturas , Metais Pesados/química , Manganês/química , Níquel/química , Nanocompostos/química , Catálise , Purificação da Água/métodos
15.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866294

RESUMO

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Assuntos
Metais Pesados , Muramidase , Águas Residuárias , Metais Pesados/química , Águas Residuárias/química , Animais , Muramidase/química , Muramidase/isolamento & purificação , Muramidase/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Transglutaminases/isolamento & purificação , Lã/química , Purificação da Água/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Adsorção , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/isolamento & purificação , Proteínas Amiloidogênicas/metabolismo , Fibra de Lã , Agregados Proteicos , Amiloide/química
16.
ACS Nano ; 18(27): 17694-17706, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38932609

RESUMO

The pollution caused by heavy metals (HMs) represents a global concern due to their serious environmental threat. Photosynthetic cyanobacteria have a natural niche and the ability to remediate HMs such as cadmium. However, their practical application is hindered by a low tolerance to HMs and issues related to recycling. In response to these challenges, this study focuses on the development and evaluation of engineered cyanobacteria-based living materials for HMs bioremediation. Genes encoding phytochelatins (PCSs) and metallothioneins (MTs) were introduced into the model cyanobacterium Synechocystis sp. PCC 6803, creating PM/6803. The strain exhibited improved tolerance to multiple HMs and effectively removed a combination of Cd2+, Zn2+, and Cu2+. Using Cd2+ as a representative, PM/6803 achieved a bioremediation rate of approximately 21 µg of Cd2+/OD750 under the given test conditions. To facilitate its controllable application, PM/6803 was encapsulated using sodium alginate-based hydrogels (PM/6803@SA) to create "living materials" with different shapes. This system was feasible, biocompatible, and effective for removing Cd2+ under simulated conditions of zebrafish and mice models. Briefly, in vitro application of PM/6803@SA efficiently rescued zebrafish from polluted water containing Cd2+, while in vivo use of PM/6803@SA significantly decreased the Cd2+ content in mice bodies and restored their active behavior. The study offers feasible strategies for HMs bioremediation using the interesting biomaterials of engineered cyanobacteria both in vitro and in vivo.


Assuntos
Biodegradação Ambiental , Metais Pesados , Peixe-Zebra , Animais , Metais Pesados/metabolismo , Metais Pesados/química , Camundongos , Synechocystis/metabolismo , Synechocystis/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Hidrogéis/química , Fitoquelatinas/metabolismo , Cádmio/metabolismo , Cádmio/química , Cianobactérias/metabolismo , Cianobactérias/genética , Alginatos/química , Alginatos/metabolismo
17.
Int J Biol Macromol ; 273(Pt 2): 132895, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848850

RESUMO

Developing eco-friendly, cost-effective, and efficient methods for treating water pollutants has become paramount in recent years. Biopolyelectrolytes (BPEs), comprising natural polymers like chitosan, alginate, and cellulose, have emerged as versatile tools in this pursuit. This review offers a comprehensive exploration of the diverse roles of BPEs in combating water contamination, spanning coagulation-flocculation, adsorption, and filtration membrane techniques. With ionizable functional groups, BPEs exhibit promise in removing heavy metals, dyes, and various pollutants. Studies showcase the efficacy of chitosan, alginate, and pectin in achieving notable removal rates. BPEs efficiently adsorb heavy metal ions, dyes, and pesticides, leveraging robust adsorption capacity and exceptional mechanical properties. Furthermore, BPEs play a pivotal role in filtration membrane techniques, offering efficient separation systems with high removal rates and low energy consumption. Despite challenges related to production costs and property variability, their environmentally friendly, biodegradable, renewable, and recyclable nature positions BPEs as compelling candidates for sustainable water treatment technologies. This review delves deeper into BPEs' modification and integration with other materials; these natural polymers hold substantial promise in revolutionizing the landscape of water treatment technologies, offering eco-conscious solutions to address the pressing global issue of water pollution.


Assuntos
Águas Residuárias , Purificação da Água , Purificação da Água/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Quitosana/química , Adsorção , Metais Pesados/química , Metais Pesados/isolamento & purificação , Filtração/métodos
18.
Int J Biol Macromol ; 273(Pt 2): 132945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851614

RESUMO

The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.


Assuntos
Lignina , Metais Pesados , Praguicidas , Metais Pesados/química , Lignina/química , Lignina/análogos & derivados , Praguicidas/química , Preparações de Ação Retardada , Plásticos/química , Poluentes do Solo/química , Agricultura/métodos , Quitosana/química , Fármacos Fotossensibilizantes/química , Biodegradação Ambiental , Solo/química
19.
Int J Biol Macromol ; 273(Pt 1): 132875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852718

RESUMO

To achieve the objective of "waste control by waste", in this study, a green aerogel adsorbent comprised of pomelo-peel cellulose and sodium alginate (PCC/SA) was prepared through dual-network crosslinking. The resulting 3D hierarchical porous structured PCC/SA aerogel exhibited good structural stability, and kept the morphological integrity during 10 days in a wide pH range (2-10), suggesting its potential for recycling in diverse complex environments. Besides, the superior adsorption capacities for methylene blue (MB) and Cu(II) were observed, with the qm values and adsorption equilibrium times were recorded to be 1299.59 mg/g (300 min) and 287.55 mg/g (120 min), correspondingly. Furthermore, the favorable reusability of the PCC/SA aerogel was also demonstrated, with the removal efficiency for MB remaining almost unchanged (about 94 %) after 10 adsorption-desorption cycles, while there was a slight reduction for Cu(II) from 85.28 % to 72.47 %. XPS and FTIR analysis revealed that electrostatic attraction, hydrogen bonding, cation exchange and coordination were the major adsorption mechanisms. Importantly, the PCC/SA aerogel can be naturally degraded in soil within 10 weeks. Therefore, the as-prepared aerogel bead derived from pomelo peel shows great promise as an adsorbent for wastewater treatment containing dye and heavy metal ions.


Assuntos
Celulose , Corantes , Géis , Metais Pesados , Celulose/química , Adsorção , Corantes/química , Géis/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Alginatos/química , Concentração de Íons de Hidrogênio , Azul de Metileno/química , Citrus/química , Porosidade , Purificação da Água/métodos , Cobre/química , Cinética
20.
Int J Biol Macromol ; 273(Pt 1): 133043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857728

RESUMO

Water pollution is one of serious environmental issues due to the rapid development of industrial and agricultural sectors, and clean water resources have been receiving increasing attention. Recently, more and more studies have witnessed significant development of catalysts (metal oxides, metal sulfides, metal-organic frameworks, zero-valent metal, etc.) for wastewater treatment and water purification. Sustainable and clean catalysts immobilized into chitosan-based materials (Cat@CSbMs) are considered one of the most appealing subclasses of functional materials due to their high catalytic activity, high adsorption capacities, non-toxicity and relative stability. This review provides a summary of various upgrading renewable Cat@CSbMs (such as cocatalyst, photocatalyst, and Fenton-like reagent, etc.). As for engineering applications, further researches of Cat@CSbMs should focus on treating complex wastewater containing both heavy metals and organic pollutants, as well as developing continuous flow treatment methods for industrial wastewater using Cat@CSbMs. In conclusion, this review abridges the gap between different approaches for upgrading renewable and clean Cat@CSbMs and their future applications. This will contribute to the development of cleaner and sustainable Cat@CSbMs for wastewater treatment and water purification.


Assuntos
Quitosana , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Purificação da Água/métodos , Catálise , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Metais Pesados/química , Metais Pesados/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...