Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891996

RESUMO

Human abdominal aortic aneurysms (AAAs) are characterized by increased activity of matrix metalloproteinases (MMP), including MMP-12, alongside macrophage accumulation and elastin degradation, in conjunction with superimposed atherosclerosis. Previous genetic ablation studies have proposed contradictory roles for MMP-12 in AAA development. In this study, we aimed to elucidate if pharmacological inhibition of MMP-12 activity with a phosphinic peptide inhibitor protects from AAA formation and progression in angiotensin (Ang) II-infused Apoe-/- mice. Complimentary studies were conducted in a human ex vivo model of early aneurysm development. Administration of an MMP-12 inhibitor (RXP470.1) protected hypercholesterolemia Apoe-/- mice from Ang II-induced AAA formation and rupture-related death, associated with diminished medial thinning and elastin fragmentation alongside increased collagen deposition. Proteomic analyses confirmed a beneficial effect of MMP-12 inhibition on extracellular matrix remodeling proteins combined with inflammatory pathways. Furthermore, RXP470.1 treatment of mice with pre-existing AAAs exerted beneficial effects as observed through suppressed aortic dilation and rupture, medial thinning, and elastin destruction. Our findings indicate that pharmacological inhibition of MMP-12 activity retards AAA progression and improves survival in mice providing proof-of-concept evidence to motivate translational work for MMP-12 inhibitor therapy in humans.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apolipoproteínas E , Metaloproteinase 12 da Matriz , Inibidores de Metaloproteinases de Matriz , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/etiologia , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Masculino , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Endogâmicos C57BL , Elastina/metabolismo , Proteômica/métodos
2.
Inorg Chem ; 63(23): 10713-10725, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38805564

RESUMO

Understanding the fine structural details of inhibitor binding at the active site of metalloenzymes can have a profound impact on the rational drug design targeted to this broad class of biomolecules. Structural techniques such as NMR, cryo-EM, and X-ray crystallography can provide bond lengths and angles, but the uncertainties in these measurements can be as large as the range of values that have been observed for these quantities in all the published structures. This uncertainty is far too large to allow for reliable calculations at the quantum chemical (QC) levels for developing precise structure-activity relationships or for improving the energetic considerations in protein-inhibitor studies. Therefore, the need arises to rely upon computational methods to refine the active site structures well beyond the resolution obtained with routine application of structural methods. In a recent paper, we have shown that it is possible to refine the active site of cobalt(II)-substituted MMP12, a metalloprotein that is a relevant drug target, by matching to the experimental pseudocontact shifts (PCS) those calculated using multireference ab initio QC methods. The computational cost of this methodology becomes a significant bottleneck when the starting structure is not sufficiently close to the final one, which is often the case with biomolecular structures. To tackle this problem, we have developed an approach based on a neural network (NN) and a support vector regression (SVR) and applied it to the refinement of the active site structure of oxalate-inhibited human carbonic anhydrase 2 (hCAII), another prototypical metalloprotein target. The refined structure gives a remarkably good agreement between the QC-calculated and the experimental PCS. This study not only contributes to the knowledge of CAII but also demonstrates the utility of combining machine learning (ML) algorithms with QC calculations, offering a promising avenue for investigating other drug targets and complex biological systems in general.


Assuntos
Domínio Catalítico , Aprendizado de Máquina , Metaloproteínas , Teoria Quântica , Metaloproteínas/química , Humanos , Modelos Moleculares , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo
3.
Phytomedicine ; 129: 155616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669965

RESUMO

BACKGROUND: Silicosis presents a significant clinical challenges and economic burdens, with Traditional Chinese Medicine (TCM) emerging as a potential therapeutic avenue. However, the precise effects and mechanisms of TCM in treating silicosis remain uncertain and subject to debate. OBJECTIVE: The study aims to elucidate the therapeutic role and mechanisms of the Yang-Yin-Qing-Fei Decoction (YYQFD) and its key component, paeoniflorin, in silicosis using a murine model. METHODS: Silicotic mice were treated with YYQFD, pirfenidone (PFD), or paeoniflorin. RAW264.7 cells and mouse lung fibroblasts (MLF) were stimulated with silica, matrix metalloproteinase-12 (MMP-12), or TGF-ß1, followed by treatment with paeoniflorin, PFD, or relevant inhibitors. YYQFD constituents were characterized using High-Performance Liquid Chromatography (HPLC). Lung fibrosis severity was assessed via histopathological examination, micro-CT imaging, lung functions, and Western blot analysis. Transcriptome sequencing and bioinformatics analysis were employed to delineate the gene expression profile and target genes modulated by YYQFD in silicosis. RESULTS: Treatment with YYQFD ameliorated silica-induced lung fibrosis. Transcriptome sequencing identified MMP-12 as a potential common target of YYQFD and PFD. Additionally, a potential pro-inflammatory role of MMP-12, regulated by silica-induced TLR4 signaling pathways, was revealed. Paeoniflorin, one of the most distinctive compounds in YYQFD, attenuated silica-induced MMP-12 increase and its derived inflammatory factors in macrophages through a direct binding effect. Notably, paeoniflorin treatment exerted anti-fibrotic effects by inhibiting MMP-12-derived inflammatory factors and TGF-ß1-induced myofibroblast differentiation in silica-exposed mice. CONCLUSIONS: This study underscores paeoniflorin as one of the most principal bioactive compounds in YYQFD, highlighting its capacity to attenuate lung inflammation driven by macrophage-derived MMP-12 and reduce lung fibrosis both in vivo and in vitro.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Glucosídeos , Metaloproteinase 12 da Matriz , Monoterpenos , Silicose , Animais , Masculino , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Fibroblastos/efeitos dos fármacos , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Monoterpenos/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Células RAW 264.7 , Silicose/tratamento farmacológico
4.
Funct Integr Genomics ; 24(3): 78, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632141

RESUMO

Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas de Homeodomínio , Neoplasias Laríngeas , Metaloproteinase 12 da Matriz , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Homeodomínio/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
5.
J Proteome Res ; 23(5): 1821-1833, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652053

RESUMO

Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Epigênese Genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Metaloproteinase 12 da Matriz , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Humanos , Transição Epitelial-Mesenquimal/genética , Prognóstico , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Metilação de DNA
6.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
7.
Biomed Pharmacother ; 174: 116480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547765

RESUMO

Sepsis is caused by an inadequate or dysregulated host response to infection. Enzymes causing cellular degradation are matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) is used in models of sepsis in laboratory settings The aim of the study was to measure MMP 2 and 12 concentrations in spleen and lungs in rats in which septic shock was induced by LPS. The experiment was carried out on 40 male Wistar rats (5 groups of 8): 0. controls 1. administered LPS 2. administered bestatin 3. LPS and bestatin 4.bestatin and after 6 hours LPS Animals were decapitated. Lungs and spleens were collected. Concentrations of MMP-2 and MMP-12 were determined using immunoenzymatic methods. Mean (±SD) MMP-2 in the controls was 43.57 ± 20.53 ng/ml in the lungs and 1.7 ± 0.72 ng/ml in the spleen; Group 1: 31.28 ± 13.13 ng/ml, 0.83 ± 0.8 ng/ml; Group 2: 44.24 ± 22.75 ng /ml, 1.01 ± 0.32 ng/ml; Group 3: 35.94 ± 15.13 ng/ml, 0.41 ± 0.03 ng/ml; Group 4:79.42 ± 44.70 ng/ml, 0.45 ± 0.15, respectively. Mean MMP-12 in controls was 19.79 ± 10.01 ng/ml in lungs and 41.13 ± 15.99 ng/ml in the spleen; Group 1:27.97 ± 15.1 ng/ml; 40.44 ± 11.2 ng/ml; Group 2: 37.93 ± 25.38 ng/ml 41.05 ± 18.08 ng/ml; Group 3: 40.59 ± 11.46 ng/ml, 35.16 ± 12.89 ng/ml; Group 4: 39.4 ± 17.83 ng/ml, 42.04 ± 12.35 ng/ml, respectively. CONCLUSIONS: 1. Bestatin reduces MMP 2 and 12 levels in spleen and lungs. 2. Treatment with bestatin minimizes the effect of LPS.


Assuntos
Modelos Animais de Doenças , Leucina , Leucina/análogos & derivados , Lipopolissacarídeos , Pulmão , Metaloproteinase 12 da Matriz , Metaloproteinase 2 da Matriz , Ratos Wistar , Sepse , Baço , Animais , Baço/efeitos dos fármacos , Baço/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/patologia , Pulmão/metabolismo , Sepse/tratamento farmacológico , Sepse/induzido quimicamente , Metaloproteinase 12 da Matriz/metabolismo , Ratos , Leucina/farmacologia , Leucina/uso terapêutico , Inibidores de Metaloproteinases de Matriz/farmacologia
8.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542140

RESUMO

Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Metaloproteinase 12 da Matriz , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Redes e Vias Metabólicas , RNA/metabolismo , Animais , Camundongos
9.
Braz J Med Biol Res ; 57: e13351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511770

RESUMO

The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Camundongos , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Lipólise , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/farmacologia , Autofagia , Lipídeos , Linhagem Celular Tumoral , Proliferação de Células
10.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
11.
Adv Sci (Weinh) ; 11(16): e2306066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350725

RESUMO

Acetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen-induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein-coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single-cell RNA sequencing, spatial transcriptomics, and hour-long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell-specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF-κB/TNF-α signaling pathway due to myeloid-Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Células Endoteliais , Macrófagos , Metaloproteinase 12 da Matriz , Monócitos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos C57BL , Monócitos/metabolismo
12.
Sci Rep ; 14(1): 4020, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369593

RESUMO

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Células de Kupffer/metabolismo , Frutose/metabolismo , Via de Pentose Fosfato , Metaloproteinase 12 da Matriz/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Fenótipo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38288346

RESUMO

Background: Macrophage-derived matrix metalloproteinase 12 (MMP12) can cause destruction of lung tissue structure and plays a significant role in the development and progression of chronic obstructive pulmonary disease (COPD). MTOR is a serine/threonine kinase that plays a crucial role in cell growth and metabolism. The activity of MTOR in the lung tissues of COPD patients also shows significant changes. However, it is unclear whether MTOR can regulate the development and progression of COPD by controlling MMP12. This study primarily investigates whether MTOR in macrophages can affect the expression of MMP12 and participate in the progression of COPD. Methods: We tested the changes in MTOR activity in macrophages exposed to cigarette smoke (CS) both in vivo and in vitro. Additionally, we observed the effect of MTOR on the expression of MMP12 in macrophages and on lung tissue inflammation and structural damage in mice, both in vivo and in vitro, using MTOR inhibitors or gene knockout mice. Finally, we combined inhibitor treatment with gene knockout to demonstrate that MTOR primarily mediates the expression of MMP12 through the NF-κB signaling pathway. Results: Exposure to CS can enhance MTOR activity in mouse alveolar macrophages. Inhibiting the activity of MTOR or suppressing its expression leads to increased expression of MMP12. Myeloid-specific knockout of MTOR expression can promote the occurrence of CS-induced pulmonary inflammation and emphysema in mice. Inhibiting the activity of NF-κB can eliminate the effect of MTOR on MMP12. Conclusion: Macrophage MTOR can reduce the expression of MMP12 by inhibiting NF-κB, thereby inhibiting the occurrence of COPD inflammation and destruction of lung tissue structure. Activating the activity of macrophage MTOR may be beneficial for the treatment of COPD.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Inflamação/metabolismo , Pulmão , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/complicações , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Produtos do Tabaco
14.
J Infect Dis ; 229(5): 1372-1381, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109685

RESUMO

BACKGROUND: Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS: Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS: The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS: We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.


Assuntos
COVID-19 , Pulmão , Metaloproteinase 12 da Matriz , Camundongos Transgênicos , SARS-CoV-2 , Animais , COVID-19/virologia , COVID-19/patologia , COVID-19/metabolismo , Humanos , Camundongos , Pulmão/virologia , Pulmão/patologia , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Modelos Animais de Doenças , Remodelação das Vias Aéreas , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Células Epiteliais/virologia
15.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069304

RESUMO

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Assuntos
Metaloproteinase 12 da Matriz , Fagocitose , Humanos , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Fagocitose/fisiologia , Macrófagos/metabolismo , Inflamação/metabolismo , Regulação da Expressão Gênica , Apoptose/fisiologia
16.
Mol Immunol ; 163: 224-234, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37864932

RESUMO

Cigarette smoke is recognized as a major trigger for individuals with chronic obstructive pulmonary disease (COPD), leading to an amplified inflammatory response. The onset and progression of COPD are affected by multiple environmental and genetic risk factors, such as inflammatory mechanisms, oxidative stress, and an imbalance between proteinase and antiprotease. As a result, conventional drug therapies often have limited effectiveness. This study aimed to investigate the anti-inflammatory effect of sodium butyrate (SB) in COPD and explore its molecular mechanism, thereby deepening our understanding of the potential application of SB in the treatment of COPD. In our study, we observed an increase in the mRNA and protein expressions of inflammatory factors interleukin-1beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Matrix metallopeptidase 9 (MMP9) and MMP12 in both NR8383 cell and rat models of COPD. However, these expressions were significantly reduced after SB treatment. Meanwhile, SB treatment effectively decreased the phosphorylation levels of nuclear transcription factor-kappa B (NF-κB) p65, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear translocation of these proteins in the COPD cells, leading to a reduction in the expression of various inflammatory cytokines. Additionally, SB also inhibited the expression level of the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 in the cigeratte smoke extract (CSE)-stimulated cells. Our results showed that CSE down-regulated the mRNA levels of G-protein-coupled receptor 43 (GPR43) and GPR109A, while SB only up-regulated the expression of GPR43 and had no effect on GPR109A. Moreover, additional analysis demonstrated that the knockdown of GPR43 diminishes the anti-inflammatory effects of SB. It is evident that siRNA-mediated knockdown of GPR43 prevented the reduction in mRNA expression of IL-1ß, IL-6, TNF-α, MMP9, and MMP12, as well as the expression of phosphorylated proteins NF-κB p65, JNK, and p38 MAPKs with SB treatment. These findings revealed a SB/GPR43 mediated pathway essential for attenuating pulmonary inflammatory responses in COPD, which may offer potential new treatments for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , NF-kappa B/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fumar Cigarros/efeitos adversos , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema de Sinalização das MAP Quinases , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo
17.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834157

RESUMO

The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-ß), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-ß, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1ß, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-ß, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Ovalbumina/metabolismo , Interleucina-13/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Inibidores de Proteases/farmacologia , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Colágeno/metabolismo , Elastase Pancreática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Dexametasona/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
18.
Am J Respir Crit Care Med ; 208(10): 1115-1125, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713301

RESUMO

Rationale: Mounting evidence demonstrates a role for extracellular vesicles (EVs) in driving lung disorders, such as chronic obstructive pulmonary disease (COPD). Although cigarette smoke (CS) is the primary risk factor for COPD, a link between CS and the EVs that could lead to COPD is unknown. Objective: To ascertain whether exposure to CS elicits a proteolytic EV signature capable of driving disease pathogenesis. Methods: Protease expression and enzymatic activity were measured in EVs harvested from the BAL fluid of smoke-exposed mice and otherwise healthy human smokers. Pathogenicity of EVs was examined using pathological tissue scoring after EV transfer into naive recipient mice. Measurements and Main Results: The analyses revealed a unique EV profile defined by neutrophil- and macrophage-derived EVs. These EVs are characterized by abundant surface expression of neutrophil elastase (NE) and matrix metalloproteinase 12 (MMP12), respectively. CS-induced mouse or human-derived airway EVs had a robust capacity to elicit rapid lung damage in naive recipient mice, with an additive effect of NE- and MMP12-expressing EVs. Conclusions: These studies demonstrate the capacity of CS to drive the generation of unique EV populations containing NE and MMP12. The coordinated action of these EVs is completely sufficient to drive emphysematous disease, and their presence could operate as a prognostic indicator for COPD development. Furthermore, given the robust capacity of these EVs to elicit emphysema in naive mice, they provide a novel model to facilitate preclinical COPD research. Indeed, the development of this model has led to the discovery of a previously unrecognized CS-induced protective mechanism against EV-mediated damage.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Peptídeo Hidrolases/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão , Enfisema Pulmonar/etiologia , Elastase Pancreática/metabolismo , Fumar/efeitos adversos , Modelos Animais de Doenças
19.
PLoS One ; 18(7): e0274479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418356

RESUMO

Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 µg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 µg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.


Assuntos
Cordyceps , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Hialuronan Sintases , Cordyceps/metabolismo , Envelhecimento , Fibroblastos/metabolismo
20.
Front Immunol ; 14: 1179094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359523

RESUMO

Introduction: With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including Pneumocystis jirovecii pneumonia (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear. Methods: In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without Pneumocystis. Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining. Results: We found that the secretion of both pro-inflammatory cytokines and metabolites in the Pneumocystis-infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12+ macrophages is enriched in the immunocompetent mice with Pneumocystis infection. Pseudotime trajectory showed that these Mmp12+ macrophages are differentiated from Ly6c+ classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of Pneumocystis-infected mice. In vitro, we confirmed that dexamethasone impairs the expression of Lif, Il1b, Il6 and Tnf, as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12+ macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities. Conclusion: We reported a group of Mmp12+ macrophages conferring protection during Pneumocystis infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12+ macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.


Assuntos
Pneumocystis , Pneumonia por Pneumocystis , Camundongos , Animais , Macrófagos Alveolares , Pneumonia por Pneumocystis/microbiologia , Transcriptoma , Glucocorticoides , Metaloproteinase 12 da Matriz/metabolismo , Multiômica , Camundongos Endogâmicos C57BL , Pneumocystis/genética , Citocinas/metabolismo , Hospedeiro Imunocomprometido , Dexametasona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...