Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.040
Filtrar
1.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003054

RESUMO

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Assuntos
Muramidase , Esgotos , Eliminação de Resíduos Líquidos , Muramidase/metabolismo , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Hidrólise
2.
Geobiology ; 22(4): e12608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946067

RESUMO

Methane is a potent greenhouse gas that enters the marine system in large quantities at seafloor methane seeps. At a newly discovered seep site off the coast of Point Dume, CA, ~ meter-scale carbonate chimneys host microbial communities that exhibit the highest methane-oxidizing potential recorded to date. Here, we provide a detailed assessment of chimney geobiology through correlative mineralogical, geochemical, and microbiological studies of seven chimney samples in order to clarify the longevity and heterogeneity of these highly productive systems. U-Th dating indicated that a methane-driven carbonate precipitating system at Point Dume has existed for ~20 Kyr, while millimeter-scale variations in carbon and calcium isotopic values, elemental abundances, and carbonate polymorphs revealed changes in carbon source, precipitation rates, and diagenetic processes throughout the chimneys' lifespan. Microbial community analyses revealed diverse modern communities with prominent anaerobic methanotrophs, sulfate-reducing bacteria, and Anaerolineaceae; communities were more similar within a given chimney wall transect than in similar horizons of distinct structures. The chimneys represent long-lived repositories of methane-oxidizing communities and provide a window into how carbon can be transformed, sequestered, and altered over millennia at the Point Dume methane seep.


Assuntos
Bactérias , Carbonatos , Metano , Metano/metabolismo , Carbonatos/metabolismo , Carbonatos/química , Bactérias/metabolismo , Bactérias/classificação , California , Água do Mar/microbiologia , Água do Mar/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Ecossistema , Archaea/metabolismo
3.
NPJ Biofilms Microbiomes ; 10(1): 55, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961111

RESUMO

Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.


Assuntos
Dióxido de Carbono , Metano , Oxigênio , Proteômica , Sulfatos , Áreas Alagadas , Sulfatos/metabolismo , Oxigênio/metabolismo , Proteômica/métodos , Metano/metabolismo , Dióxido de Carbono/metabolismo , Microbiologia do Solo , Microbiota , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Mudança Climática
4.
J Environ Sci (China) ; 146: 15-27, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969444

RESUMO

A large amount of sludge is inevitably produced during sewage treatment. Ultrasonication (US) as anaerobic digestion (AD) pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated. US was effective in sludge SCOD increase, size decrease, and CH4 production in the subsequent AD, and these effects were enhanced with an elevated specific energy input. As indicated by semi-continuous AD experiments, the mean daily CH4 production of US-pretreated A2O-, A2O-MBR-, and AO-AO-sludge were 176.9, 119.8, and 141.7 NmL/g-VSadded, which were 35.1%, 32.1% and 78.2% higher than methane production of their respective raw sludge. The US of A2O-sludge achieved preferable US effects and CH4 production due to its high organic content and weak sludge structure stability. In response to US-pretreated sludge, a more diverse microbial community was observed in AD. The US-AD system showed negative net energy; however, it exhibited other positive effects, e.g., lower required sludge retention time and less residual total solids for disposal. US is a feasible option prior to AD to improve anaerobic bioconversion and CH4 yield although further studies are necessary to advance it in practice.


Assuntos
Reatores Biológicos , Metano , Esgotos , Eliminação de Resíduos Líquidos , Metano/metabolismo , Metano/análise , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Sonicação
5.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969460

RESUMO

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Assuntos
Reatores Biológicos , Carvão Vegetal , Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Águas Residuárias/química , Carvão Vegetal/química , Suínos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Membranas Artificiais , Metano/metabolismo
6.
Nat Commun ; 15(1): 5750, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982053

RESUMO

The global food system is a key driver of land-use and climate change which in turn drive biodiversity change. Developing sustainable food systems is therefore critical to reversing biodiversity loss. We use the multi-regional input-output model EXIOBASE to estimate the biodiversity impacts embedded within the global food system in 2011. Using models that capture regional variation in the sensitivity of biodiversity both to land use and climate change, we calculate the land-driven and greenhouse gas-driven footprints of food using two metrics of biodiversity: local species richness and rarity-weighted species richness. We show that the footprint of land area underestimates biodiversity impact in more species-rich regions and that our metric of rarity-weighted richness places a greater emphasis on biodiversity costs in Central and South America. We find that methane emissions are responsible for 70% of the overall greenhouse gas-driven biodiversity footprint and that, in several regions, emissions from a single year's food production are associated with global biodiversity loss equivalent to 2% or more of that region's total land-driven biodiversity loss. The measures we present are relatively simple to calculate and could be incorporated into decision-making and environmental impact assessments by governments and businesses.


Assuntos
Biodiversidade , Mudança Climática , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Agricultura , América do Sul , Metano/análise
7.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39023011

RESUMO

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Assuntos
Ferroptose , Heme Oxigenase-1 , Metano , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Transdução de Sinais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Heme Oxigenase-1/metabolismo , Metano/farmacologia , Masculino , Humanos , Solução Salina/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/lesões , Camundongos Endogâmicos C57BL , Proteínas de Membrana
8.
Sci Rep ; 14(1): 14992, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951540

RESUMO

This study investigates methane emissions from the livestock sector, representing by enteric fermentation and manure management, in Egypt from 1989 to 2021, focusing on spatial and temporal variations at the governorate level. Utilizing IPCC guidelines and emission factors, methane emissions were estimated for dairy and non-dairy cattle, buffalo, sheep and goat, poultry, and other livestock categories. Results reveal fluctuating emission patterns over the study period, with notable declines in certain governorates such as Kafr El-Sheikh and Red Sea, attributed to reductions in livestock populations. However, increasing trends were observed overall, driven by population growth in other regions. Hotspots of methane emissions were identified in delta governorates like Behera and Sharkia, as well as agriculturally rich regions including Menia and Suhag. While livestock populations varied between regions, factors such as water availability, climatic conditions, and farming practices influenced distribution. Notably, cluster analysis did not reveal regional clustering among governorates, suggesting emissions changes were not dependent on specific geographic or climatic boundaries. Manure management accounted for only 5-6% of total emissions, with emissions at their lowest in the last three years due to population declines. Despite the highest livestock populations being sheep and goats, emissions from enteric fermentation and manure management were highest from buffalo and cattle. This study underscores the importance of accurate data collection and adherence to IPCC recommendations for estimating GHG emissions, enabling the development of targeted mitigation strategies to address climate change challenges in the livestock sector.


Assuntos
Gases de Efeito Estufa , Gado , Metano , Animais , Egito , Metano/análise , Metano/metabolismo , Gases de Efeito Estufa/análise , Esterco/análise , Bovinos , Ovinos , Monitoramento Ambiental/métodos
9.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954064

RESUMO

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Assuntos
Hidrogênio , Metagenoma , Metano , Microbiologia do Solo , Enxofre , Metano/metabolismo , Hidrogênio/metabolismo , Itália , Enxofre/metabolismo , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Ilhas , Filogenia
10.
Anim Biotechnol ; 35(1): 2371519, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38990689

RESUMO

The present study aimed to evaluate the effect of dry turmeric rhizomes on in vitro biogas production and diet fermentability. Turmeric rhizomes were included at gradually increased levels: 0, 0.5, 1, 1.5 and 2% of a diet containing per kg dr matter (DM): 500 g concentrate feed mixture, 400 g berseem hay and 100 g rice straw, and incubated for 48 h. Gas chromatography-mass spectrometry analysis showed that ar-turmerone, α-turmerone and ß-turmerone were the major bioactive compounds in the rhizomes. Turmeric rhizomes increased (p < 0.01) asymptotic gas production (GP) and rate and lag of CH4 production and decreased (p < 0.01) rate of GP, lag of GP, asymptotic CH4 production and proportion of CH4 production. Turmeric rhizome administration linearly increased (p < 0.01) DM and fiber degradability and concentrations of total short-chain fatty acids, acetic and propionic acids and ammonia-N and quadratically (p < 0.05) decreased fermentation pH. It is concluded that including up to 2% turmeric rhizomes improved in vitro ruminal fermentation and decreased CH4 production.


Assuntos
Curcuma , Fermentação , Metano , Rizoma , Curcuma/química , Rizoma/química , Animais , Metano/metabolismo , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Digestão/efeitos dos fármacos
11.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990962

RESUMO

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Assuntos
Biodiversidade , Carbono , Gases de Efeito Estufa , Plantas , Solo , Solo/química , Gases de Efeito Estufa/análise , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Ecossistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Metano/metabolismo , Efeito Estufa
12.
Curr Microbiol ; 81(8): 255, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955830

RESUMO

Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.


Assuntos
Bactérias , Celulase , Metano , Poligalacturonase , Perus , Anaerobiose , Animais , Metano/metabolismo , Celulase/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Perus/microbiologia , Poligalacturonase/metabolismo , Hidrólise , Lignina/metabolismo , Agricultura , Metagenômica
13.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38955392

RESUMO

Guaymas Basin, located in the Gulf of California, is a hydrothermally active marginal basin. Due to steep geothermal gradients and localized heating by sill intrusions, microbial substrates like short-chain fatty acids and hydrocarbons are abiotically produced from sedimentary organic matter at comparatively shallow depths. We analyzed the effect of hydrocarbons on uptake of hydrocarbons by microorganisms via nano-scale secondary ion mass spectrometry (NanoSIMS) and microbial sulfate reduction rates (SRR), using samples from two drill sites sampled by IODP Expedition 385 (U1545C and U1546D). These sites are in close proximity of each other (ca. 1 km) and have very similar sedimentology. Site U1546D experienced the intrusion of a sill that has since then thermally equilibrated with the surrounding sediment. Both sites currently have an identical geothermal gradient, despite their different thermal history. The localized heating by the sill led to thermal cracking of sedimentary organic matter and formation of potentially bioavailable organic substrates. There were low levels of hydrocarbon and nitrogen uptake in some samples from both sites, mostly in surficial samples. Hydrocarbon and methane additions stimulated SRR in near-seafloor samples from Site U1545C, while samples from Site U1546D reacted positively only on methane. Our data indicate the potential of microorganisms to metabolize hydrocarbons even in the deep subsurface of Guaymas Basin.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Sulfatos/metabolismo , Metano/metabolismo , Espectrometria de Massa de Íon Secundário , Água do Mar/microbiologia , Nitrogênio/metabolismo
14.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967139

RESUMO

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Assuntos
Dióxido de Carbono , Mudança Climática , Gases de Efeito Estufa , Metano , Pergelissolo , Áreas Alagadas , Metano/análise , Metano/metabolismo , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Temperatura , Solo/química , Canadá , Estações do Ano
15.
Microbiome ; 12(1): 121, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970122

RESUMO

BACKGROUND: Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry. RESULTS: In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role. CONCLUSION: Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.


Assuntos
Carbono , Metagenômica , Metano , Metano/metabolismo , Carbono/metabolismo , Metagenômica/métodos , Reatores Biológicos/microbiologia , Metagenoma , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Filogenia , Anaerobiose , Transcriptoma , Genoma Bacteriano , Microbiota , Perfilação da Expressão Gênica
16.
Nat Commun ; 15(1): 5682, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971854

RESUMO

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.


Assuntos
Metano , Fotossíntese , Synechocystis , Metano/metabolismo , Synechocystis/metabolismo , Oxirredução , Methanosarcina barkeri/metabolismo , Oxigênio/metabolismo , Biofilmes/crescimento & desenvolvimento , Anaerobiose , Ferro/metabolismo , Bactérias/metabolismo , Bactérias/genética , Luz , Archaea/metabolismo , Archaea/genética
17.
Sci Rep ; 14(1): 15420, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965345

RESUMO

Due to the low permeability characteristics of the deep gas-containing coal seam, the conventional prevention and control measures that cannot solve the problems of gas outbursts are unsatisfactory for the prevention and control of the coal and gas outbursts disaster. Therefore, in this study, a strain of methane-oxidizing bacteria M07 with high-pressure resistance, strong resistance, and high methane degradation rate was selected from coal mines. The growth and degradation abilities of M07 in chelating wetting agent solutions to assess its adaptability and find the optimal agent-to-M07 ratio. It provides a new method for integrating the reduction of impact tendency and gas pressure in deep coal mines. The experimental results show that M07 is a Gram-positive bacterium of the genus Bacillus, which has strong resistance and adaptability to high-pressure water injection. By degrading 70 mol of methane, M07 produces 1 mol of carbon dioxide, which can reduce gas pressure and reduce the risk of gas outbursts in coal mines. As the experiment proves, the best effect was achieved when the M07 concentration of the chelating wetting agent was 0.05%. The methane-oxidizing bacteria based on the chelating wetting agent as carriers prove a new prevention and control method for the integrated prevention and control of coal and gas outbursts in coal mines and also provide a new idea for microbial application in coal mine disaster control.


Assuntos
Biodegradação Ambiental , Quelantes , Metano , Metano/metabolismo , Metano/química , Quelantes/química , Quelantes/farmacologia , Quelantes/metabolismo , Bacillus/metabolismo , Carvão Mineral , Minas de Carvão
18.
Glob Chang Biol ; 30(7): e17416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994730

RESUMO

Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Nutrientes , Compostos Orgânicos Voláteis , Gases de Efeito Estufa/análise , Compostos Orgânicos Voláteis/análise , Nutrientes/análise , Tundra , Metano/análise , Dióxido de Carbono/análise , Aquecimento Global , Temperatura , Butadienos , Hemiterpenos
19.
J Environ Manage ; 365: 121592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963959

RESUMO

Methane, either as natural gas or as a resource obtained from various bioprocesses (e.g., digestion, landfill) can be converted to carbon and hydrogen according to. CH4(g)→C(s)+2H2(g)ΔH298K=74.8kJ/mol. Previous research has stressed the growing importance of substituting the high-temperature Steam Methane Reforming (SMR) by a moderate temperature Catalytic Methane Decomposition (CMD). The carbon formed is moreover of nanotube nature, in high industrial demand. To avoid the use of an inert support for the active catalyst species, e.g., Al2O3 for Fe, leading to a progressive contamination of the catalyst by support debris and coking of the catalyst, the present research investigates the use of carbon nanotubes (CNTs) as Fe-support. Average CH4 conversions of 75-85% are obtained at 700 °C for a continuous operation of 40 h. The produced CNT from the methane conversion can be continuously removed from the catalyst bed by carry-over due to its bulk density difference (∼120 kg/m3) with the catalyst itself (∼1500 kg/m3). CNT properties are fully specified. No thermal regeneration of the catalyst is required. A tentative process layout and economic analysis demonstrate the scalability of the process and the very competitive production costs of H2 and CNT.


Assuntos
Ferro , Metano , Nanotubos de Carbono , Metano/química , Nanotubos de Carbono/química , Catálise , Ferro/química , Hidrogênio/química , Temperatura
20.
Front Cell Infect Microbiol ; 14: 1431660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994003

RESUMO

Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the bacterial population of the small intestine due to an imbalance between the amount of bacteria and the intestinal barrier. Pediatric SIBO presents with a wide spectrum of symptoms, ranging from mild gastrointestinal complaints to malabsorption or malnutrition. Breath tests are commonly used as noninvasive diagnostic tools for SIBO, but a standardized methodology is currently unavailable. Intestinal flora produces methane which slows intestinal transit and increases the contractile activity of small intestine. Emerging literature suggests a correlation between overgrowth of methanogenic bacteria in the intestines and constipation. Treatment of SIBO involves administration of antibacterial therapy in addition to management of underlying conditions and optimal dietary adjustments. However, research on antibiotic treatment for pediatric patients with constipation and SIBO is limited and has yielded conflicting results. In the current review, we summarize the state-of-the-art of the field and discuss previous treatment attempts and currently used regimens for SIBO patients with constipation, with a focus on pediatric populations.


Assuntos
Antibacterianos , Constipação Intestinal , Intestino Delgado , Humanos , Constipação Intestinal/microbiologia , Constipação Intestinal/tratamento farmacológico , Criança , Intestino Delgado/microbiologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal , Bactérias/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Testes Respiratórios , Metano/metabolismo , Síndrome da Alça Cega/diagnóstico , Síndrome da Alça Cega/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...