Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
J Magn Reson ; 365: 107730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981307

RESUMO

Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cß correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cß correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline ß1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cß correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.


Assuntos
Isótopos de Carbono , Ressonância Magnética Nuclear Biomolecular , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Methanosarcina/química , Algoritmos
2.
ACS Nano ; 18(24): 15661-15670, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38841753

RESUMO

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.


Assuntos
Methanosarcina , Nanopartículas , Selênio , Selênio/química , Selênio/metabolismo , Methanosarcina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo
3.
Biochemistry ; 63(14): 1783-1794, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38914925

RESUMO

Methyl-coenzyme M reductase (MCR) is a central player in methane biogeochemistry, governing methanogenesis and the anaerobic oxidation of methane (AOM) in methanogens and anaerobic methanotrophs (ANME), respectively. The prosthetic group of MCR is coenzyme F430, a nickel-containing tetrahydrocorphin. Several modified versions of F430 have been discovered, including the 172-methylthio-F430 (mtF430) used by ANME-1 MCR. Here, we employ molecular dynamics (MD) simulations to investigate the active site dynamics of MCR from Methanosarcina acetivorans and ANME-1 when bound to the canonical F430 compared to 172-thioether coenzyme F430 variants and substrates (methyl-coenzyme M and coenzyme B) for methane formation. Our simulations highlight the importance of the Gln to Val substitution in accommodating the 172 methylthio modification in ANME-1 MCR. Modifications at the 172 position disrupt the canonical substrate positioning in M. acetivorans MCR. However, in some replicates, active site reorganization to maintain substrate positioning suggests that the modified F430 variants could be accommodated in a methanogenic MCR. We additionally report the first quantitative estimate of MCR intrinsic electric fields that are pivotal in driving methane formation. Our results suggest that the electric field aligned along the CH3-S-CoM thioether bond facilitates homolytic bond cleavage, coinciding with the proposed catalytic mechanism. Structural perturbations, however, weaken and misalign these electric fields, emphasizing the importance of the active site structure in maintaining their integrity. In conclusion, our results deepen the understanding of MCR active site dynamics, the enzyme's organizational role in intrinsic electric fields for catalysis, and the interplay between active site structure and electrostatics.


Assuntos
Domínio Catalítico , Methanosarcina , Simulação de Dinâmica Molecular , Oxirredutases , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Methanosarcina/enzimologia , Metano/metabolismo , Metano/química , Conformação Proteica , Metaloporfirinas
4.
Appl Environ Microbiol ; 90(7): e0222023, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38916294

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis, the microbial metabolism responsible for nearly all biological methane emissions to the atmosphere. Decades of biochemical and structural research studies have generated detailed insights into MCR function in vitro, yet very little is known about the interplay between MCR and methanogen physiology. For instance, while it is routinely stated that MCR catalyzes the rate-limiting step of methanogenesis, this has not been categorically tested. In this study, to gain a more direct understanding of MCR's control on the growth of Methanosarcina acetivorans, we generate a strain with an inducible mcr operon on the chromosome, allowing for careful control of MCR expression. We show that MCR is not growth rate-limiting in substrate-replete batch cultures. However, through careful titration of MCR expression, growth-limiting state(s) can be obtained. Transcriptomic analysis of M. acetivorans experiencing MCR limitation reveals a global response with hundreds of differentially expressed genes across diverse functional categories. Notably, MCR limitation leads to strong induction of methylsulfide methyltransferases, likely due to insufficient recycling of metabolic intermediates. In addition, the mcr operon is not transcriptionally regulated, i.e., it is constitutively expressed, suggesting that the overabundance of MCR might be beneficial when cells experience nutrient limitation or stressful conditions. Altogether, we show that there is a wide range of cellular MCR concentrations that can sustain optimal growth, suggesting that other factors such as anabolic reactions might be rate-limiting for methanogenic growth. IMPORTANCE: Methane is a potent greenhouse gas that has contributed to ca. 25% of global warming in the post-industrial era. Atmospheric methane is primarily of biogenic origin, mostly produced by microorganisms called methanogens. Methyl-coenzyme M reductase (MCR) catalyzes methane formatio in methanogens. Even though MCR comprises ca. 10% of the cellular proteome, it is hypothesized to be growth-limiting during methanogenesis. In this study, we show that Methanosarcina acetivorans cells grown in substrate-replicate batch cultures produce more MCR than its cellular demand for optimal growth. The tools outlined in this study can be used to refine metabolic models of methanogenesis and assay lesions in MCR in a higher-throughput manner than isolation and biochemical characterization of pure protein.


Assuntos
Methanosarcina , Oxirredutases , Transcriptoma , Methanosarcina/genética , Methanosarcina/enzimologia , Methanosarcina/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Metano/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Óperon
5.
Biochemistry ; 63(12): 1588-1598, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38817151

RESUMO

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Methanosarcina/enzimologia , Methanosarcina/genética , Ferredoxinas/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Oxirredução , Modelos Moleculares , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Espectroscopia de Ressonância de Spin Eletrônica
6.
Environ Res ; 252(Pt 3): 118911, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604482

RESUMO

Mechanistic understanding of acetoclastic methanogenesis is pivotal for optimizing anaerobic digestion for efficient methane production. In this study, two different operational modes, continuous flow reactor (CFR) and sequencing batch reactor (SBR), accompanied with solids retention times (SRT) of 10 days (SBR10d and CFR10d) and 25 days (SBR25d and CFR25d) were implemented to elucidate their impacts on microbial communities and energy metabolism of methanogens in acetate-fed systems. Microbial community analysis revealed that the relative abundance of Methanosarcina (16.0%-46.0%) surpassed Methanothrix (3.7%-22.9%) in each reactor. SBRs had the potential to enrich both Methanothrix and Methanosarcina. Compared to SBRs, CFRs had lower total relative abundance of methanogens. Methanosarcina exhibited a superior enrichment in reactors with 10-day SRT, while Methanothrix preferred to be acclimated in reactors with 25-day SRT. The operational mode and SRT were also observed to affect the distribution of acetate-utilizing bacteria, including Pseudomonas, Desulfocurvus, Mesotoga, and Thauera. Regarding enzymes involved in energy metabolism, Ech and Vho/Vht demonstrated higher relative abundances at 10-day SRT compared to 25-day SRT, whereas Fpo and MtrA-H showed higher relative abundances in SBRs than those in CFRs. The relative abundance of genes encoding ATPase harbored by Methanothrix was higher than Methanosarcina at 25-day SRT. Additionally, the relative abundance of V/A-type ATPase (typically for methanogens) was observed higher in SBRs compared to CFRs, while the F-type ATPase (typically for bacteria) exhibited higher relative abundance in CFRs than that in SBRs.


Assuntos
Reatores Biológicos , Metabolismo Energético , Metano , Reatores Biológicos/microbiologia , Metano/metabolismo , Acetatos/metabolismo , Methanosarcina/metabolismo , Methanosarcina/genética , Anaerobiose , Aclimatação
7.
Nat Commun ; 15(1): 3300, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632227

RESUMO

Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.


Assuntos
Elétrons , Methanosarcina , Transporte de Elétrons , Methanosarcina/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
8.
Microbiome ; 12(1): 39, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409166

RESUMO

BACKGROUND: The final step in the anaerobic decomposition of biopolymers is methanogenesis. Rice field soils are a major anthropogenic source of methane, with straw commonly used as a fertilizer in rice farming. Here, we aimed to decipher the structural and functional responses of the methanogenic community to rice straw addition during an extended anoxic incubation (120 days) of Philippine paddy soil. The research combined process measurements, quantitative real-time PCR and RT-PCR of particular biomarkers (16S rRNA, mcrA), and meta-omics (environmental genomics and transcriptomics). RESULTS: The analysis methods collectively revealed two major bacterial and methanogenic activity phases: early (days 7 to 21) and late (days 28 to 60) community responses, separated by a significant transient decline in microbial gene and transcript abundances and CH4 production rate. The two methanogenic activity phases corresponded to the greatest rRNA and mRNA abundances of the Methanosarcinaceae but differed in the methanogenic pathways expressed. While three genetically distinct Methanosarcina populations contributed to acetoclastic methanogenesis during the early activity phase, the late activity phase was defined by methylotrophic methanogenesis performed by a single Methanosarcina genomospecies. Closely related to Methanosarcina sp. MSH10X1, mapping of environmental transcripts onto metagenome-assembled genomes (MAGs) and population-specific reference genomes revealed this genomospecies as the key player in acetoclastic and methylotrophic methanogenesis. The anaerobic food web was driven by a complex bacterial community, with Geobacteraceae and Peptococcaceae being putative candidates for a functional interplay with Methanosarcina. Members of the Methanocellaceae were the key players in hydrogenotrophic methanogenesis, while the acetoclastic activity of Methanotrichaceae members was detectable only during the very late community response. CONCLUSIONS: The predominant but time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies represents a novel finding that expands our hitherto knowledge of the methanogenic pathways being highly expressed in paddy soils. Video Abstract.


Assuntos
Methanosarcina , Oryza , Methanosarcina/genética , Methanosarcina/metabolismo , Solo/química , Oryza/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Filipinas , Bactérias , Metano/metabolismo
11.
Bioresour Technol ; 395: 130393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301942

RESUMO

Hydrothermal carbonization temperature is a key factor in controlling the physico-chemical properties of hydrochar and affecting its function. In this study, effects of hydrochar and Fe-modified hydrochar (Fe-HC) prepared at 180 °C (180C-Fe), 220 °C (220C-Fe) and 260 °C (260C-Fe) on anaerobic digestion (AD) performance of swine manure was investigated. Among the three Fe-HCs, 220C-Fe had the highest amount of Fe and Fe2+ on the surface. The relative methane production of control reached 174 %-189 % in the 180C-Fe and 220C-Fe treatments between days 11 and 12. The degradation efficiency of swine manure was highest in the 220C-Fe treatment (61.3 %), which was 14.8 % higher than in the control. Fe-HC could act as an electron shuttle, stimulate the coenzyme F420 formation, increase the relative abundance of Methanosarcina and promote electron transport for acetotrophic methanogenesis in the AD. These findings are helpful for designing an efficient process for treating swine manure and utilizing digestate.


Assuntos
Esterco , Methanosarcina , Animais , Suínos , Anaerobiose , Temperatura , Transporte de Elétrons , Metano
12.
J Bacteriol ; 206(2): e0036323, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305193

RESUMO

Methanogenesis is a key step during anaerobic biomass degradation. Methanogenic archaea (methanogens) are the only organisms coupling methanogenic substrate conversion to energy conservation. The range of substrates utilized by methanogens is limited, with acetate and H2+CO2 being the ecologically most relevant. The only single methanogenic energy substrate containing more carbon-carbon bonds than acetate is pyruvate. Only the aggregate-forming, freshwater methanogen Methanosarcina barkeri Fusaro was shown to grow on this compound. Here, the pyruvate-utilizing capabilities of the single-celled, marine Methanosarcina acetivorans were addressed. Robust pyruvate-dependent, methanogenic, growth could be established by omitting CO2 from the growth medium. Growth rates which were independent of the pyruvate concentration indicated that M. acetivorans actively translocates pyruvate across the cytoplasmic membrane. When 2-bromoethanesulfonate (BES) inhibited methanogenesis to more than 99%, pyruvate-dependent growth was acetogenic and sustained. However, when methanogenesis was completely inhibited M. acetivorans did not grow on pyruvate. Analysis of metabolites showed that acetogenesis is used by BES-inhibited M. acetivorans as a sink for electrons derived from pyruvate oxidation and that other, thus far unidentified, metabolites are produced.IMPORTANCEThe known range of methanogenic growth substrates is very limited and M. acetivorans is only the second methanogenic species for which growth on pyruvate is demonstrated. Besides some commonalities, analysis of M. acetivorans highlights differences in pyruvate metabolism among Methanosarcina species. The observation that M. acetivorans probably imports pyruvate actively indicates that the capabilities for heterotrophic catabolism in methanogens may be underestimated. The mostly acetogenic growth of M. acetivorans on pyruvate with concomitant inhibition of methanogenesis confirms that energy conservation of methanogenic archaea can be independent of methane formation.


Assuntos
Ácidos Alcanossulfônicos , Methanosarcina , Ácido Pirúvico , Methanosarcina/genética , Methanosarcina/metabolismo , Ácido Pirúvico/metabolismo , Metano/metabolismo , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Carbono/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232281

RESUMO

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Assuntos
Trifosfato de Adenosina , Metano , Metano/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismo
14.
Electron. j. biotechnol ; 12(3): 12-13, July 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-551890

RESUMO

16S ribosomal RNA (rRNA)-targeted fluorescent in situ hybridization combined with polymerase chain reaction (PCR)-cloning, light microscopy using Gram stains, scanning electron microscopy and denatured gradient gel electrophoresis were used to reveal the distribution of methanogens within an anaerobic closed digester tank fed with palm oil mill effluent. For specific detection of methanogens, 16S rRNA-cloning analysis was conducted followed by restriction fragment length polymorphism (RFLP) for presumptive identification of methanogens. To cover the drawbacks of the PCR-cloning study, the organization of the microorganisms was visualized in the activated sludge sample by using fluorescent oligonucleotide probes specific to several different methanogens, and a probe for bacteria. In situ hybridization with methanogens and bacterial probes and denatured gradient gel electrophoresis within activated sludge clearly confirmed the presence of Methanosaeta sp. and Methanosarcina sp. cells. Methanosaeta concilii was found to be the dominant species in the bioreactor. These results revealed the presence of possibly new strain of Methanosaeta in the bioreactor for treating palm oil mill effluent called Methanosaeta concilii SamaliEB (Gene bank accession number: EU580025). In addition, fluorescent hybridization pictured the close association between the methanogens and bacteria and that the number of methanogens was greater than the number of bacteria.


Assuntos
Óleo de Palmeira/análise , Clonagem Molecular , Digestão Anaeróbia/análise , Genes de RNAr , Methanosarcina/isolamento & purificação , Methanosarcinales/isolamento & purificação , Óleo de Palmeira , Tanques Imhoff/análise , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...