Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1392564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983116

RESUMO

Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.


Assuntos
Aneuploidia , Antifúngicos , Calcineurina , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Proteínas de Choque Térmico HSP90 , Miconazol , Testes de Sensibilidade Microbiana , Miconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Calcineurina/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Tolerância a Medicamentos
2.
Sci Rep ; 14(1): 14726, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926524

RESUMO

Zoonotic yeast species have been implicated in disease development in both humans and cats. This study analyzed the yeast mycobiota present in feline facial hair and human nails and explored potential interspecies associations. A total of 118 biological specimens were examined, including 59 feline facial hair and 59 human nail samples. DNA extraction and DNA sequencing were performed to identify the specific yeast species. The most predominant yeast species in humans and cats were selected for antifungal susceptibility testing (itraconazole, ketoconazole, miconazole, and terbinafine). The findings unveiled diverse yeast species in cats and humans. Malassezia pachydermatis (45.8%) and Malassezia furfur (30.5%) were the most common yeast species in cats and humans, respectively. However, no significant correlation was detected between the yeast species identified in cats and their owners residing in the same household (p > 0.05). Miconazole exhibited the highest minimum inhibitory concentrations (MICs) against Malassezia pachydermatis and Malassezia furfur in both cat and human isolates, whereas terbinafine showed the lowest MICs against most Malassezia pachydermatis and Malassezia furfur in both cat and human isolates. Diverse yeast species in cat facial hair and human nails suggest possible cross-contamination among humans, pets, and environments.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Unhas , Gatos , Humanos , Antifúngicos/farmacologia , Animais , Unhas/microbiologia , Malassezia/efeitos dos fármacos , Malassezia/genética , Malassezia/isolamento & purificação , Cabelo/microbiologia , Leveduras/efeitos dos fármacos , Leveduras/isolamento & purificação , Leveduras/genética , Terbinafina/farmacologia , Miconazol/farmacologia , Masculino , Pelo Animal/microbiologia , Feminino
3.
J Antibiot (Tokyo) ; 77(7): 454-465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724627

RESUMO

Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.


Assuntos
Antibacterianos , Biofilmes , Miconazol , Fenotiazinas , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/genética , Percepção de Quorum/efeitos dos fármacos , Miconazol/farmacologia , Fenotiazinas/farmacologia , Biofilmes/efeitos dos fármacos , Virulência/efeitos dos fármacos , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Piocianina/biossíntese , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Camundongos , Simulação de Acoplamento Molecular , Glicolipídeos
4.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791121

RESUMO

Melanoma, arguably the deadliest form of skin cancer, is responsible for the majority of skin-cancer-related fatalities. Innovative strategies concentrate on new therapies that avoid the undesirable effects of pharmacological or medical treatment. This article discusses the chemical structures of [(MTZ)2AgNO3], [(MTZ)2Ag]2SO4, [Ag(MCZ)2NO3], [Ag(MCZ)2BF4], [Ag(MCZ)2SbF6] and [Ag(MCZ)2ClO4] (MTZ-metronidazole; MCZ-miconazole) silver(I) compounds and the possible relationship between the molecules and their cytostatic activity against melanoma cells. Molecular Hirshfeld surface analysis and computational methods were used to examine the possible association between the structure and anticancer activity of the silver(I) complexes and compare the cytotoxicity of the silver(I) complexes of metronidazole and miconazole with that of silver(I) nitrate, cisplatin, metronidazole and miconazole complexes against A375 and BJ cells. Additionally, these preliminary biological studies found the greatest IC50 values against the A375 line were demonstrated by [Ag(MCZ)2NO3] and [(MTZ)2AgNO3]. The compound [(MTZ)2AgNO3] was three-fold more toxic to the A375 cells than the reference (cisplatin) and 15 times more cytotoxic against the A375 cells than the normal BJ cells. Complexes of metronidazole with Ag(I) are considered biocompatible at a concentration below 50 µmol/L.


Assuntos
Antineoplásicos , Complexos de Coordenação , Melanoma , Metronidazol , Miconazol , Prata , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Miconazol/farmacologia , Miconazol/química , Prata/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Metronidazol/química , Metronidazol/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
5.
Eur J Pharm Sci ; 197: 106773, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641124

RESUMO

Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.


Assuntos
Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Cinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Miconazol/farmacologia , Enzimas Imobilizadas/metabolismo , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Sulfafenazol/farmacologia , Microfluídica/métodos
6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612401

RESUMO

Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Miconazol/farmacologia , Clotrimazol , Espécies Reativas de Oxigênio , Mitocôndrias , Carnitina/farmacologia , Trifosfato de Adenosina
7.
BMC Oral Health ; 24(1): 196, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321454

RESUMO

BACKGROUND: Oral thrush is the most common occurring fungal infection in the oral cavity in uncontrolled diabetic patients, it is treated by various antifungal drugs according to each case. This study aimed to evaluate the therapeutic effects of topical application of miconazole and miconazole-loaded chitosan nanoparticles in treatment of diabetic patients with oral candidiasis. METHODS: In this randomized controlled clinical trial. A total of 80 diabetic patients presenting with symptomatic oral candidiasis were randomly assigned into two treatment groups: miconazole and miconazole-loaded chitosan nanoparticles. The patients were treated for 28 days, and clinical assessments were conducted at baseline, 7, 14, 21 and 28 days. Clinical parameters, including signs and symptoms of oral candidiasis were evaluated and microbiological analysis was performed to determine the Candida species and assess their susceptibility to the antifungal agents. Statistical analysis was done to the categorical and numerical data using chi-square test and Kruskal Wallis test. RESULTS: The antifungal efficacy between the miconazole and miconazole-loaded chitosan nanoparticles (CS-MCZ) groups insignificant difference (P >  0.05) was observed. Both treatment modalities exhibited comparable effectiveness in controlling oral candidiasis symptoms and reducing Candida colonization as miconazole-loaded chitosan nanoparticles group showed a significant difference in the clinical improvement in respect of both signs and symptoms from baseline (70%) until the end of study at 28 days (5%) (P <  0.05) Moreover, miconazole-loaded chitosan nanoparticles, there was a significant reduction in the number of colonies forming units of Candida albicans from baseline until the end of the study at 28-day with P value <  0.000. CONCLUSIONS: This randomized controlled clinical trial and microbiological analysis demonstrate that both miconazole and miconazole-loaded chitosan nanoparticles are effective in the treatment of oral candidiasis in diabetic patients with no adverse reactions. TRIAL REGISTRATION: NCT06072716 with first registration first registration in 10/10/2023.


Assuntos
Candidíase Bucal , Quitosana , Diabetes Mellitus , Nanopartículas , Humanos , Miconazol/farmacologia , Miconazol/uso terapêutico , Antifúngicos/farmacologia , Candidíase Bucal/tratamento farmacológico , Candida , Géis/uso terapêutico
8.
World J Microbiol Biotechnol ; 39(10): 273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553519

RESUMO

Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Camundongos , Mycobacterium abscessus/genética , Miconazol/farmacologia , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Reposicionamento de Medicamentos , Estudos Prospectivos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
Microb Pathog ; 184: 106312, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652266

RESUMO

People with immune deficiency are at risk of developing infections caused by several bacterial and fungal species. In this work, chitosan-coated miconazole was developed by a simple sol-gel method. Miconazole is considered an effective drug to treat vaginal infection-causing bacteria and fungi. The coating of chitosan with miconazole nitrate showed the highest drug loading efficiency (62.43%) and mean particle size (2 µm). FTIR spectroscopic analysis confirmed the entrapment of miconazole nitrate into chitosan polymer. The antifungal result demonstrated that MN@CS microgel possessed notable anti-Aspergillus fumigatus and Candida albicans activity in lower doses. Antibacterial activity results revealed excellent bacterial growth inhibition of MN@CS microgel towards human skin infectious pathogens Escherichia coli and Staphylococcus aureus. The biocompatibility studies of In vitro cell viability and Artemia salina lethality assay suggested that MN@CS microgel is more biosafe and suitable for human external applications. In the future, it will be an efficient anti-inflammatory agent for the treatment of vaginal infections.


Assuntos
Candidíase Vulvovaginal , Quitosana , Microgéis , Feminino , Humanos , Miconazol/farmacologia , Miconazol/química , Miconazol/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Quitosana/química , Microgéis/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/química , Candida albicans , Complicações Pós-Operatórias
10.
Pol J Vet Sci ; 26(2): 257-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389413

RESUMO

Yeast infections such as otitis externa and seborrheic dermatitis in dogs and cats are frequently associated with Malassezia pachydermatis secondary infection. It is part of the normal cutaneous microflora of most warm-blooded vertebrates, however, under certain conditions, it can become a causative agent of infection that needs to be treated pharmacologically. Azole derivatives are the drugs of the first choice. An interesting trend in developing resistance is the use of natural substances, which include manuka honey with confirmed antimicrobial properties. The main intention of this research was to evaluate the mutual effect of manuka honey in combination with four conventional azole antifungals - clotrimazole, fluconazole, itraconazole, and miconazole - on 14 Malassezia pachydermatis isolates obtained from dogs and 1 reference strain. A slightly modified M27-A3 method (CLSI 2008) and the checkerboard test (Nikolic et al. 2017) were used for this purpose. Our results show an additive effect of all 4 antifungals with manuka honey concurrent use. Based on the determined values of fractional inhibitory concentration index (FICI - 0.74±0.03 when manuka honey combined with clotrimazole, 0.96±0.08 with fluconazole, 1.0±0 with miconazole and 1.16±0.26 with itraconazole), it was found in all cases that the effect of substances used is more pronounced in mutual combination than when used separately.


Assuntos
Doenças do Gato , Doenças do Cão , Mel , Animais , Gatos , Cães , Antifúngicos/farmacologia , Fluconazol , Itraconazol , Miconazol/farmacologia , Clotrimazol/farmacologia , Azóis
11.
Folia Microbiol (Praha) ; 68(6): 835-842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37145224

RESUMO

The rising number of invasive fungal infections caused by drug-resistant Candida strains is one of the greatest challenges for the development of novel antifungal strategies. The scarcity of available antifungals has drawn attention to the potential of natural products as antifungals and in combinational therapies. One of these is catechins-polyphenolic compounds-flavanols, found in a variety of plants. In this work, we evaluated the changes in the susceptibility of Candida glabrata strain characterized at the laboratory level and clinical isolates using the combination of catechin and antifungal azoles. Catechin alone had no antifungal activity within the concentration range tested. Its use in combination with miconazole resulted in complete inhibition of growth in the sensitive C. glabrata isolate and a significant growth reduction in the azole resistant C. glabrata clinical isolate. Simultaneous use of catechin and miconazole leads to increased intracellular ROS generation. The enhanced susceptibility of C. glabrata clinical isolates to miconazole by catechin was accompanied with the intracellular accumulation of ROS and changes in the plasma membrane permeability, as measured using fluorescence anisotropy, affecting the function of plasma membrane proteins.


Assuntos
Antifúngicos , Catequina , Antifúngicos/farmacologia , Miconazol/farmacologia , Candida glabrata , Catequina/farmacologia , Espécies Reativas de Oxigênio , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica , Azóis/farmacologia
12.
Eur J Med Chem ; 256: 115436, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146343

RESUMO

This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.


Assuntos
Antifúngicos , Cryptococcus gattii , Antifúngicos/farmacologia , Antifúngicos/química , Azóis/farmacologia , Azóis/química , Miconazol/farmacologia , Candida , Fluconazol , Eugenol/farmacologia , Eugenol/química , Testes de Sensibilidade Microbiana , Candida albicans , Imidazóis/farmacologia , Ergosterol
13.
Sci Rep ; 12(1): 21395, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496441

RESUMO

A green and simple method was proposed for the synthesis of silver nanoparticles (Ag-NPs) using Piper cubeba seed extract as a reducing agent for the first time. The prepared Ag-NPs were characterized using different spectroscopic and microscopic techniques. The obtained Ag-NPs showed an emission band at 320 nm when excited at 280 nm and exhibited strong green fluorescence under UV-light. The produced Ag-NPs were used as fluorescent nanosensors for the spectrofluorimetric determination of ornidazole (ONZ) and miconazole nitrate (MIZ) based on their quantitative quenching of Ag-NPs native fluorescence. The current study introduces the first spectrofluorimetric method for the determination of the studied drugs using Ag-NPs without the need for any pre-derivatization steps. Since the studied drugs don't exhibit native fluorescent properties, the importance of the proposed study is magnified. The proposed method displayed a linear relationship between the fluorescence quenching and the concentrations of the studied drugs over the range of 5.0-80.0 µM and 20.0-100.0 µM with limits of detection (LOD) of 0.35 µM and 1.43 µM for ONZ and MIZ, respectively. The proposed method was applied for the determination of ONZ and MIZ in different dosage forms and human plasma samples with high % recoveries and low % RSD values. The developed method was validated according to ICH guidelines. Moreover, the synthesized Ag-NPs demonstrated significant antimicrobial activities against three different bacterial strains and one candida species. Therefore, the proposed method may hold potential applications in the antimicrobial therapy and related mechanism research.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ornidazol , Humanos , Prata/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Miconazol/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química
14.
Int J Neuropsychopharmacol ; 25(11): 951-967, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36112386

RESUMO

BACKGROUND: Cooperative defect is 1 of the earliest manifestations of disease patients with Alzheimer disease (AD) exhibit, but the underlying mechanism remains unclear. METHODS: We evaluated the cooperative function of APP/PS1 transgenic AD model mice at ages 2, 5, and 8 months by using a cooperative drinking task. We examined neuropathologic changes in the medial prefrontal cortex (mPFC). Another experiment was designed to observe whether miconazole, which has a repairing effect on myelin sheath, could promote the cooperative ability of APP/PS1 mice in the early AD-like stage. We also investigated the protective effects of miconazole on cultured mouse cortical oligodendrocytes exposed to human amyloid ß peptide (Aß1-42). RESULTS: We observed an age-dependent impairment of cooperative water drinking behavior in APP/PS1 mice. The AD mice with cooperative dysfunction showed decreases in myelin sheath thickness, oligodendrocyte nuclear heterochromatin percentage, and myelin basic protein expression levels in the mPFC. The cooperative ability was significantly improved in APP/PS1 mice treated with miconazole. Miconazole treatment increased oligodendrocyte maturation and myelin sheath thickness without reducing Aß plaque deposition, reactive gliosis, and inflammatory factor levels in the mPFC. Miconazole also protected cultured oligodendrocytes from the toxicity of Aß1-42. CONCLUSIONS: These results demonstrate that mPFC hypomyelination is involved in the cooperative deficits of APP/PS1 mice. Improving myelination through miconazole therapy may offer a potential therapeutic approach for early intervention in AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Miconazol/farmacologia , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo
15.
J Dent ; 125: 104246, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914573

RESUMO

OBJECTIVE: This study assessed the effects of chitosan (CS) on microcosm biofilms derived from saliva of patients with Candida-associated denture stomatitis. METHODS: Five removable denture wearers with denture stomatitis were included in the study. The minimum inhibitory concentration (MIC) of CS against clinical isolates of Candida albicans was determined according to the broth microdilution method. Pooled saliva from the donors was used as an inoculum for the formation of biofilms, which were developed during 72 h on acrylic surfaces in the Amsterdam Active Attachment model. The biofilms were then treated with different concentrations of CS, and the antibiofilm effects were evaluated through the quantification of colony-forming units (CFUs), total biomass (TB), metabolic activity (MA), lactic acid production (LAP), and cell viability (by confocal laser scanning microscopy). Chlorhexidine, miconazole, and nystatin were tested as positive controls, while the negative control (NC) was the untreated biofilm. Data were analyzed by 1-way ANOVA and Fischer LSD's post hoc test (α=0.05). RESULTS: MIC values of CS ranged from 500 to 800 µg/mL. For CFUs, 2500 µg/mL CS was the most effective treatment in reducing total anaerobes, mutans streptococci, and Lactobacillus spp., significantly differing from the controls. For C. albicans CFUs, CS and positive controls did not differ from each other but led to significant reductions compared to NC. Regarding TB, MA, LAP, and cell viability, 2500 µg/mL CS promoted the greatest reductions compared to NC. CONCLUSION: CS has similar or superior effects to conventional active principles on important parameters of oral candidiasis microcosm biofilms. CLINICAL RELEVANCE: The antibiofilm effects of CS show that this compound has great potential to improve the clinical condition of denture stomatitis patients, and formulations containing this natural polymer could be useful for controlling oral candidiasis.


Assuntos
Candidíase Bucal , Quitosana , Estomatite sob Prótese , Humanos , Resinas Acrílicas/farmacologia , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Candidíase Bucal/tratamento farmacológico , Quitosana/farmacologia , Clorexidina/farmacologia , Ácido Láctico/farmacologia , Miconazol/farmacologia , Nistatina/farmacologia , Estomatite sob Prótese/tratamento farmacológico
16.
Zhonghua Fu Chan Ke Za Zhi ; 57(8): 601-607, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36008287

RESUMO

Objective: To test the antibiotic susceptibility of vulvovaginal candidiasis pathogenic strains to 5 antifungal drugs commonly used in clinic. Methods: A total of 1 200 vulvovaginal candida patients from 23 gynecological and family planning outpatient departments in China were enrolled. Their vaginal secretions were collected for candida strain isolation and species identification. According to Clinical and Laboratory Standards Institute (CLSI) M27-S3, the sensitivity of 1 200 strains to clotrimazole, fluconazole, miconazole, itraconazole and nystatin was tested. Results: (1) The sensitivity and resistance of 1 200 vulvovaginal candidiasis pathogens to 5 antifungal drugs were statistically different (χ2=3 513.201, P<0.01). (2) All strains had higher sensitivity to nystatin [99.92% (1 199/1 200)], followed by miconazole [92.25% (1 107/1 200)] and clotrimazole [87.17% (1 046/1 200)]. All strains had higher resistance to fluconazole [69.17% (830/1 200)], while itraconazole was 50.83% (610/1 200). (3) There was no significant difference between candida albicans and non-candida albicans in drug sensitivity to nystatin (P=0.315) and miconazole (P=0.425). (4) Candida albicans and non-candida albicans showed different sensitivity to clotrimazole, fluconazole and itraconazole, respectively. Compared with non-candida albicans, candida albicans showed higher sensitivity to clotrimazole [susceptibility rate: 73.01% (165/226) vs 90.45% (881/974); P<0.001] and higher resistance to fluconazole [resistance rate: 50.88% (115/226) vs 73.41% (715/974); P<0.001]. Although the drug sensitivity of itraconazole was not high, the susceptibility rate of candida albicans to itraconazole was slightly higher than that of non-candida albicans [37.68% (367/974) vs 23.89% (54/226)], and the drug resistance rate was lower [49.28% (480/974) vs 57.52% (130/226)]. Conclusions: The sensitivity of 1 200 strains of candida to 5 antifungal drugs is significantly different, the sensitivity rate of nystatin, miconazole and clotrimazole are higher, but the resistance rate of fluconazole and itraconazole are higher. The sensitivity of candida albicans and non-candida albicans to the same drug is also significantly different. It is suggested that in clinical diagnosis and treatment, we should pay attention to the identification of candida and drug sensitivity test, so as to select antifungal drugs rationally.


Assuntos
Candidíase Vulvovaginal , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida albicans , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , China/epidemiologia , Clotrimazol/farmacologia , Clotrimazol/uso terapêutico , Farmacorresistência Fúngica , Feminino , Fluconazol/farmacologia , Humanos , Itraconazol/farmacologia , Miconazol/farmacologia , Miconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Nistatina/farmacologia , Nistatina/uso terapêutico
17.
Mycoses ; 65(11): 981-988, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35689417

RESUMO

The treatment of invasive aspergillosis caused by cryptic species remains a challenge due to the lack of randomised clinical trials and investigation of the efficacy and safety of different therapeutic strategies. We aimed to evaluate the in vitro activity of 23 conventional and new antifungal drugs against 54 clinical and environmental Aspergillus oryzae isolates by using the Clinical and Laboratory Standards Institute (CLSI) standard M38-A3. The lowest geometric mean MIC values were found for luliconazole and lanoconazole (0.001 µg/ml), followed by anidulafungin (0.104 µg/ml), posaconazole (0.15 µg/ml), itraconazole (0.37 µg/ml), efinaconazole (0.5 µg/ml), voriconazole (0.51 µg/ml), tavaborole (0.72 µg/ml), and amphotericin B (0.79 µg/ml). In contrast, ketoconazole, terbinafine, econazole, tioconazole, ravuconazole, miconazole, nystatin, clotrimazole, griseofulvin, sertaconazole, natamycin, tolnaftate, and fluconazole had no or low activity. Further studies are required to determine how well this in vitro activity translates into in vivo efficacy.


Assuntos
Antifúngicos , Aspergillus oryzae , Anfotericina B , Anidulafungina , Antifúngicos/farmacologia , Clotrimazol , Econazol , Fluconazol , Griseofulvina , Humanos , Itraconazol , Cetoconazol , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Natamicina , Nistatina , Terbinafina , Tolnaftato , Voriconazol/farmacologia
18.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628239

RESUMO

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Assuntos
Cetoconazol , Miconazol , Animais , Apoptose , Glutationa/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Cetoconazol/farmacologia , Masculino , Mamíferos/metabolismo , Camundongos , Miconazol/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
19.
Microb Drug Resist ; 28(4): 468-483, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35451882

RESUMO

Background: Candida albicans catheter-related infection (CRI) is a great challenge in clinic now, mainly due to the difficulty in eradicating the biofilms. Purpose: In this study, the mechanism of the antibiofilm effect of myricetin (MY) on C. albicans was illustrated. A film forming system (FFS) containing MY and miconazole nitrate (MN) was developed, optimized, and evaluated. The anti-infection effect of MY+MN@FFS against C. albicans CRI was investigated in vivo. Study Design and Methods: To clarify the mechanism of the action of MY, the influence of MY on each key process of the formation of C. albicans biofilms was evaluated. To deliver MY and MN into the skin and form a drug reservoir on the surface of the skin, the FFS was used as a carrier and MY+MN@FFS was developed, optimized, and evaluated. After preliminary confirmation of drug safety, a percutaneously inserted C. albicans CRI mouse model was established to investigate the in vivo anti-infection effect of MY+MN@FFS by fluorescence microscopy and scanning electron microscopy on the outer surface of the catheters, hematoxylin/eosin staining, and periodic acid-Schiff staining of the mice skin tissues. Results: MY was found to inhibit the morphological transition of C. albicans and the secretion of exopolysaccharides, resulting in a reduction in biofilms. MY+MN@FFS exhibited excellent properties and no irritation to mice skin. In an in vivo anti-infection study, MY+MN@FFS exhibited an excellent preventive effect against percutaneously inserted C. albicans CRI. Conclusion: MY+MN@FFS might be a potential approach for effectively preventing percutaneously inserted C. albicans CRI in clinic.


Assuntos
Anti-Infecciosos , Infecções Relacionadas a Cateter , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Candida albicans , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Flavonoides , Camundongos , Miconazol/farmacologia
20.
Braz J Microbiol ; 53(3): 1231-1240, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386096

RESUMO

OBJECTIVE: This study investigated the antifungal and antibiofilm activity of Cymbopogon nardus essential oil (EO) and its major compound, citronellal, in association with miconazole and chlorhexidine on clinical strains of Candida albicans. The likely mechanism(s) of action of C. nardus EO and citronellal was further determined. MATERIALS AND METHODS: The EO was chemically characterized by gas chromatography coupled with mass spectrometry (GC-MS). The antifungal activity (MIC/MFC) and antibiofilm effects of C. nardus EO and citronellal were determined by the microdilution method, and their likely mechanism(s) of action was determined by the sorbitol and ergosterol assays. Then, the samples were tested for a potential association with standard drugs through the checkerboard technique. Miconazole and chlorhexidine were used as positive controls and the assays were performed in triplicate. RESULTS: The GC-MS analysis tentatively identified citronellal as the major compound in C. nardus EO. Both samples showed antifungal activity, with MIC of 256 µg/mL, as compared to 128 µg/mL and 8 µg/mL of miconazole and chlorhexidine, respectively. C. nardus EO and citronellal effectively inhibited biofilm formation (p < 0.05) and disrupted preformed biofilms (p < 0.0001). They most likely interact with the cell membrane, but not the cell wall, and did not present any synergistic activity when associated with standard drugs. CONCLUSION: C. nardus EO and citronellal showed strong in vitro antifungal and antibiofilm activity on C. albicans. CLINICAL RELEVANCE: Natural products have been historically bioprospected for novel solutions to control fungal biofilms. Our data provide relevant insights into the potential of C. nardus EO and citronellal for further clinical testing. However, additional bioavailability and toxicity studies must be carried out before these products can be used for the chemical control of oral biofilms.


Assuntos
Cymbopogon , Óleos Voláteis , Monoterpenos Acíclicos , Aldeídos , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Clorexidina/farmacologia , Cymbopogon/química , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...