Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 90-100, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34890039

RESUMO

OBJECTIVE: The aim of the study was to show the effect that two naturally occurring compounds, a cyclodextrin and hydroxytyrosol, can have on the entry of SARS-CoV-2 into human cells. MATERIALS AND METHODS: The PubMed database was searched to retrieve studies published from 2000 to 2020, satisfying the inclusion criteria. The search keywords were: SARS-CoV, SARS-CoV-2, coronavirus, lipid raft, endocytosis, hydroxytyrosol, cyclodextrin. Modeling of alpha-cyclodextrin and hydroxytyrosol were done using UCSF Chimera 1.14. RESULTS: The search results indicated that cyclodextrins can reduce the efficiency of viral endocytosis and that hydroxytyrosol has antiviral properties. Bioinformatic docking studies showed that alpha-cyclodextrin and hydroxytyrosol, alone or in combination, interact with the viral spike protein and its host cell receptor ACE2, thereby potentially influencing the endocytosis process. CONCLUSIONS: Hydroxytyrosol and alpha-cyclodextrin can be useful against the spread of SARS-CoV-2.


Assuntos
Álcool Feniletílico/análogos & derivados , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , alfa-Ciclodextrinas/farmacologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Biologia Computacional/métodos , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Simulação de Acoplamento Molecular , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/metabolismo , alfa-Ciclodextrinas/uso terapêutico
2.
Oxid Med Cell Longev ; 2020: 8893305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274010

RESUMO

As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC.


Assuntos
Hidroxicolesteróis/metabolismo , Metabolismo dos Lipídeos , Viroses/metabolismo , Animais , Sobrevivência Celular , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Microdomínios da Membrana/patologia , Microdomínios da Membrana/virologia , Viroses/patologia
3.
Front Immunol ; 11: 574508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133090

RESUMO

COVID-19 is a global pandemic currently in an acute phase of rapid expansion. While public health measures remain the most effective protection strategy at this stage, when the peak passes, it will leave in its wake important health problems. Historically, very few viruses have ever been eradicated. Instead, the virus may persist in communities causing recurrent local outbreaks of the acute infection as well as several chronic diseases that may arise from the presence of a "suppressed" virus or as a consequence of the initial exposure. An ideal solution would be an anti-viral medication that (i) targets multiple stages of the viral lifecycle, (ii) is insensitive to frequent changes of viral phenotype due to mutagenesis, (iii) has broad spectrum, (iv) is safe and (v) also targets co-morbidities of the infection. In this Perspective we discuss a therapeutic approach that owns these attributes, namely "lipid raft therapy." Lipid raft therapy is an approach aimed at reducing the abundance and structural modifications of host lipid rafts or at targeted delivery of therapeutics to the rafts. Lipid rafts are the sites of the initial binding, activation, internalization and cell-to-cell transmission of SARS-CoV-2. They also are key regulators of immune and inflammatory responses, dysregulation of which is characteristic to COVID-19 infection. Lipid raft therapy was successful in targeting many viral infections and inflammatory disorders, and can potentially be highly effective for treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Microdomínios da Membrana/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Animais , COVID-19 , Comorbidade , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Sistemas de Liberação de Medicamentos , Humanos , Microdomínios da Membrana/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Tratamento Farmacológico da COVID-19
4.
Acta Virol ; 64(4): 433-450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112641

RESUMO

The mechanisms of rotavirus entry into the target cell are described as a multi-step event in which the virions are bound to sialic acid (SA), followed by interaction with heat shock cognate protein 70 (Hsc70), some integrins and protein disulfide isomerase (PDI). However, the cell surface receptor molecules facilitating the entry of tumor cell-adapted rotavirus are not completely characterized. Using infection blocking assays with antibodies to some heat shock proteins (HSPs) and also some inhibitors of these cellular proteins, we were able to identify the cell surface Hsp90, Hsp70, Hsc70, Hsp60, Hsp40, PDI and integrin ß3 as receptors of tumor cell-adapted rotavirus in Reh cells. Furthermore, the results also indicated that these rotavirus receptors are associated with lipid microdomains (rafts). Our findings provide evidence that rotavirus tropism for these human acute lymphocytic leukemia cells is explained by the relatively high expression of some HSPs in rafts. The results shown here encourage further research aim at evaluating the potential use of rotaviruses as an oncolytic agent for the treatment of some cancers. Keywords: heat shock proteins; rotavirus; cell receptor; cancer; oncolytic virus.


Assuntos
Proteínas de Choque Térmico/genética , Receptores Virais/genética , Infecções por Rotavirus , Rotavirus/fisiologia , Internalização do Vírus , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Microdomínios da Membrana/virologia , Rotavirus/patogenicidade , Tropismo Viral
5.
Mem Inst Oswaldo Cruz ; 115: e190398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187326

RESUMO

BACKGROUND: Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES: This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS: The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-ß-cyclodextrin (MßCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS: In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS: The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Assuntos
Células Endoteliais/virologia , Lipídeos de Membrana , Microdomínios da Membrana/virologia , Streptococcus agalactiae/patogenicidade , Virulência , Humanos , Recém-Nascido , Streptococcus agalactiae/genética
6.
Antiviral Res ; 176: 104752, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101770

RESUMO

Enterovirus D68 (EV-D68) is a member of the Picornavirus family and a causative agent of respiratory diseases in children. The incidence of EV-D68 infection has increased worldwide in recent years. Thus far, there are no approved antiviral agents or vaccines for EV-D68. Here, we show that methyl-ß-cyclodextrin (MßCD), a common drug that disrupts lipid rafts, specifically inhibits EV-D68 infection without producing significant cytotoxicity at virucidal concentrations. The addition of exogenous cholesterol attenuated the anti-EV-D68 activity of MßCD. MßCD treatment had a weak influence on the attachment of viral particles to the cell membrane but significantly inhibited EV-D68 entry into host cells. We demonstrated that EV-D68 facilitated the translocation of the viral receptor ICAM-5 to membrane rafts in infected cells. The colocalization of viral particles with ICAM-5 in lipid rafts was thoroughly abolished in cells after treatment with MßCD. Finally, we showed that MßCD inhibited the replication of isolated circulating EV-D68 strains. In summary, our results demonstrate that MßCD suppresses EV-D68 replication by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts. This mechanism represents a promising strategy for drug development.


Assuntos
Antivirais/farmacologia , Moléculas de Adesão Celular/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/virologia , Proteínas do Tecido Nervoso/metabolismo , Internalização do Vírus/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Células A549 , Colesterol/farmacologia , Enterovirus Humano D/efeitos dos fármacos , Enterovirus Humano D/fisiologia , Células HeLa , Humanos , Replicação Viral/efeitos dos fármacos
7.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666384

RESUMO

To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.


Assuntos
Bacteriocinas/farmacologia , Microdomínios da Membrana/metabolismo , Viroses/metabolismo , Vírus/metabolismo , Aedes , Animais , Linhagem Celular , Microdomínios da Membrana/virologia , Fosfatidiletanolaminas/metabolismo , Viroses/tratamento farmacológico
8.
Mem. Inst. Oswaldo Cruz ; 115: e190398, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1091238

RESUMO

BACKGROUND Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-β-cyclodextrin (MβCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Assuntos
Humanos , Recém-Nascido , Streptococcus agalactiae/patogenicidade , Virulência , Microdomínios da Membrana/virologia , Células Endoteliais/virologia , Lipídeos de Membrana , Streptococcus agalactiae/genética
9.
PLoS Pathog ; 15(7): e1007907, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344124

RESUMO

HIV infection has a profound effect on "bystander" cells causing metabolic co-morbidities. This may be mediated by exosomes secreted by HIV-infected cells and containing viral factors. Here we show that exosomes containing HIV-1 protein Nef (exNef) are rapidly taken up by macrophages releasing Nef into the cell interior. This caused down-regulation of ABCA1, reduction of cholesterol efflux and sharp elevation of the abundance of lipid rafts through reduced activation of small GTPase Cdc42 and decreased actin polymerization. Changes in rafts led to re-localization of TLR4 and TREM-1 to rafts, phosphorylation of ERK1/2, activation of NLRP3 inflammasome, and increased secretion of pro-inflammatory cytokines. The effects of exNef on lipid rafts and on inflammation were reversed by overexpression of a constitutively active mutant of Cdc42. Similar effects were observed in macrophages treated with exosomes produced by HIV-infected cells or isolated from plasma of HIV-infected subjects, but not with exosomes from cells and subjects infected with ΔNef-HIV or uninfected subjects. Mice injected with exNef exhibited monocytosis, reduced ABCA1 in macrophages, increased raft abundance in monocytes and augmented inflammation. Thus, Nef-containing exosomes potentiated pro-inflammatory response by inducing changes in cholesterol metabolism and reorganizing lipid rafts. These mechanisms may contribute to HIV-associated metabolic co-morbidities.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Efeito Espectador , Colesterol/metabolismo , Exossomos/metabolismo , Exossomos/virologia , Células HEK293 , HIV-1 , Humanos , Inflamação/metabolismo , Inflamação/virologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
10.
Cancer Lett ; 460: 108-118, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31226409

RESUMO

Live-attenuated strain of measles virus (MV) has oncolytic effect. In this study, the antitumor effect of rMV-Hu191, a recombinant Chinese Hu191 MV generated in our laboratory by efficient reverse genetics system, was evaluated in gastric cancer (GC). From our data, rMV-Hu191 induced cytopathic effects and inhibited tumor proliferation both in vitro and in vivo by inducing caspase-dependent apoptosis. In mice bearing GC xenografts, tumor size was reduced and survival was prolonged significantly after intratumoral injections of rMV-Hu191. Furthermore, lipid rafts, a type of membrane microdomain with specific lipid compositions, played an important role in facilitating entry of rMV-Hu191. Integrity of lipid rafts was required for successful viral infection as well as subsequent cell apoptosis, but was not required for viral binding and replication. CD46, a MV membrane receptor, was found to be partially localized in lipid rafts microdomains. This is the first study to demonstrate that Chinese Hu191 MV vaccine strain could be used as a potentially effective therapeutic agent in GC treatment. As part of the underlying cellular mechanism, the integrity of lipid rafts is required for viral entry and to exercise the oncolytic effect.


Assuntos
Apoptose , Vírus do Sarampo/patogenicidade , Microdomínios da Membrana/virologia , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Neoplasias Gástricas/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Efeito Citopatogênico Viral , Humanos , Masculino , Vírus do Sarampo/genética , Proteína Cofatora de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos Nus , Vírus Oncolíticos/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Carga Tumoral , Células Vero , Internalização do Vírus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...