Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 244: 111385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062177

RESUMO

The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.


Assuntos
Culicidae/parasitologia , Gametogênese , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Eritrócitos/parasitologia , Feminino , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita/genética , Humanos , Malária Falciparum/transmissão , Masculino , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Reprodução Assexuada
2.
PLoS Negl Trop Dis ; 14(7): e0008396, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32722702

RESUMO

The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite.


Assuntos
Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Microtúbulos/parasitologia , Animais , Endossomos/metabolismo , Humanos , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Visceral/metabolismo , Camundongos , Microtúbulos/metabolismo , Fagossomos/metabolismo , Células RAW 264.7
3.
J Biol Chem ; 295(3): 729-742, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31819011

RESUMO

The basal body in the human parasite Trypanosoma brucei is structurally equivalent to the centriole in animals and functions in the nucleation of axonemal microtubules in the flagellum. T. brucei lacks many evolutionarily conserved centriolar protein homologs and constructs the basal body through unknown mechanisms. Two evolutionarily conserved centriole/basal body cartwheel proteins, TbSAS-6 and TbBLD10, and a trypanosome-specific protein, BBP65, play essential roles in basal body biogenesis in T. brucei, but how they cooperate in the regulation of basal body assembly remains elusive. Here using RNAi, endogenous epitope tagging, immunofluorescence microscopy, and 3D-structured illumination super-resolution microscopy, we identified a new trypanosome-specific protein named BBP164 and found that it has an essential role in basal body biogenesis in T. brucei Further investigation of the functional interplay among BBP164 and the other three regulators of basal body assembly revealed that BBP164 and BBP65 are interdependent for maintaining their stability and depend on TbSAS-6 and TbBLD10 for their stabilization in the basal body. Additionally, TbSAS-6 and TbBLD10 are independent from each other and from BBP164 and BBP65 for maintaining their stability in the basal body. These findings demonstrate that basal body cartwheel proteins are required for stabilizing other basal body components and uncover that regulation of protein stability is an unusual control mechanism for assembly of the basal body in T. brucei.


Assuntos
Corpos Basais/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Animais , Axonema/química , Axonema/genética , Axonema/metabolismo , Corpos Basais/química , Corpos Basais/parasitologia , Centríolos/química , Centríolos/genética , Centríolos/parasitologia , Flagelos/química , Flagelos/genética , Flagelos/parasitologia , Humanos , Microtúbulos/química , Microtúbulos/parasitologia , Estabilidade Proteica , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidade
4.
Methods Mol Biol ; 1370: 137-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659960

RESUMO

Mitosis which is a major step during plant development can also be observed in physiopathological conditions. During the compatible interaction between the root-knot nematode Meloidogyne incognita and its host Arabidopsis, the pathogen induce through repeated divisions without complete cytokinesis the formation of hypertrophied and multinucleate feeding cells, named giant cells. Due to the presence of hypertrophied plant cell material surrounding the giant cells, classical live cell imaging gave therefore very poor resolution. Here, we describe a protocol which allows the in vivo observation of the mitotic apparatus in developing giant cells using confocal imaging of vibrosliced tissues. This approach can also be used to visualize in vivo other cellular processes occurring in different steps of giant cells.


Assuntos
Arabidopsis/parasitologia , Arabidopsis/ultraestrutura , Células Gigantes/ultraestrutura , Interações Hospedeiro-Parasita , Microscopia Confocal/métodos , Microtúbulos/ultraestrutura , Tylenchoidea/fisiologia , Animais , Arabidopsis/citologia , Células Gigantes/parasitologia , Microtúbulos/parasitologia , Mitose , Imagem Óptica/métodos
5.
PLoS One ; 8(5): e64693, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741372

RESUMO

Toxoplasma gondii critically relies on cell invasion as a survival strategy to evade immune clearance during infection. Although it was widely thought that Toxoplasma entry is parasite directed and that the host cell is largely a passive victim, recent studies have suggested that host components such as microfilaments and microtubules indeed contribute to entry. Hence to identify additional host factors, we performed a high-throughput siRNA screen of a human siRNA library targeting druggable proteins using a novel inducible luciferase based invasion assay. The top 100 hits from the primary screen that showed the strongest decreases in invasion were subjected to confirmation by secondary screening, revealing 24 proteins that are potentially involved in Toxoplasma entry into host cells. Interestingly, 6 of the hits appear to affect parasite invasion by modifying host cell actin dynamics, resulting in increased deposition of F-actin at the periphery of the cell. These findings support the emerging notion that host actin dynamics are important for Toxoplasma invasion along with identifying several novel host factors that potentially participate in parasite entry.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Ensaios de Triagem em Larga Escala/métodos , Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , Toxoplasma/fisiologia , Citoesqueleto de Actina/parasitologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Genes Reporter , Células HeLa , Ensaios de Triagem em Larga Escala/instrumentação , Interações Hospedeiro-Parasita , Humanos , Luciferases/genética , Luciferases/metabolismo , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura , RNA Interferente Pequeno/metabolismo
6.
PLoS Pathog ; 9(5): e1003346, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23675298

RESUMO

The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.


Assuntos
Antígenos de Protozoários/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/parasitologia , Theileria annulata/fisiologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Western Blotting , Células COS , Bovinos , Chlorocebus aethiops , Imunofluorescência , Humanos , Camundongos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Esquizontes/metabolismo
7.
Eukaryot Cell ; 12(2): 265-77, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243063

RESUMO

The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/fisiologia , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Células Cultivadas , Centrossomo/metabolismo , Centrossomo/microbiologia , Centrossomo/parasitologia , Ceramidas/metabolismo , Infecções por Chlamydia/parasitologia , Infecções por Chlamydia/patologia , Coinfecção , Fibroblastos/microbiologia , Fibroblastos/parasitologia , Fibroblastos/patologia , Complexo de Golgi/microbiologia , Complexo de Golgi/parasitologia , Complexo de Golgi/patologia , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/parasitologia , Viabilidade Microbiana , Microtúbulos/metabolismo , Microtúbulos/microbiologia , Microtúbulos/parasitologia , Mitocôndrias/microbiologia , Mitocôndrias/parasitologia , Mitocôndrias/patologia , Toxoplasmose/microbiologia , Toxoplasmose/patologia , Vacúolos/microbiologia , Vacúolos/parasitologia
8.
Eukaryot Cell ; 9(11): 1680-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20435700

RESUMO

Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell's periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Microtúbulos/parasitologia , Toxoplasma/patogenicidade , Sequência de Aminoácidos , Animais , Antígenos CD59/genética , Antígenos CD59/fisiologia , Linhagem Celular , Citoesqueleto/parasitologia , Citoesqueleto/fisiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Dados de Sequência Molecular , Nocodazol/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tromboplastina/genética , Tromboplastina/fisiologia , Virulência/fisiologia
9.
Cell Microbiol ; 10(2): 465-76, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17970763

RESUMO

The obligate intracellular parasite Toxoplasma develops within a parasitophorous vacuole (PV) uniquely adapted for its survival in mammalian cells. Post-invasion events extensively modify the PV, resulting in interactions with host cell structures. Recent studies emphasized that Toxoplasma is able to co-opt host gene expression, suggesting that host transcriptional activities are required for parasite infection. By using an experimental enucleation model, we investigated the potential need for Toxoplasma to modify its PV by modulating gene expression in the cell wherein it resides. Unexpectedly, cytoplasts can be actively invaded by Toxoplasma and sustain its replication inside a vacuole until egress and transmission to neighbouring cells. Although randomly distributed in the cytoplast, the PV associates with host centrosomes and the Golgi, is surrounded by host microtubules, and recruits host endoplasmic reticulum and mitochondria. Parasites are proficient in diverting exogenous nutrients from the endocytic network of cytoplasts. In enucleated cells invaded by an avirulent strain of T. gondii, the PV can normally transform into cysts. These observations suggest that new host nuclear functions are not proximately required for the post-invasion events underlying the remodelling of the host cell in which the parasites are confined, and therefore for the generation of infectious parasites in vitro.


Assuntos
Núcleo Celular/fisiologia , Toxoplasma/patogenicidade , Vacúolos/parasitologia , Animais , Linhagem Celular , Núcleo Celular/parasitologia , Centrossomo/parasitologia , Centrossomo/ultraestrutura , Chlorocebus aethiops , LDL-Colesterol/metabolismo , Retículo Endoplasmático/parasitologia , Retículo Endoplasmático/ultraestrutura , Regulação da Expressão Gênica , Complexo de Golgi/parasitologia , Complexo de Golgi/ultraestrutura , Interações Hospedeiro-Parasita , Humanos , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura , Mitocôndrias/parasitologia , Mitocôndrias/ultraestrutura , Suínos , Toxoplasma/fisiologia , Toxoplasma/ultraestrutura , Transcrição Gênica
10.
Bioorg Med Chem ; 15(18): 6071-9, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17618122

RESUMO

Dinitroanilines are of interest as antiprotozoal lead compounds because of their selective activity against the tubulin of these organisms, but concern has been raised due to the potentially mutagenic nitro groups. Analogues of N(1)-phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (GB-II-150, compound 2b), a selective antimitotic agent against African trypanosomes and Leishmania, have been prepared where the nitro groups are replaced with amino, chloro, cyano, carboxylate, methyl ester, amide, and methyl ketone moieties. Dicyano compound 5 displays IC(50) values that are comparable to 2b against purified leishmanial tubulin assembly (6.6 vs 7.4 microM), Trypanosoma brucei brucei growth in vitro (0.26 vs 0.18 microM), Leishmania donovani axenic amastigote growth in vitro (4.4 vs 2.3 microM), and in vitro toxicity against Vero cells (16 vs 9.7 microM). Computational studies provide a rationale for the antiparasitic order of activity of these analogues and further insight into the role of the substituents at the 3 and 5 positions of the sulfanilamide ring.


Assuntos
Kinetoplastida/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Sulfanilamidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Linhagem Celular , Kinetoplastida/metabolismo , Kinetoplastida/parasitologia , Leishmania donovani/metabolismo , Leishmania donovani/parasitologia , Microtúbulos/metabolismo , Microtúbulos/parasitologia , Modelos Químicos , Modelos Moleculares , Relação Estrutura-Atividade , Sulfanilamidas/química , Sulfanilamidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomíase Africana/tratamento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
11.
J Parasitol ; 91(5): 995-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16419739

RESUMO

Although accumulating evidence supports an active role for host cells during Cryptosporidium parvum invasion of epithelia, our knowledge of the underlying parasite-specific processes triggering such events is limited. In an effort to better understand the invasion strategy of C. parvum, we characterized the presence and distribution of the apical organelles (micronemes, dense granules, and rhoptry) through the stages of attachment to, and internalization by, human biliary epithelia, using serial-section electron microscopy. Novel findings include an apparent organized rearrangement of micronemes upon host cell attachment. The apically segregated micronemes were apposed to a central microtubule-like filamentous structure, and the more distal micronemes localized to the periphery and apical region of the parasite during internalization, coinciding with the formation of the anterior vacuole. The morphological observations presented here extend our understanding of parasite-specific processes that occur during attachment to, and internalization by, host epithelial cells.


Assuntos
Ductos Biliares/parasitologia , Cryptosporidium parvum/ultraestrutura , Organelas/ultraestrutura , Animais , Ductos Biliares/citologia , Linhagem Celular Transformada , Cryptosporidium parvum/fisiologia , Grânulos Citoplasmáticos/parasitologia , Grânulos Citoplasmáticos/ultraestrutura , Células Epiteliais/parasitologia , Interações Hospedeiro-Parasita , Humanos , Microscopia Eletrônica de Transmissão/métodos , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura , Organelas/parasitologia , Vacúolos/parasitologia , Vacúolos/ultraestrutura
12.
Mol Pharmacol ; 64(6): 1325-33, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645662

RESUMO

Analogs of the antimitotic herbicide oryzalin (3,5-dinitro-N4,N4-di-n-propylsulfanilamide) were recently prepared that were more potent in vitro than the parent compound against the kinetoplastid parasite Leishmania donovani (Bioorg Med Chem Lett 12:2395-2398, 2002). In the present work, we show that the most active molecule in the group, N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5), is a potent, selective antimitotic agent against kinetoplastid parasites. GB-II-5 possesses IC50 values of 0.41 and 0.73 microM in vitro against two strains of the related parasite Trypanosoma brucei but is much less toxic to J774 murine macrophages and PC3 prostate cancer cells, exhibiting IC50 values of 29 and 35 microM against these lines, respectively. Selectivity is also observed for GB-II-5 with purified leishmanial and mammalian tubulin. The assembly of 15 microM leishmanial tubulin is completely inhibited by 10 microM GB-II-5, whereas 40 microM GB-II-5 inhibits the assembly of 15 microM porcine brain tubulin by only 17%. In cultured L. donovani and T. brucei, treatment with 5 and 0.5 microM GB-II-5, respectively, causes a striking increase in the fraction of G2M cells compared with control. Given the potency and selectivity of this agent against kinetoplastid tubulin, GB-II-5 emerges as an exciting new antitrypanosomal and antileishmanial lead compound.


Assuntos
Antiprotozoários/farmacologia , Dinitrobenzenos/farmacologia , Kinetoplastida/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Sulfanilamidas/farmacologia , Animais , Antiprotozoários/química , Dinitrobenzenos/química , Inibidores do Crescimento/química , Inibidores do Crescimento/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Leishmania donovani/metabolismo , Leishmania donovani/parasitologia , Microtúbulos/metabolismo , Microtúbulos/parasitologia , Ratos , Sulfanilamidas/química , Suínos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/parasitologia
13.
J Clin Pharm Ther ; 27(5): 313-20, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12383131

RESUMO

Microtubules are cytoskeletal polymers essential for the survival of all eukaryotes. These proteins are the proposed cellular targets of many anticancerous, antifungal and antihelminthic drugs. Sufficient differences exist between the microtubules of kinetoplastid parasites like Leishmania and humans to explore the selective targeting of these proteins for therapeutic purposes. This review describes the basic structure of microtubules and its dynamics in general, with specific insights into leishmanial microtubules, the salient features of microtubule-drug interactions including the specificity of certain drugs for parasitic microtubules. Chemotherapy against leishmanial parasites is failing because of the emergence of drug resistant strains. The possible mechanisms of resistance to antimicrotubule agents along with insights into the role of microtubules in mediating drug resistance in Leishmania are discussed.


Assuntos
Interações Medicamentosas/fisiologia , Resistência a Medicamentos/fisiologia , Leishmania/efeitos dos fármacos , Microtúbulos/parasitologia , Animais
14.
J Submicrosc Cytol Pathol ; 33(3): 337-41, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11846102

RESUMO

The intracellular fate of Toxoplasma gondii was studied in primary cultures of skeletal muscle cells (SMC). The labelling of secondary lysosomes with BSA-Au particles showed no phagolysosomal fusion with the vacuole containing the parasite. After internalization of the parasites, the parasitophorous vacuole became involved by closely apposed endoplasmic reticulum (ER) and mitochondria; within 18 h of interaction, microtubules were visualized in association with the parasitophorous vacuole, suggesting that they could form a barrier for the phagolysosomal fusion.


Assuntos
Microtúbulos/parasitologia , Músculo Esquelético/parasitologia , Fagossomos/parasitologia , Toxoplasma/fisiologia , Toxoplasmose Animal/fisiopatologia , Vacúolos/parasitologia , Animais , Células Cultivadas , Camundongos , Microtúbulos/ultraestrutura , Músculo Esquelético/ultraestrutura , Fagossomos/ultraestrutura , Toxoplasma/ultraestrutura , Vacúolos/ultraestrutura
15.
Microbes Infect ; 1(14): 1181-8, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10580273

RESUMO

Theileria parasites transform bovine leukocytes and induce uncontrolled lymphoproliferation only in the macroschizont stage of their life cycle. The isolation of highly purified stage-specific parasite RNA and proteins is an essential prerequisite when studying the Theileria-host relationship. We therefore improved a protocol based on the cytolytic bacterial toxin aerolysin by taking advantage of the microtubule inhibitor nocodazole. In this report we describe that nocodazole-mediated separation of the parasite from the host cell microtubule network was used with success to improve quantity and quality of purified parasites. We furthermore show that nocodazole is a useful tool to study cell cycle checkpoints due to its capacity to induce reversible cell cycle arrest in Theileria-infected B cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/parasitologia , Ciclo Celular/efeitos dos fármacos , Nocodazol/farmacologia , Theileria parva/isolamento & purificação , Animais , Linfócitos B/química , Linfócitos B/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Bovinos , Linhagem Celular , Membrana Celular/química , Membrana Celular/parasitologia , Proteínas Hemolisinas/farmacologia , Immunoblotting , Microscopia Eletrônica , Microtúbulos/efeitos dos fármacos , Microtúbulos/parasitologia , Proteínas Citotóxicas Formadoras de Poros , Proteínas Tirosina Quinases/análise , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas c-hck , Theileria parva/ultraestrutura , Fatores de Tempo
16.
Parasitology ; 118 ( Pt 1): 43-8, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10070660

RESUMO

We investigated the segregation of an intracellular microsporidian parasite during host cell division. A time-course experiment was carried out to examine the distribution of parasites relative to host chromosomal DNA via light and electron microscopy. Fluorescent light microscopy and EM studies showed that the parasite lay in the perinuclear zone of the host cell during interphase and segregated to daughter cells at mitosis. At metaphase, the parasite was frequently closely associated with host microtubules and mitochondria. Electron-dense bridges were observed between the parasites and the host microtubules and also between host mitochondria and microtubules. The study suggests that both the parasite and the host cell organelles segregate in association with spindle microtubules.


Assuntos
Crustáceos/parasitologia , Mitocôndrias/parasitologia , Mitose , Nosema/isolamento & purificação , Animais , Crustáceos/citologia , Crustáceos/ultraestrutura , Feminino , Interações Hospedeiro-Parasita , Interfase , Masculino , Microscopia Eletrônica , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura
17.
J Cell Sci ; 110 ( Pt 17): 2117-28, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9378762

RESUMO

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


Assuntos
Organelas/metabolismo , Organelas/parasitologia , Toxoplasma/fisiologia , Animais , Antígenos de Protozoários/análise , Antígenos de Protozoários/isolamento & purificação , Biomarcadores , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/isolamento & purificação , Calnexina , Carbonatos , Fracionamento Celular , Centrifugação com Gradiente de Concentração , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/parasitologia , Retículo Endoplasmático/ultraestrutura , Feminino , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Membrana/análise , Proteínas de Membrana/isolamento & purificação , Camundongos , Microscopia Eletrônica , Microtúbulos/parasitologia , Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Mitocôndrias/ultraestrutura , Organelas/ultraestrutura , Proteínas de Protozoários/análise , Proteínas de Protozoários/isolamento & purificação , Sacarose , Toxoplasma/patogenicidade , Toxoplasma/ultraestrutura , Vacúolos/metabolismo , Vacúolos/parasitologia , Vacúolos/ultraestrutura , Virulência
18.
J Protozool ; 22(1): 66-71, 1975 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1117437

RESUMO

The fine structure of the 1st generation merozoites of Eimeria labbeana from the ileal mucosa of artificially infected pigeons (Columba livia) was investigated and described. The 1st generation merozoites which appeared between 36-48 hr after infection averaged 4.4 times 2.1 mum in size. The 3-membraned pellicle was irregular in texture and harbored a single micropore, and many micropore-like invaginations. Closely apposed to the inner pellicular membrane were seen 22 microtubules, each 22-25 nm in diameter. An apical vesicle, 50 nm in diameter, seen at the anterior extremity, was connected with the common duct of the micronemes. The conoid consisted of 9 spiral elements, each 30 times 25 nm. The paired organelle (rhoptries) varied in length (1.4-2.2 mum), and the ductules (23 nm diameter) were composed of 2 inner tubules, each 6 nm in diameter. A unit membrane enveloped the partially alveolar and differentially osmiophilic interior of the bulbous regions of the rhoptries. The "rod-like structure" was found to be tubular and represented the common duct of the micronemes.


Assuntos
Eimeria/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Columbidae/parasitologia , Grânulos Citoplasmáticos/ultraestrutura , Eimeria/crescimento & desenvolvimento , Eimeria/isolamento & purificação , Retículo Endoplasmático/ultraestrutura , Fezes/parasitologia , Íleo/parasitologia , Microtúbulos/parasitologia , Organoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...