Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.842
Filtrar
1.
J Clin Invest ; 134(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286975

RESUMO

Microbial mimicry, the process in which a microbial antigen elicits an immune response and breaks tolerance to a structurally related self-antigen, has long been proposed as a mechanism in autoimmunity. In this issue of the JCI, Dolton et al. extend this paradigm by demonstrating that a naturally processed peptide from Klebsiella oxytoca acts as a superagonist for autoreactive T cells in type 1 diabetes (T1D). Reframing microbial mimics as superagonists that are thousands of times better at binding disease-associated autoreactive T cell receptors than self-peptides serves to narrow the search space for relevant sequences in the vast microbial proteome. Moreover, the identified superagonists have implications for the intervention and personalized monitoring of T1D that may carry over to other autoimmune diseases with microbial mimicry.


Assuntos
Diabetes Mellitus Tipo 1 , Klebsiella oxytoca , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Klebsiella oxytoca/imunologia , Linfócitos T/imunologia , Autoimunidade , Autoantígenos/imunologia , Mimetismo Molecular/imunologia , Animais , Antígenos de Bactérias/imunologia
2.
F1000Res ; 13: 358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310813

RESUMO

Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition that has a significant impact on quality of life. The immune response and allergy symptoms in AD are triggered by the recognition of specific allergens by IgE antibodies. Cross-reactivity can lead to auto-IgE responses, potentially worsening AD symptoms. Our research aimed to enhance our understanding of allergenic sources, including A. fumigatus, and their role in AD. We focused on molecular mimicry between human AQP3 and A. fumigatus aquaporin. Methods: In our in-silico analysis, we compared the amino acid sequences of human aquaporin 3 (AQP3) and A. fumigatus aquaporin with 25 aquaporins from various allergenic sources, sourced from the UniProt and NCBI databases. Phylogenetic relationship analysis and homology-based modeling were conducted. We identified conserved antigenic regions located within the 3D structures. Results: The global identity levels among the studied aquaporins averaged 32.6%. One antigenic site exhibited a remarkable local region, with a conserved identity of 71.4%. We categorized the aquaporins into five monophyletic clades (A-E), with group B showing the highest identity (95%), including six mammalian aquaporins, including AQP3. When comparing A. fumigatus aquaporins, the highest identity was observed with Malassezia sympodialis at 35%. Both human and A. fumigatus aquaporins have three linear and three discontinuous epitopes. Conclusions: We identified potential linear and conformational epitopes of AQP3, indicating a possible molecular mimicry between humans and A. fumigatus aquaporins. This suggests autoreactivity and potential cross-reactivity, although further validation using in vitro and in vivo experiments is required.


Assuntos
Aquaporina 3 , Aquaporinas , Aspergillus fumigatus , Simulação por Computador , Mimetismo Molecular , Filogenia , Humanos , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Aquaporinas/química , Aquaporinas/genética , Sequência de Aminoácidos , Alérgenos/imunologia , Alérgenos/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Modelos Moleculares , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/imunologia
3.
Curr Microbiol ; 81(11): 366, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297982

RESUMO

In post-COVID-19 syndrome, clinical presentation of the nerve fiber dysfunction plays an important role. The possibility of autoantigen cross-mimicry of human coronaviruses and the peripheral nervous system needs to be investigated. The bioinformatic analysis was applied to search for possible common protein sequences located in the immunoreactive epitopes. Among the autoantigens of the human nervous system, fibroblast growth factor receptor protein 3, myelin protein P0, myelin protein P2, sodium channel protein type 9, alpha protein subunit, plexin-D1 protein and ubiquitin-carboxyl-terminal hydrolase protein of the L1 isoenzyme were selected. The original "Alignmentaj" analytical program was created. The UniProt database, Protein Data Bank, and AlphaFold databases were used. The analysis of protein sequence similarities of spike glycoproteins in human coronaviruses revealed common pentapeptides of the MERS-CoV-2 virus with the fibroblast growth factor receptor 3 and myelin protein P2. Among seasonal coronaviruses, common peptide sequences were identified in HCoV-HKU-1 virus with sodium channel protein type 9 subunit alpha and Plexin-D1, HCoV-OC43 with Plexin-D1, as well as HCoV-NL63 with Plexin-D1 and Ubiquitin carboxyl-terminal hydrolase isozyme L1. Some shared peptides belong to immunoreactive epitopes. The most important targets for the molecular similarities are the sodium channel subunits and fibroblast growth factor receptor 3, both for seasonal and highly pathogenic coronaviruses. The data obtained make it possible to identify new potential targets for the development of autoimmune reactions that may occur against the background of the infections with highly pathogenic as well as seasonal coronaviruses.


Assuntos
Autoantígenos , Mimetismo Molecular , Humanos , Autoantígenos/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Epitopos/imunologia , Biologia Computacional , Coronavirus/imunologia , Coronavirus/genética , Sequência de Aminoácidos
5.
Nature ; 632(8025): 622-629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112696

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Assuntos
Anticorpos Antivirais , Autoanticorpos , COVID-19 , Reações Cruzadas , Epitopos , Mimetismo Molecular , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/complicações , Reações Cruzadas/imunologia , Epitopos/imunologia , Epitopos/química , Mimetismo Molecular/imunologia , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Nexinas de Classificação/química , Nexinas de Classificação/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Linfócitos T/imunologia
6.
Autoimmun Rev ; 23(9): 103605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39182594

RESUMO

Immune thrombocytopenia (ITP) is a complex autoimmune disorder characterized by thrombocytopenia and an increased bleeding risk, arising from autoantibody-mediated platelet destruction and impaired megakaryocyte function. The pathogenesis of ITP involves a multifaceted interplay of genetic predispositions, immune dysregulation, and environmental triggers, though the precise mechanisms remain uncertain. Several infectious agents, mostly viruses, have been implicated in both acute and chronic ITP through mechanisms such as molecular mimicry, direct bone marrow suppression, and immune dysregulation. Vaccinations, particularly those containing adjuvants like aluminum and those capable of inducing molecular mimicry, have also been associated with ITP, either as a new onset or as a relapse in preexisting cases. The role of drugs, particularly quinine, quinidine and certain antibiotics, in inducing ITP through various immunological pathways further illustrates the diverse etiologies of this condition. The multiple triggers of the disease raise the question of whether ITP may be classified as an autoimmune/inflammatory syndrome induced by adjuvants (ASIA). This condition encompasses a range of autoimmune and inflammatory symptoms triggered by adjuvants, such as silicones, polypropylene meshes, metal implants, and mineral oils present in various medical materials and medications. Similar to that observed in some cases of ITP, adjuvants can trigger autoimmune or autoinflammatory responses via molecular mimicry, epitope spreading, and polyclonal activation. This narrative review explores the underlying environmental factors related to ITP and examines ITP triggers that could potentially support an association between ITP and ASIA syndrome.


Assuntos
Adjuvantes Imunológicos , Púrpura Trombocitopênica Idiopática , Humanos , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Adjuvantes Imunológicos/efeitos adversos , Inflamação/imunologia , Inflamação/etiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/etiologia , Mimetismo Molecular/imunologia , Síndrome , Autoimunidade
7.
Front Immunol ; 15: 1411490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139570

RESUMO

Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.


Assuntos
Antígenos de Bactérias , Antígenos de Neoplasias , Imunoterapia , Neoplasias , Humanos , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais , Antígenos de Bactérias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Mimetismo Molecular/imunologia
8.
J Biomed Sci ; 31(1): 83, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169357

RESUMO

Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , HIV-1/imunologia , Humanos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Polissacarídeos/imunologia , Infecções por HIV/imunologia , Mimetismo Molecular/imunologia , Epitopos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Ligantes
9.
Nat Commun ; 15(1): 6408, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164229

RESUMO

Venomous animals have evolved diverse molecular mechanisms to incapacitate prey and defend against predators. Most venom components disrupt nervous, locomotor, and cardiovascular systems or cause tissue damage. The discovery that certain fish-hunting cone snails use weaponized insulins to induce hypoglycemic shock in prey highlights a unique example of toxins targeting glucose homeostasis. Here, we show that, in addition to insulins, the deadly fish hunter, Conus geographus, uses a selective somatostatin receptor 2 (SSTR2) agonist that blocks the release of the insulin-counteracting hormone glucagon, thereby exacerbating insulin-induced hypoglycemia in prey. The native toxin, Consomatin nG1, exists in several proteoforms with a minimized vertebrate somatostatin-like core motif connected to a heavily glycosylated N-terminal region. We demonstrate that the toxin's N-terminal tail closely mimics a glycosylated somatostatin from fish pancreas and is crucial for activating the fish SSTR2. Collectively, these findings provide a stunning example of chemical mimicry, highlight the combinatorial nature of venom components, and establish glucose homeostasis as an effective target for prey capture.


Assuntos
Caramujo Conus , Glucagon , Glucose , Homeostase , Insulina , Receptores de Somatostatina , Somatostatina , Animais , Somatostatina/metabolismo , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Glucose/metabolismo , Receptores de Somatostatina/metabolismo , Glucagon/metabolismo , Peixes/metabolismo , Comportamento Predatório/efeitos dos fármacos , Hipoglicemia/metabolismo , Venenos de Moluscos/metabolismo , Humanos , Mimetismo Molecular
10.
Nat Commun ; 15(1): 7294, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181890

RESUMO

To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell's plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous. While SemD binds N-WASP much more strongly than Cdc42 does, it does not bind the Cdc42 effector protein FMNL2, indicating effector protein specificity. Furthermore, by identifying flexible and structured domains, we show that SemD can simultaneously interact with the membrane, the endocytic protein SNX9, and N-WASP. Here, we show at the structural level how a single effector protein can hijack central components of the host's endocytic system for efficient internalization.


Assuntos
Proteínas de Bactérias , Chlamydophila pneumoniae , Endocitose , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Proteína cdc42 de Ligação ao GTP , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteína cdc42 de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Chlamydophila pneumoniae/metabolismo , Cristalografia por Raios X , Células HeLa , Interações Hospedeiro-Patógeno , Mimetismo Molecular , Ligação Proteica , Nexinas de Classificação/metabolismo , Nexinas de Classificação/química , Nexinas de Classificação/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Ratos
11.
Biomolecules ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39199321

RESUMO

Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.


Assuntos
Encéfalo , Epitopos de Linfócito B , Mimetismo Molecular , Toxoplasma , Toxoplasma/imunologia , Mimetismo Molecular/imunologia , Humanos , Epitopos de Linfócito B/imunologia , Encéfalo/parasitologia , Encéfalo/imunologia , Encéfalo/metabolismo , Biologia Computacional/métodos , Toxoplasmose/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Ratos
12.
Front Immunol ; 15: 1398002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947322

RESUMO

Background: In the present study we investigated whether peptides derived from the entire SARS-CoV-2 proteome share homology to TAAs (tumor-associated antigens) and cross-reactive CD8+ T cell can be elicited by the BNT162b2 preventive vaccine or the SARS-CoV-2 natural infection. Methods and results: Viral epitopes with high affinity (<100nM) to the HLA-A*02:01 allele were predicted. Shared and variant-specific epitopes were identified. Significant homologies in amino acidic sequence have been found between SARS-CoV-2 peptides and multiple TAAs, mainly associated with breast, liver, melanoma and colon cancers. The molecular mimicry of the viral epitopes and the TAAs was found in all viral proteins, mostly the Orf 1ab and the Spike, which is included in the BNT162b2 vaccine. Predicted structural similarities confirmed the sequence homology and comparable patterns of contact with both HLA and TCR α and ß chains were observed. CD8+ T cell clones cross-reactive with the paired peptides have been found by MHC class l-dextramer staining. Conclusions: Our results show for the first time that several SARS-COV-2 antigens are highly homologous to TAAs and cross-reactive T cells are identified in infected and BNT162b2 preventive vaccinated individuals. The implication would be that the SARS-Cov-2 pandemic could represent a natural preventive immunization for breast, liver, melanoma and colon cancers. In the coming years, real-world evidences will provide the final proof for such immunological experimental evidence. Moreover, such SARS-CoV-2 epitopes can be used to develop "multi-cancer" off-the-shelf preventive/therapeutic vaccine formulations, with higher antigenicity and immunogenicity than over-expressed tumor self-antigens, for the potential valuable benefit of thousands of cancer patients around the World.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Reações Cruzadas , Epitopos de Linfócito T , Mimetismo Molecular , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Mimetismo Molecular/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Vacina BNT162/imunologia , Antígenos Virais/imunologia , Antígeno HLA-A2/imunologia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Antígenos de Neoplasias/imunologia , Vacinas contra COVID-19/imunologia
14.
Scand J Immunol ; 99(2): e13344, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39007954

RESUMO

COVID-19 is a severe infectious disease caused by a SARS-CoV-2 infection. It has caused a global pandemic and can lead to acute respiratory distress syndrome (ARDS). Beyond the respiratory system, the disease manifests in multiple organs, producing a spectrum of clinical symptoms. A pivotal factor in the disease's progression is autoimmunity, which intensifies its severity and contributes to multi-organ injuries. The intricate interaction between the virus' spike protein and human proteins may engender the generation of autoreactive antibodies through molecular mimicry. This can further convolute the immune response, with the potential to escalate into overt autoimmunity. There is also emerging evidence to suggest that COVID-19 vaccinations might elicit analogous autoimmune responses. Advanced technologies have pinpointed self-reactive antibodies that target diverse organs or immune-modulatory proteins. The interplay between autoantibody levels and multi-organ manifestations underscores the importance of regular monitoring of serum antibodies and proinflammatory markers. A combination of immunosuppressive treatments and antiviral therapy is crucial for managing COVID-19-associated autoimmune diseases. The review will focus on the generation of autoantibodies in the context of COVID-19 and their impact on organ health.


Assuntos
Autoanticorpos , Autoimunidade , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , Autoanticorpos/imunologia , SARS-CoV-2/imunologia , Autoimunidade/imunologia , Doenças Autoimunes/imunologia , Mimetismo Molecular/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/imunologia
15.
Expert Opin Investig Drugs ; 33(9): 881-886, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38980318

RESUMO

INTRODUCTION: Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED: We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION: There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.


Assuntos
Desenvolvimento de Medicamentos , Síndrome de Guillain-Barré , Imunoglobulinas Intravenosas , Troca Plasmática , Síndrome de Guillain-Barré/terapia , Síndrome de Guillain-Barré/fisiopatologia , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/tratamento farmacológico , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Animais , Troca Plasmática/métodos , Agentes de Imunomodulação/farmacologia , Autoanticorpos/imunologia , Imunoglobulina G/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Mimetismo Molecular , Imunidade Inata
16.
Adv Protein Chem Struct Biol ; 142: 421-436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059993

RESUMO

Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.


Assuntos
Mimetismo Molecular , Humanos , Vírus/metabolismo , Interações Hospedeiro-Patógeno , Viroses/metabolismo , Viroses/virologia , Viroses/imunologia , Sistema Endócrino/metabolismo , Neoplasias/metabolismo , Neoplasias/virologia , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/virologia , Doenças Autoimunes/imunologia
17.
J Immunotoxicol ; 21(1): 2373247, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066679

RESUMO

Molecular mimicry has been proposed to be a possible mechanism of induction of autoimmunity. In some cases, it is believed that such events could lead to a disease such as Type 1 diabetes (T1D). One of the primary MHC-I epitopes in the non-obese diabetic (NOD) mouse model of T1D has been identified as a peptide from the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) protein. In humans, the most common MHC-I model allele is HLA-A02; based on this, the study here identified a potential HLA-A0201-restricted human IGRP epitope as YLKTNLFLFL and also found a homologous A0201-restricted peptide in an Enterococcal protein. Using cells obtained from healthy human donors, it was seen that after a 2-week incubation with the synthetic bacterial protein, healthy A0201+ donor CD8+ cells displayed increased staining for human IGRP-peptide-dextramer. On the other hand, in control cultures, no significant levels of dextramer-staining CD8+ T-cells were detectable. From these outcomes, it is possible to conclude that certain bacterial proteins may initiate CD8+ T-cell-mediated immune reaction toward homologous human antigens.


Assuntos
Antígenos de Bactérias , Linfócitos T CD8-Positivos , Reações Cruzadas , Diabetes Mellitus Tipo 1 , Epitopos de Linfócito T , Glucose-6-Fosfatase , Antígeno HLA-A2 , Humanos , Diabetes Mellitus Tipo 1/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Antígenos de Bactérias/imunologia , Glucose-6-Fosfatase/imunologia , Glucose-6-Fosfatase/genética , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Mimetismo Molecular/imunologia , Camundongos Endogâmicos NOD , Proteínas de Bactérias/imunologia , Células Cultivadas
18.
Biochemistry ; 63(15): 1955-1962, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012171

RESUMO

In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh-carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh-carbon bond formation, converting rhodi(I)balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh-carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co-carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.


Assuntos
Vitamina B 12 , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/análogos & derivados , Humanos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Metilmalonil-CoA Mutase/química , Ródio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Mimetismo Molecular , Modelos Moleculares , Alquil e Aril Transferases
19.
J Am Chem Soc ; 146(31): 22093-22102, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054926

RESUMO

Here we introduce amphiphilic star polymers as versatile protein mimics capable of approximating the activity of certain native proteins. Our study focuses on designing a synthetic polymer capable of replicating the biological activity of TRAIL, a promising anticancer protein that shows very poor circulation half-life. Successful protein mimicry requires precise control over the presentation of receptor-binding peptides from the periphery of the polymer scaffold while maintaining enough flexibility for protein-peptide binding. We show that this can be achieved by building hydrophobic blocks into the core of a star-shaped polymer, which drives unimolecular collapse in water. By screening a library of diblock copolymer stars, we were able to design structures with IC50's of ∼4 nM against a colon cancer cell line (COLO205), closely approximating the activity of the native TRAIL protein. This finding highlights the broad potential for simple synthetic polymers to mimic the biological activity of complex proteins.


Assuntos
Polímeros , Humanos , Polímeros/química , Polímeros/farmacologia , Linhagem Celular Tumoral , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Mimetismo Molecular , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...