Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Gene ; 927: 148750, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971548

RESUMO

Distal myopathies are a group of rare heterogeneous diseases that are mostly caused by genetic factors. At least 20 genes have been associated with distal myopathies. We performed whole-exome sequencing to identify the genetic cause of disease in a family with distal myopathy. Following the American College of Medical Genetics and Genomics (ACMG) guidelines, we analyzed the sequencing results and screened suspicious mutations based on mutation frequency, functional impact, and disease inheritance pattern. The harmfulness of the mutations was predicted using bioinformatics methods, and the pathogenic mutations were determined. We identified a novel amino acid mutation (NP_005467.1:p.S663L) on the GNE gene that may cause familial distal myopathy. This mutation is the result of the simultaneous mutation of two adjacent nucleotides (c.1988C > T, c.1989C > A) in the codon. First, we measured the mRNA and protein expression of the GNE gene in the lymphoblastoid cell lines (LCLs) of the probands and their family members. Second, GNE vectors carrying the novel mutation, two other known pathogenic mutations, and the wild-type gene were constructed and transfected into HEK293T cells. The enzymatic activity of these GNE variants was investigated and showed that the p.S663L mutation significantly reduced the activity of the bifunctional GNE enzyme without altering the expression level of the GNE protein. Furthermore, the mutation may also alter the immunogenicity of the 3' end of the GNE protein, potentially affecting its oligomer formation. In this study, a novel GNE gene mutation that may cause distal myopathy was identified, expanding the spectrum of genetic mutations associated with this disease.


Assuntos
Miopatias Distais , Complexos Multienzimáticos , Linhagem , Humanos , Masculino , Feminino , Células HEK293 , Miopatias Distais/genética , Complexos Multienzimáticos/genética , Mutação , Adulto , Sequenciamento do Exoma/métodos , Pessoa de Meia-Idade
2.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852763

RESUMO

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Assuntos
Autofagia , Cálcio , Miopatias Distais , Proteínas de Choque Térmico HSP70 , Complexos Multienzimáticos , Mutação , Humanos , Autofagia/genética , Autofagia/efeitos dos fármacos , Mutação/genética , Cálcio/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Células HEK293 , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Índia
3.
J Neurol ; 271(7): 4453-4461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38691167

RESUMO

BACKGROUND: GNE myopathy is an ultra-rare autosomal recessive distal myopathy caused by pathogenic variants of the GNE gene, which encodes a key enzyme in sialic acid biosynthesis. The present study aimed to examine the long-term progression of GNE myopathy, genotype-phenotype correlations, and complications to provide useful information for predicting patient progression and designing clinical trials using a large collection of registry data over a 10-year period. METHODS: We analyzed 220 Japanese patients with GNE myopathy from a national registry in Japan. Diagnoses were confirmed by genetic curators based on genetic analysis reports. We analyzed registration sheets and annually updated items completed by attending physicians. RESULTS: In total, 197 of 220 participants (89.5%) carried p.D207V or p.V603L in at least one allele. The median disease duration to loss of ambulation was estimated to be 10 years in p.V603L homozygotes (n = 48), whereas more than 90% of p.D207V/p.V603L compound heterozygotes were estimated to be ambulatory even 20 years after disease onset according to Kaplan-Meier analysis (p < 0.001). Moreover, participants with a younger age of onset lost ambulation earlier regardless of genotype. A decline in respiratory function was observed as the disease progressed, particularly in p.V603L homozygotes, whereas none of the p.D207V/p.V603L compound heterozygotes showed a decline. CONCLUSIONS: The present study demonstrated large differences in disease progression and respiratory function between genotypes. Moreover, age of onset was found to be an indicator of disease severity regardless of genotype in GNE myopathy patients. These results may help stratify patients in clinical trials and predict disease progression.


Assuntos
Progressão da Doença , Miopatias Distais , Genótipo , Complexos Multienzimáticos , Fenótipo , Sistema de Registros , Humanos , Masculino , Feminino , Japão , Adulto , Miopatias Distais/genética , Miopatias Distais/fisiopatologia , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Adulto Jovem , Estudos de Associação Genética , Adolescente , Idade de Início , Idoso
4.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690726

RESUMO

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Assuntos
Substituição de Aminoácidos , Miopatias Distais , Prolina , Animais , Camundongos , Humanos , Prolina/genética , Prolina/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Mutação de Sentido Incorreto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/química , Feminino , Masculino , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
5.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690729

RESUMO

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Assuntos
Benzilaminas , Músculo Esquelético , Uracila/análogos & derivados , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miopatias Distais/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Animais , Mutação , Miosinas/metabolismo , Miosinas/genética
6.
Genes (Basel) ; 15(4)2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674419

RESUMO

Autosomal recessive Nonaka distal myopathy is a rare autosomal recessive genetic disease characterized by progressive degeneration of the distal muscles, causing muscle weakness and decreased grip strength. It is primarily associated with mutations in the GNE gene, which encodes a key enzyme of sialic acid biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase). This study was performed to find GNE mutations in six independent distal myopathy patients with or without peripheral neuropathy using whole-exome sequencing (WES). In silico pathogenic prediction and simulation of 3D structural changes were performed for the mutant GNE proteins. As a result, we identified five pathogenic or likely pathogenic missense variants: c.86T>C (p.Met29Thr), c.527A>T (p.Asp176Val), c.782T>C (p.Met261Thr), c.1714G>C (p.Val572Leu), and c.1771G>A (p.Ala591Thr). Five affected individuals showed compound heterozygous mutations, while only one patient revealed a homozygous mutation. Two patients revealed unreported combinations of combined heterozygous mutations. We observed some specific clinical features, such as complex phenotypes of distal myopathy with distal hereditary peripheral neuropathy, an earlier onset of weakness in legs than that of hands, and clinical heterogeneity between two patients with the same set of compound heterozygous mutations. Our findings on these genetic causes expand the clinical spectrum associated with the GNE mutations and can help prepare therapeutic strategies.


Assuntos
Miopatias Distais , Humanos , Miopatias Distais/genética , Miopatias Distais/patologia , Masculino , Feminino , Adulto , República da Coreia , Sequenciamento do Exoma , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Mutação de Sentido Incorreto , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Linhagem , Mutação , Genes Recessivos
8.
Muscle Nerve ; 69(6): 708-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558464

RESUMO

INTRODUCTION/AIMS: GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS: Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS: A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION: The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.


Assuntos
Éxons , Íntrons , Complexos Multienzimáticos , Trombocitopenia , Humanos , Masculino , Feminino , Complexos Multienzimáticos/genética , Éxons/genética , Íntrons/genética , Adulto , Trombocitopenia/genética , Miopatias Distais/genética , Adulto Jovem , Adolescente , Criança , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Pessoa de Meia-Idade
9.
Biochem Pharmacol ; 223: 116199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604256

RESUMO

GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of ß1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM­GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM­GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM­GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM­GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM­GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Oximas , Piperidinas , Animais , Ratos , Actinas/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Fator de Crescimento Insulin-Like I , Mutação , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Racemases e Epimerases/genética
10.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38383974

RESUMO

GNE myopathy is a rare genetic neuromuscular disease that is caused due to mutations in the GNE gene responsible for sialic acid biosynthesis. Foot drop is the most common initial symptom observed in GNE myopathy patients. There is slow progressive muscle weakness in the lower and upper extremities while the quadriceps muscles are usually spared. The exact pathophysiology of the disease is unknown. Besides sialic acid biosynthesis, recent studies suggest either direct or indirect involvement of GNE in other cellular functions such as protein aggregation, apoptosis, ER stress, cell migration, HSP70 chaperone activity, autophagy, muscle atrophy, and myogenesis. Both animal and in vitro cell-based model systems are generated to elucidate the mechanism of GNE myopathy and evaluate the efficacy of therapies. The many therapeutic avenues explored include supplementation with sialic acid derivatives or precursors and gene therapy. Recent studies suggest other therapeutic options such as modulators of HSP70 chaperone (BGP-15), cofilin activator (CGA), and ligands like IGF-1 that may help to rescue cellular defects due to GNE dysfunction. This review provides an overview of the pathophysiology associated with GNE function in the cell and promising therapeutic leads to be explored for future drug development.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Animais , Humanos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/uso terapêutico , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Miopatias Distais/diagnóstico , Mutação , Músculo Esquelético/metabolismo
11.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935568

RESUMO

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Assuntos
Miopatias Distais , Humanos , Conectina/genética , Miopatias Distais/genética , Variações do Número de Cópias de DNA/genética , Músculo Esquelético/patologia , Mutação/genética , Fenótipo
12.
Front Biosci (Landmark Ed) ; 28(11): 300, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38062838

RESUMO

BACKGROUND: A key mechanism in the neuromuscular disease GNE myopathy (GNEM) is believed to be that point mutations in the GNE gene impair sialic acid synthesis - maybe due to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) activity restrictions - and resulting in muscle tissue loss. N-acetylmannosamine (ManNAc) is the first product of the bifunctional GNE enzyme and can therefore be regarded as a precursor of sialic acids. This study investigates whether this is also a suitable substance for restoring the sialic acid content in GNE-deficient cells. METHODS: A HEK-293 GNE-knockout cell line was generated using CRISPR-Cas9 and analyzed for its ability to synthesize sialic acids. The cells were then supplemented with ManNAc to compensate for possible GNE inactivity and thereby restore sialic acid synthesis. Sialic acid levels were monitored by immunoblot and high performance liquid chromatography (HPLC). RESULTS: The HEK-293 GNE-knockout cells showed almost no polysialylation signal (immunoblot) and a reduced overall (-71%) N-acetylneuraminic acid (Neu5Ac) level (HPLC) relative to total protein and normalized to wild type level. Supplementation of GNE-deficient HEK-293 cells with 2 mM ManNAc can restore polysialylation and free intracellular sialic acid levels to wild type levels. The addition of 1 mM ManNAc is sufficient to restore the membrane-bound sialic acid level. CONCLUSIONS: Although the mechanism behind this needs further investigation and although it remains unclear why adding ManNAc to GNE-deficient cells is sufficient to elevate polysialylation back to wild type levels - since this substance is also converted by the GNE, all of this might yet prove helpful in the development of an appropriate therapy for GNEM.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Células HEK293 , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Doenças Neuromusculares/tratamento farmacológico , Doenças Neuromusculares/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética
13.
Brain Nerve ; 75(10): 1149-1154, 2023 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-37849366

RESUMO

Distal myopathy with rimmed vacuoles (DMRV), also known as GNE myopathy, is a rare disease affecting the distal muscles, such as the tibialis anterior muscle. The GNE gene, which codes for a key enzyme in the sialic acid biosynthesis pathway, is mutated in a homozygous or compound heterozygous manner, and the lack of sialic acid in skeletal muscle is the critical underlying mechanism in DMRV pathogenesis. DMRV mouse models were established, and supplementation with sialic acid improved the phenotypes of the models. A phase 1 clinical trial using aceneuramic acid was conducted at Tohoku University Hospital, Japan, followed by trials using a slow-release product. A phase II/III study, subsequent extended trial, and confirmatory trial were also conducted. Regulatory approval is currently under review.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/uso terapêutico , Ácido N-Acetilneuramínico/metabolismo , Vacúolos/metabolismo , Vacúolos/patologia , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Músculo Esquelético/patologia
14.
Biomed Pharmacother ; 168: 115689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852099

RESUMO

GNE myopathy, caused by biallelic mutations in the GNE gene, is characterized by initial ankle dorsiflexor weakness and rimmed vacuoles in the muscle histopathology, resulting in reduced sialic acid production. Sialyllactose is a source of sialic acid. We performed a pilot clinical trial to analyze the pharmacokinetic properties of 6'-sialyllactose (6SL) and evaluated the safety, and efficacy of oral 6SL in patients with GNE myopathy. Ten participants were in the pharmacokinetic study, and 20 in the subsequent clinical trial. For the pharmacokinetic study, participants were administered either 3 g (low-dose) or 6 g (high-dose) of 6SL in a single dose. Plasma concentrations of 6SL, sialic acid, and sialic acid levels on the surface of red blood cells were periodically assessed in blood samples. Patients were randomly allocated to test (low- and high-dose groups) or placebo groups for the trial. Motor function, ambulation, plasma 6SL and sialic acid concentrations, GNE myopathy-functional activity scale scores, and MRI findings were assessed. 6SL was well tolerated, except for self-limited gastrointestinal discomfort. Free sialic acid in both low- and high-dose groups significantly increased at 6 and 12 weeks, but not in the placebo group. In the high-dose group, proximal limb powers improved with daily 6SL. Considering the fat fraction on muscle MRI, results in the high-dose group were superior to those in the low-dose group. 6SL may be a good candidate for GNE myopathy therapeutics as it induces an increase or reduces the decrease in limb muscle power, attenuates muscle degeneration, and improves the biochemical properties of sialic acid.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/uso terapêutico , Projetos Piloto , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Miopatias Distais/patologia , Resultado do Tratamento , Músculo Esquelético/patologia , Mutação
15.
Neuromuscul Disord ; 33(10): 762-768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666692

RESUMO

GNE myopathy is caused by bi allelic recessive mutations in the GNE gene. The largest identified cohort of GNE myopathy patients carries a homozygous mutation- M743T (the "Middle Eastern" mutation). More than 160 such patients in 67 families have been identified by us. Mean onset in this cohort is 30 years (range 17-48) with variable disease severity. However, we have identified two asymptomatic females, homozygous for M743T in two different families, both with affected siblings. The first showed no myopathy when examined at age 76 years. The second has no sign of disease at age 60 years. Since both agreed only for testing of blood, we performed exome and RNA sequencing of their blood and that of their affected siblings. Various filtering layers resulted in 2723 variant loci between symptomatic and asymptomatic individuals, representing 1364 genes. Among those, 39 genes are known to be involved in neuromuscular diseases, and only in two of them the variant is located in the proper exon coding region, resulting in a missense change. Surprisingly, only 27 genes were significantly differentially expressed between the asymptomatic and the GNE myopathy affected individuals, with three overexpressed genes overlapping between exome and RNA sequencing. Although unable to unravel robust candidate genes, mostly because of the very low number of asymptomatic individuals analyzed, and because of the tissue analyzed (blood and not muscle), this study resulted in relatively restricted potential candidate protective genes, emphasizing the power of using polarized phenotypes (completely asymptomatic vs clearly affected individuals) with the same genotype to unmask those genes which could be used as targets for disease course modifiers.


Assuntos
Miopatias Distais , Doenças Musculares , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Miopatias Distais/genética , Músculo Esquelético , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Mutação , Fatores de Proteção
16.
Neuromuscul Disord ; 33(10): 718-727, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716854

RESUMO

Dysferlinopathy is a rare group of hereditary muscular dystrophy with an autosomal recessive mode of inheritance caused by a mutation in the DYSF gene. It encodes for the dysferlin protein, which has a crucial role in multiple cellular processes, including muscle fiber membrane repair. This deficit has heterogeneous clinical presentations. In this study, we collected 20 Tunisian patients with a sex ratio of 1 and a median age of 50.5 years old (Interquartile range (IQR) = [36,5-54,75]). They were followed for periods ranging from 5 to 48 years. The median age at onset was 17 years old (IQR = [16,8-28,4]). Five major phenotypes were identified: Limb-girdle muscular dystrophy (LGMDR2) (35%), a proximodistal phenotype (35%), Miyoshi myopathy (10%),  Distal myopathy with anterior tibial onset (DMAT) (10%), and asymptomatic HyperCKemia (10%). At the last evaluation, more than half of patients (55%) were on wheelchair. Loss of ambulation occurred generally during the fourth decade. After 20 years of disease progression, two patients with a proximodistal phenotype (10%) developed dilated cardiomyopathy and mitral valve regurgitation. Restrictive respiratory syndrome was observed in three patients (DMAT: 1 patient, proximodistal phenotype: 1 patient, LGMDR2: 1 patient). Genetic study disclosed five mutations. We observed clinical heterogeneity between families and even within the same family. Disease progression was mainly slow to intermediate regardless of the phenotype.


Assuntos
Miopatias Distais , Distrofia Muscular do Cíngulo dos Membros , Humanos , Pessoa de Meia-Idade , Prognóstico , Tunísia/epidemiologia , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Disferlina/genética , Miopatias Distais/genética , Progressão da Doença , Mutação , Patrimônio Genético
17.
Orphanet J Rare Dis ; 18(1): 241, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568154

RESUMO

BACKGROUND: A rare muscle disease, GNE myopathy is caused by mutations in the GNE gene involved in sialic acid biosynthesis. Our recent phase II/III study has indicated that oral administration of aceneuramic acid to patients slows disease progression. METHODS: We conducted a phase III, randomized, placebo-controlled, double-blind, parallel-group, multicenter study. Participants were assigned to receive an extended-release formulation of aceneuramic acid (SA-ER) or placebo. Changes in muscle strength and function over 48 weeks were compared between treatment groups using change in the upper extremity composite (UEC) score from baseline to Week 48 as the primary endpoint and the investigator-assessed efficacy rate as the key secondary endpoint. For safety, adverse events, vital signs, body weight, electrocardiogram, and clinical laboratory results were monitored. RESULTS: A total of 14 patients were enrolled and given SA-ER (n = 10) or placebo (n = 4) tablets orally. Decrease in least square mean (LSM) change in UEC score at Week 48 with SA-ER (- 0.115 kg) was numerically smaller as compared with placebo (- 2.625 kg), with LSM difference (95% confidence interval) of 2.510 (- 1.720 to 6.740) kg. In addition, efficacy was higher with SA-ER as compared with placebo. No clinically significant adverse events or other safety concerns were observed. CONCLUSIONS: The present study reproducibly showed a trend towards slowing of loss of muscle strength and function with orally administered SA-ER, indicating supplementation with sialic acid might be a promising replacement therapy for GNE myopathy. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT04671472).


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/uso terapêutico , Japão , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Músculos , Método Duplo-Cego , Resultado do Tratamento
18.
Handb Clin Neurol ; 195: 497-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562883

RESUMO

Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.


Assuntos
Miopatias Distais , Humanos , Miopatias Distais/diagnóstico , Miopatias Distais/genética , Miopatias Distais/patologia , Mãos , Perna (Membro) , Músculo Esquelético/patologia
19.
Genes (Basel) ; 14(7)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510237

RESUMO

A 60-year-old male with hypertrophic cardiomyopathy, conduction disorders, post-COVID-19 myopericarditis and heart failure was admitted to the hospital's cardiology department. Blood tests revealed an increase in CPK activity, troponin T elevation and high titers of anticardiac antibodies. Whole exome sequencing showed the presence of the pathogenic variant NM_213599:c.2272C>T of the ANO5 gene. Results of the skeletal muscle biopsy excluded the diagnosis of systemic amyloidosis. Microscopy of the muscle fragment demonstrated sclerosis of the perimysium, moderate lymphoid infiltration, sclerosis of the microvessels, dystrophic changes and a lack of cross striations in the muscle fibers. Hypertrophy of the LV with a low contractile ability, atrial fibrillation, weakness of the distal skeletal muscles and increased plasma CPK activity and the results of the skeletal muscle biopsy suggested a diagnosis of a late form of distal myopathy (Miyoshi-like distal myopathy, MMD3). Post-COVID-19 myopericarditis, for which genetically modified myocardium could serve as a favorable background, caused heart failure decompensation.


Assuntos
COVID-19 , Cardiomiopatia Hipertrófica , Miopatias Distais , Insuficiência Cardíaca , Miocardite , Masculino , Humanos , Pessoa de Meia-Idade , Miopatias Distais/diagnóstico , Miopatias Distais/genética , Miopatias Distais/patologia , Esclerose/patologia , Anoctaminas/genética , Canais de Cloreto/genética , Mutação , COVID-19/complicações , COVID-19/genética , COVID-19/patologia , Músculo Esquelético/patologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia
20.
J Neuromuscul Dis ; 10(4): 555-566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125562

RESUMO

BACKGROUND: GNE myopathy is an ultra-rare muscle disease characterized by a reduction in the synthesis of sialic acid derived from pathogenic variants in the GNE gene. No treatment has been established so far. OBJECTIVE: We evaluated the safety and efficacy of oral supplementation of aceneuramic acid in patients with GNE myopathy. METHODS: This multicenter, placebo-controlled, double-blind study comprised genetically confirmed GNE myopathy patients in Japan who were randomly assigned into treatment groups of sialic acid-extended release (SA-ER) tablets (6 g/day for 48 weeks) or placebo groups (4:1). The primary endpoint of effectiveness was set as the change in total upper limb muscle strength (upper extremity composite [UEC] score) from the start of administration to the final evaluation time point. RESULTS: Among the 20 enrolled patients (SA-ER group, 16; placebo group, 4), 19 completed this 48-week study. The mean value of change in UEC score (95% confidence interval [CI]) at 48 weeks was -0.1 kg (-2.1 to 2.0) in the SA-ER group and -5.1 kg (-10.4 to 0.3) in the placebo group. The least squares mean difference (95% CI) between the groups in the covariance analysis was 4.8 kg (-0.3 to 9.9; P = 0.0635). The change in UEC score at 48 weeks was significantly higher in the SA-ER group compared with the placebo group (P = 0.0013) in the generalized estimating equation test repeated measurement analysis. In one patient in the SA-ER group, who was found to be pregnant 2 weeks after drug administration fetal death with tangled umbilical cord occurred at 13 weeks after the discontinuation of treatment. No other serious adverse effects were observed. CONCLUSIONS: The present study indicates that oral administration of SA-ER tablets is effective and safe in patients with GNE myopathy in Japan.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Humanos , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Japão , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...