Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.613
Filtrar
1.
Cardiovasc Toxicol ; 24(10): 1090-1104, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38955919

RESUMO

Oxidative stress causes mitochondrial damage and bioenergetic dysfunction and inhibits adenosine triphosphate production, contributing to the pathogenesis of cardiac diseases. Dipeptidyl peptidase 4 (DPP4) is primarily a membrane-bound extracellular peptidase that cleaves Xaa-Pro or Xaa-Ala dipeptides from the N terminus of polypeptides. DPP4 inhibitors have been used in patients with diabetes and heart failure; however, they have led to inconsistent results. Although the enzymatic properties of DPP4 have been well studied, the substrate-independent functions of DPP4 have not. In the present study, we knocked down DPP4 in cultured cardiomyocytes to exclude the effects of differential alteration in the substrates and metabolites of DPP4 then compared the response between the knocked-down and wild-type cardiomyocytes during exposure to oxidative stress. H2O2 exposure induced DPP4 expression in both types of cardiomyocytes. However, knocking down DPP4 substantially reduced the loss of cell viability by preserving mitochondrial bioenergy, reducing intracellular reactive oxygen species production, and reducing apoptosis-associated protein expression. These findings demonstrate that inhibiting DPP4 improves the body's defense against oxidative stress by enhancing Nrf2 and PGC-1α signaling and increasing superoxide dismutase and catalase activity. Our results indicate that DPP4 mediates the body's response to oxidative stress in individuals with heart disease.


Assuntos
Apoptose , Dipeptidil Peptidase 4 , Mitocôndrias Cardíacas , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Ratos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Metabolismo Energético/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Camundongos
2.
Vascul Pharmacol ; 155: 107324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38985581

RESUMO

Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake.


Assuntos
Cardiotoxicidade , Doxorrubicina , Metabolismo Energético , Ácidos Graxos , Glucose , Oxirredução , Animais , Doxorrubicina/toxicidade , Glucose/metabolismo , Ácidos Graxos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Glicólise/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Cardiopatias/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Camundongos Knockout , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos
3.
FEBS Lett ; 598(16): 1989-1995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924556

RESUMO

Mitochondrial NADH-ubiquinone oxidoreductase (complex I) couples electron transfer from NADH to ubiquinone with proton translocation in its membrane part. Structural studies have identified a long (~ 30 Å), narrow, tunnel-like cavity within the enzyme, through which ubiquinone may access a deep reaction site. Although various inhibitors are considered to block the ubiquinone reduction by occupying the tunnel's interior, this view is still debatable. We synthesized a phosphatidylcholine-quinazoline hybrid compound (PC-Qz1), in which a quinazoline-type toxophore was attached to the sn-2 acyl chain to prevent it from entering the tunnel. However, PC-Qz1 inhibited complex I and suppressed photoaffinity labeling by another quinazoline derivative, [125I]AzQ. This study provides further experimental evidence that is difficult to reconcile with the canonical ubiquinone-accessing tunnel model.


Assuntos
Complexo I de Transporte de Elétrons , Ubiquinona , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Animais , Quinazolinas/química , Quinazolinas/farmacologia , Quinazolinas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Modelos Moleculares , Ratos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
4.
Circ Res ; 135(3): e39-e56, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38873758

RESUMO

BACKGROUND: Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS: In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS: RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS: These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.


Assuntos
Camundongos Knockout , Mitocôndrias Cardíacas , Mitofagia , Miócitos Cardíacos , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
BMC Cardiovasc Disord ; 24(1): 280, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811893

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (I/RI) is a major cause of perioperative cardiac-related adverse events and death. Studies have shown that sevoflurane postconditioning (SpostC), which attenuates I/R injury and exerts cardioprotective effects, regulates mitochondrial dynamic balance via HIF-1α, but the exact mechanism is unknown. This study investigates whether the PI3K/AKT pathway in SpostC regulates mitochondrial dynamic balance by mediating HIF-1α, thereby exerting myocardial protective effects. METHODS: The H9C2 cardiomyocytes were cultured to establish the hypoxia-reoxygenation (H/R) model and randomly divided into 4 groups: Control group, H/R group, sevoflurane postconditioning (H/R + SpostC) group and PI3K/AKT blocker (H/R + SpostC + LY) group. Cell survival rate was determined by CCK-8; Apoptosis rate was determined by flow cytometry; mitochondrial membrane potential was evaluated by Mito Tracker™ Red; mRNA expression levels of AKT, HIF-1α, Opa1and Drp1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR); Western Blot assay was used to detect the protein expression levels of AKT, phosphorylated AKT (p-AKT), HIF-1α, Opa1 and Drp1. RESULTS: Compared with the H/R group, the survival rate of cardiomyocytes in the H/R + SpostC group increased, the apoptosis rate decreased and the mitochondrial membrane potential increased. qRT-PCR showed that the mRNA expression of HIF-1α and Opa1 were higher in the H/R + SpostC group compared with the H/R group, whereas the transcription level of Drp1 was lower in the H/R + SpostC group. In the H/R + SpostC + LY group, the mRNA expression of HIF-1α was lower than the H/R + SpostC group. There was no difference in the expression of Opa1 mRNA between the H/R group and the H/R + SpostC + LY group. WB assay results showed that compared with the H/R group, the protein expression levels of HIF-1α, Opa1, P-AKT were increased and Drp1 protein expression levels were decreased in the H/R + SpostC group. HIF-1α, P-AKT protein expression levels were decreased in the H/R + SpostC + LY group compared to the H/R + SpostC group. CONCLUSION: SpostC mediates HIF-1α-regulated mitochondrial fission and fusion-related protein expression to maintain mitochondrial dynamic balance by activating the PI3K/AKT pathway and increasing AKT phosphorylation, thereby attenuating myocardial I/R injury.


Assuntos
Apoptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Sevoflurano , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/enzimologia , Sevoflurano/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/enzimologia , Dinâmica Mitocondrial/efeitos dos fármacos , Linhagem Celular , Ratos , Apoptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Hipóxia Celular , Dinaminas/metabolismo , Dinaminas/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Citoproteção , Pós-Condicionamento Isquêmico , Fosforilação
6.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724987

RESUMO

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Dinaminas , Células Endoteliais , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Circulação Coronária , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Dinaminas/metabolismo , Dinaminas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Células Endoteliais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
7.
Biochim Biophys Acta Bioenerg ; 1865(3): 149048, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723704

RESUMO

The effect of mitochondrial membrane potential (ΔΨm) on the absorbance of the reduced cytochrome c oxidase (COX) was evaluated in isolated rabbit heart mitochondria using integrating sphere optical spectroscopy. Maximal reduction of the mitochondrial cytochromes was achieved by either blowing nitrogen to remove oxygen, or by adding cyanide. Gradual depolarization of ΔΨm by adding increasing concentrations of uncoupler resulted in an increase of up to 50 % in the absorbance of cytochrome aa3 under nitrogen saturation, and of 25 % with cyanide. Cytochrome aa3 absorbance increases were also observed in the presence of cyanide with apyrase (20 %) or oligomycin (12 %). The bL heme absorbance also decreased as expected from ΔΨm depolarization. A ~ 1 nm red shift in the peak wavelength of cytochrome aa3 was observed under anoxic conditions as ΔΨm was depolarized. Importantly, cytochrome c and c1 absorbances remained constant at levels corresponding to full reduction under all experimental manipulations of ΔΨm, especially with cyanide. These data suggest that ΔΨm-dependent changes in the absorbance of reduced COX were due to a variable extinction coefficient of heme a and/or a3 as a function of ΔΨm. A similar increase in the reduced cytochrome aa3 absorbance without changes in cytochrome c and c1 was observed in the perfused rabbit heart when decreasing ΔΨm with uncoupler. Our results imply that COX absorbance in its fully reduced state does not simply reflect the oxygen tension but also the ΔΨm. This may prove useful in monitoring ΔΨm under anoxic or ischemic conditions in intact tissue.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Coelhos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Cianetos/farmacologia , Cianetos/metabolismo
8.
Cardiovasc Toxicol ; 24(6): 598-621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689163

RESUMO

Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.


Assuntos
Doenças Cardiovasculares , Mitocôndrias Cardíacas , Miócitos Cardíacos , Sirtuínas , Sirtuínas/metabolismo , Humanos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/patologia , Transdução de Sinais , Metabolismo Energético/efeitos dos fármacos
9.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230606

RESUMO

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Assuntos
Diferenciação Celular , Ácidos Graxos , Miócitos Cardíacos , Miofibrilas , Fosforilação Oxidativa , Proteína 2 de Ligação ao Retinoblastoma , Humanos , Células Cultivadas , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Miofibrilas/enzimologia , Oxirredução , Regiões Promotoras Genéticas , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/genética
10.
Curr Vasc Pharmacol ; 22(3): 203-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38141195

RESUMO

INTRODUCTION: Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD: We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS: 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91 ± 1.76 vs. 40.47 ± 3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8 ± 2.7 vs. 28.5 ± 5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6 ± 9.5 vs. 93.5 ± 13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0 ± 8.3 vs. 67.9 ± 13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION: Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos Benzidrílicos , Modelos Animais de Doenças , Glucosídeos , Camundongos Endogâmicos C57BL , Mitofagia , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteínas Quinases , Transdução de Sinais , Ubiquitina-Proteína Ligases , Função Ventricular Esquerda , Animais , Glucosídeos/farmacologia , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases/metabolismo , Compostos Benzidrílicos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Função Ventricular Esquerda/efeitos dos fármacos , Linhagem Celular , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos
11.
Am J Physiol Cell Physiol ; 322(2): C296-C310, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044856

RESUMO

Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fatores Etários , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Fenilbutiratos/farmacologia
12.
Sci Rep ; 12(1): 138, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997008

RESUMO

Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.


Assuntos
Calpaína/metabolismo , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Calpaína/genética , Citocromos c/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Preparação de Coração Isolado , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Transdução de Sinais
13.
Exp Biol Med (Maywood) ; 247(2): 165-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648372

RESUMO

Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an indispensable component of mitochondrial complex III. It plays a key role in cardioprotection and maintaining mitochondrion function. However, the exact role of UQCRC1 in maintaining cardiac function has not been reported by in vivo models. Also, the exact biological functions of UQCRC1 are far from fully understood. UQCRC1+/- mice had decreased both mRNA and protein expression of UQCRC1 in the left ventricular myocardia, and these mice had reduced tolerance to acute exhaustive exercise including decreased time and distance with higher apoptosis rate, higher expression level of cleaved CASPASE 3, and higher ratio of cleaved PARP1 to full-length PARP1. Moreover, UQCRC1 knockdown led to increased LV interventricular septal thicknesses both at systole and diastole, as well as decreased LV volume both at end-systole and end-diastole. Finally, UQCRC1 gene disruption resulted in mitochondrial vacuolation, fibril disarrangement, and more severe morphological and structural changes in mitochondria after acute exhaustive exercise. In conclusion, UQCRC1 contributes to cardiac tolerance to acute exhaustive exercise in mice, and it may be an essential component of complex III, playing a crucial role in maintaining cardiac functions.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Condicionamento Físico Animal , Animais , Complexo III da Cadeia de Transporte de Elétrons/genética , Masculino , Camundongos , Camundongos Knockout
14.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R912-R924, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730023

RESUMO

We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O2), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all P < 0.05). Late-onset HPX decreased (P < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Hipóxia Fetal/enzimologia , Mitocôndrias Cardíacas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Hipóxia Celular , Respiração Celular , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Hipóxia Fetal/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Cobaias , Masculino , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Fatores Sexuais
15.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672678

RESUMO

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Telomerase/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Telomerase/genética
16.
J Biochem Mol Toxicol ; 35(12): e22926, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605098

RESUMO

Globally, doxorubicin (DOX)-induced cardio dysfunction is a serious cause of morbidity and mortality in cancerous patients. An adverse event of cardiotoxicity is the main deem to restrict in the clinical application by oncologists. Corilagin (CN) is well known for its antioxidative, anti-fibrosis, and anticancer effects. Herein, we aimed to evaluate the action of CN on DOX-induced experimental animals and H9c2 cells. The myocardium-specific marker, CK-MB, and the influx of mitochondrial calcium levels were measured by using commercial kits. Biochemical indices reflecting oxidative stress and antioxidant attributes such as malondialdehyde, glutathione peroxidase, reduced glutathione, superoxide dismutase, and catalase were also analyzed in DOX-induced cardiotoxic animals. In addition, mitochondrial ROS were measured by DCFH-DA in H9c2 cells under fluorescence microscopy. DOX induction significantly increased oxidative stress levels and also modulated apoptosis/survival protein expressions in myocardial tissues. Western blots were used to measure the expressional levels of Bax/Bcl-2, caspase-3, PI3-K/AKT, and PPARγ signaling pathways. Histological studies were executed to observe morphological changes in myocardial tissues. All of these DOX-induced effects were attenuated by CN (100 mg/kg bw). These in vitro and in vivo results point towards the fact that CN might be a novel cardioprotective agent against DOX-induced cardiotoxicity through modulating cardio apoptosis and oxidative stress.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Glucosídeos/farmacologia , Coração/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 321(5): H850-H864, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477461

RESUMO

Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Dieta Hiperlipídica , Hipertrofia Ventricular Esquerda/etiologia , Obesidade/complicações , Volume Sistólico , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Fatores Etários , Animais , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Fibrose , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular
18.
Anesth Analg ; 133(4): 1048-1059, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524989

RESUMO

BACKGROUND: Cardiotoxicity can be induced by the commonly used amide local anesthetic, bupivacaine. Bupivacaine can inhibit protein kinase B (AKT) phosphorylation and activated adenosine monophosphate-activated protein kinase alpha (AMPKα). It can decouple mitochondrial oxidative phosphorylation and enhance reactive oxygen species (ROS) production. Apelin enhances the phosphatidylinositol 3-kinase (PI3K)/AKT and AMPK/acetyl-CoA carboxylase (ACC) pathways, promotes the complete fatty acid oxidation in the heart, and reduces the release of ROS. In this study, we examined whether exogenous (Pyr1) apelin-13 could reverse bupivacaine-induced cardiotoxicity. METHODS: We used the bupivacaine-induced inhibition model in adult male Sprague Dawley (SD) rats (n = 48) and H9c2 cardiomyocyte cell cultures to explore the role of apelin-13 in the reversal of bupivacaine cardiotoxicity, and its possible mechanism of action. AMPKα, ACC, carnitine palmitoyl transferase (CPT), PI3K, AKT, superoxide dismutase 1 (SOD1), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p47-phox) were quantified. Changes in mitochondrial ultrastructure were examined, and mitochondrial DNA, cell viability, ROS release, oxygen consumption rate (OCR) were determined. RESULTS: Apelin-13 reduced bupivacaine-induced mitochondrial DNA lesions in SD rats (P < .001), while increasing the expression of AMPKα (P = .007) and PI3K (P = .002). Furthermore, apelin-13 blocked bupivacaine-induced depolarization of the mitochondrial membrane potential (P = .019) and the bupivacaine-induced increases in ROS (P = .001). Also, the AMPK pathway was activated by bupivacaine as well as apelin-13 (P = .002) in H9c2 cardiomyocytes. Additionally, the reduction in the PI3K expression by bupivacaine was mitigated by apelin-13 in H9c2 cardiomyocytes (P = .001). While the aforementioned changes induced by bupivacaine were not abated by apelin-13 after pretreatment with AMPK inhibitor compound C; the bupivacaine-induced changes were still mitigated by apelin-13, even when pretreated with PI3K inhibitor-LY294002. CONCLUSIONS: Apelin-13 treatment reduced bupivacaine-induced oxidative stress, attenuated mitochondrial morphological changes and mitochondrial DNA damage, enhanced mitochondrial energy metabolism, and ultimately reversed bupivacaine-induced cardiotoxicity. Our results suggest a role for the AMPK in apelin-13 reversal of bupivacaine-induced cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiopatias/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Bupivacaína , Cardiotoxicidade , Linhagem Celular , Dano ao DNA , Modelos Animais de Doenças , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/patologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
19.
Mitochondrion ; 60: 129-141, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375736

RESUMO

ATP11p and ATP12p are two nuclear-encoded mitochondrial chaperone proteins required for assembling the F1Fo-ATP synthase F1 sector. ATPAF1 and ATPAF2 are the mammalian homologs of ATP11p and ATP12p. However, the biochemical and physiological relevance of ATPAF1 and ATPAF2 in animal tissues with high energy-dependence remains unclear. To explore the in vivo role of ATP assembly and the effects of ATP synthase deficiency in animals, we have generated knockout (KO) mouse models of these assembly factors using CRISPR/Cas9 technology. While the Atpaf2-KO mice were embryonically lethal, Atpaf1-KO mice grew to adulthood but with smaller body sizes and elevated blood lactate later in life. We specifically investigated how ATPAF1 deficiency may affect ATP synthase biogenesis and mitochondrial respiration in the mouse heart, an organ highly energy-dependent. Western blots and Blue-Native electrophoresis (BN-PAGE) demonstrated a decreased F1 content and ATP synthase dimers in the Atpaf1-KO heart. Mitochondria from ATPAF1-deficient hearts showed ultrastructural abnormalities with condensed degenerated mitochondria, loss of cristae, and impaired respiratory capacity. ATP synthase deficiency also leads to impaired autophagy and mitochondrial dynamic. Consequently, decreased cardiac function was exhibited in adult Atpaf1-KO mice. The results provide strong support that ATPAF1 is essential for ATP synthase assembly and mitochondrial oxidative phosphorylation, thus playing a crucial role in maintaining cardiac structure and function in animals.


Assuntos
Mitocôndrias Cardíacas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Chaperonas Moleculares/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Apoptose , Peso Corporal , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Chaperonas Moleculares/genética , Subunidades Proteicas , Espécies Reativas de Oxigênio , Remodelação Ventricular
20.
Nutr Metab Cardiovasc Dis ; 31(10): 2979-2986, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34362635

RESUMO

BACKGROUND AND AIMS: Coronary heart disease is a major global health concern. Further, severity of this condition is greatly influenced by myocardial ischemia/reperfusion (I/R) injury. Branched-chain amino acids (BCAAs) have cardioprotective effects against I/R via mammalian target of rapamycin (mTOR) activity, wherein Leu is considered to particularly regulate mTOR activation. However, the mechanism underlying cardioprotective effects of Leu via mTOR activity is not fully elucidated. Here, we aimed to study the signaling pathway of cardioprotection and mitochondrial function induced by Leu treatment. METHODS AND RESULTS: Cardiac myocytes isolated from adult male Wistar rats were incubated and exposed to simulated I/R (SI/R) injury by replacing the air content. Cardiac myocytes were treated with Leu and subsequently, their survival rate was calculated. To elucidate the signaling pathway and mitochondrial function, immunoblots and mitochondrial permeability transition pore were examined. Cell survival rate was decreased with SI/R but improved by 160 µM Leu (38.5 ± 3.6% vs. 64.5 ± 4.2%, respectively, p < 0.001). Although rapamycin (mTOR inhibitor) prevented this cardioprotective effect induced by Leu, wortmannin (PI3K inhibitor) did not interfere with this effect. In addition, we indicated that overexpression of Opa-1 and mitochondrial function are ameliorated via Leu-induced mitochondrial biogenesis. In contrast, knockdown of Opa-1 suppressed Leu-induced cardioprotection. CONCLUSION: Leu treatment is critical in rendering a cardioprotective effect exhibited by BCAAs via mTOR signaling. Furthermore, Leu improved mitochondrial function.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Leucina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Masculino , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Biogênese de Organelas , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...