Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.610
Filtrar
1.
Sci Rep ; 14(1): 17903, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095447

RESUMO

Inferior vena cava filter (IVCF) implantation is a common method of thrombus capture. By implanting a filter in the inferior vena cava (IVC), microemboli can be effectively blocked from entering the pulmonary circulation, thereby avoiding acute pulmonary embolism (PE). Inspired by the helical flow effect in the human arterial system, we propose a helical retrievable IVCF, which, due to the presence of a helical structure inducing a helical flow pattern of blood in the region near the IVCF, can effectively avoid the deposition of microemboli in the vicinity of the IVCF while promoting the cleavage of the captured thrombus clot. It also reduces the risk of IVCF dislodging and slipping in the vessel because its shape expands in the radial direction, allowing its distal end to fit closely to the IVC wall, and because its contact structure with the inner IVC wall is curved, increasing the contact area and reducing the risk of the vessel wall being punctured by the IVCF support structure. We used ANSYS 2023 software to conduct unidirectional fluid-structure coupling simulation of four different forms of IVCF, combined with microthrombus capture experiments in vitro, to explore the impact of these four forms of IVCF on blood flow patterns and to evaluate the risk of IVCF perforation and IVCF dislocation. It can be seen from the numerical simulation results that the helical structure does have the function of inducing blood flow to undergo helical flow dynamics, and the increase in wall shear stress (WSS) brought about by this function can improve the situation of thrombosis accumulation to a certain extent. Meanwhile, the placement of IVCF will change the flow state of blood flow and lead to the deformation of blood vessels. In in vitro experiments, we found that the density of the helical support rod is a key factor affecting the thrombus trapping efficiency, and in addition, the contact area between the IVCF and the vessel wall has a major influence on the risk of IVCF displacement.


Assuntos
Hemodinâmica , Filtros de Veia Cava , Humanos , Veia Cava Inferior , Simulação por Computador , Trombose/prevenção & controle , Trombose/etiologia , Embolia Pulmonar/prevenção & controle , Modelos Cardiovasculares
2.
Bull Math Biol ; 86(9): 112, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093509

RESUMO

Macrophages in atherosclerotic lesions exhibit a spectrum of behaviours or phenotypes. The phenotypic distribution of monocyte-derived macrophages (MDMs), its correlation with MDM lipid content, and relation to blood lipoprotein densities are not well understood. Of particular interest is the balance between low density lipoproteins (LDL) and high density lipoproteins (HDL), which carry bad and good cholesterol respectively. To address these issues, we have developed a mathematical model for early atherosclerosis in which the MDM population is structured by phenotype and lipid content. The model admits a simpler, closed subsystem whose analysis shows how lesion composition becomes more pathological as the blood density of LDL increases relative to the HDL capacity. We use asymptotic analysis to derive a power-law relationship between MDM phenotype and lipid content at steady-state. This relationship enables us to understand why, for example, lipid-laden MDMs have a more inflammatory phenotype than lipid-poor MDMs when blood LDL lipid density greatly exceeds HDL capacity. We show further that the MDM phenotype distribution always attains a local maximum, while the lipid content distribution may be unimodal, adopt a quasi-uniform profile or decrease monotonically. Pathological lesions exhibit a local maximum in both the phenotype and lipid content MDM distributions, with the maximum at an inflammatory phenotype and near the lipid content capacity respectively. These results illustrate how macrophage heterogeneity arises in early atherosclerosis and provide a framework for future model validation through comparison with single-cell RNA sequencing data.


Assuntos
Aterosclerose , Lipoproteínas HDL , Lipoproteínas LDL , Macrófagos , Conceitos Matemáticos , Fenótipo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/sangue , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/sangue , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Modelos Cardiovasculares , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Lipoproteínas/sangue , Simulação por Computador
3.
Med Eng Phys ; 130: 104211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160019

RESUMO

BACKGROUND AND OBJECTIVE: Imaging methodologies such as, computed tomography (CT) aid in three-dimensional (3D) reconstruction of patient-specific aneurysms. The radiological data is useful in understanding their location, shape, size, and disease progression. However, there are serious impediments in discerning the blood vessel wall thickness due to limitations in the current imaging modalities. This further restricts the ability to perform high-fidelity fluid structure interaction (FSI) studies for an accurate assessment of rupture risk. FSI studies would require the arterial wall mesh to be generated to determine realistic maximum allowable wall stresses by performing coupled calculations for the hemodynamic forces with the arterial walls. METHODS: In the present study, a novel methodology is developed to geometrically model variable vessel wall thickness for the lumen isosurface extracted from CT scan slices of patient-specific aneurysms based on clinical and histopathological inputs. FSI simulations are carried out with the reconstructed models to assess the importance of near realistic wall thickness model on rupture risk predictions. RESULTS: During surgery, clinicians often observe translucent vessel walls, indicating the presence of thin regions. The need to generate variable vessel wall thickness model, that embodies the wall thickness gradation, is closer to such clinical observations. Hence, corresponding FSI simulations performed can improve clinical outcomes. Considerable differences in the magnitude of instantaneous wall shear stresses and von Mises stresses in the walls of the aneurysm was observed between a uniform wall thickness and a variable wall thickness model. CONCLUSION: In the present study, a variable vessel wall thickness generation algorithm is implemented. It was shown that, a realistic wall thickness modeling is necessary for an accurate prediction of the shear stresses on the wall as well as von Mises stresses in the wall. FSI simulations are performed to demonstrate the utility of variable wall thickness modeling.


Assuntos
Aneurisma Intracraniano , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Humanos , Tomografia Computadorizada por Raios X , Modelagem Computacional Específica para o Paciente , Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Artérias/patologia , Hemodinâmica , Estresse Mecânico , Imageamento Tridimensional , Modelos Cardiovasculares
4.
Med Eng Phys ; 130: 104205, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160029

RESUMO

OBJECTIVES: Intimal tears caused by aortic dissection can weaken the arterial wall and lead to aortic aneurysms. However, the effect of different tear states on the blood flow behaviour remains complex. This study uses a novel approach that combines numerical haemodynamic simulation with in vitro experiments to elucidate the effect of arterial dissection rupture on the complex blood flow state within the abdominal aneurysm and the endogenous causes of end-organ malperfusion. MATERIALS AND METHODS: Based on the CT imaging data and clinical physiological parameters, the overall arterial models including aortic dissection and aneurysm with single tear and double tear were established, and the turbulence behaviours and haemodynamic characteristics of arterial dissection and aneurysm under different blood pressures were simulated by using non-Newtonian flow fluids with the pulsatile blood flow rate of the clinical patients as a cycle, and the results of the numerical simulation were verified by in vitro simulation experiments. RESULTS: Hemodynamic simulations revealed that the aneurysm and single-tear false lumen generated a maximum pressure of 320.591 mmHg, 267 % over the 120 mmHg criterion. The pressure differential generates reflux, leading to a WSS of 2247.9 Pa at the TL inlet and blood flow velocities of up to 6.41 m/s inducing extend of the inlet. DTD Medium FL instantaneous WP above 120 mmHg Standard 151 % Additionally, there was 82.5 % higher flow in the right iliac aorta than in the left iliac aorta, which triggered malperfusion. Thrombus was accumulated distal to the tear and turbulence. These results are consistent with the findings of the in vitro experiments. CONCLUSIONS: This study reveals the haemodynamic mechanisms by which aortic dissection induces aortic aneurysms to produce different risk states. This will contribute to in vitro simulation studies as a new fulcrum in the process of moving from numerical simulation to clinical trials.


Assuntos
Aorta Abdominal , Hemodinâmica , Humanos , Aorta Abdominal/fisiopatologia , Aorta Abdominal/diagnóstico por imagem , Ruptura Aórtica/fisiopatologia , Ruptura Aórtica/diagnóstico por imagem , Dissecção Aórtica/fisiopatologia , Dissecção Aórtica/diagnóstico por imagem , Aneurisma da Aorta Abdominal/fisiopatologia , Modelos Cardiovasculares
5.
Med Eng Phys ; 130: 104193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160034

RESUMO

BACKGROUND: Accurate measurement of pulsatile blood flow in the coronary arteries enables coronary wave intensity analysis, which can serve as an indicator for assessing coronary artery physiology and myocardial viability. Computational fluid dynamics (CFD) methods integrating coronary angiography images and fractional flow reserve (FFR) offer a novel approach for computing mean coronary blood flow. However, previous methods neglect the inertial effect of blood flow, which may have great impact on pulsatile blood flow calculation. To improve the accuracy of pulsatile blood flow calculation, a novel CFD based method considering the inertia term is proposed. METHODS: A flow resistance model based on Pressure-Flow vs.Time curves is proposed to model the resistance of the epicardial artery. The parameters of the flow resistance model can be fitted from the simulated pulsating flow rates and pressure drops of a specific mode. Then, pulsating blood flow can be calculated by combining the incomplete pressure boundary conditions under pulsating conditions which are easily obtained in clinic. Through simulation experiments, the effectiveness of the proposed method is validated in idealized and reconstructed 3D model of coronary artery. The impacts of key parameters for generating the simulated pulsating flow rates and pressure drops on the accuracy of pulsatile blood flow calculation are also investigated. RESULTS: For the idealized model, the previously proposed Pressure-Flow model has a significant leading effect on the computed blood flow waveform in the moderate model, and this leading effect disappears with the increase of the degree of stenosis. The improved model proposed in this paper has no leading effect, the root mean square error (RMSE) of the proposed model is low (the left coronary mode:≤0.0160, the right coronary mode:≤0.0065) for all simulated models, and the RMSE decreases with an increase of stenosis. The RMSE is consistently small (≤0.0217) as the key parameters of the proposed method vary in a large range. It is verified in the reconstructed model that the proposed model significantly reduces the RMSE of patients with moderate stenosis (the Pressure-Flow model:≤0.0683, the Pressure-Flow vs.Time model:≤0.0297), and the obtained blood flow waveform has a higher coincidence with the simulated reference waveform. CONCLUSIONS: This paper confirms that ignoring the effect of inertia term can significantly affect the accuracy of calculating pulsatile blood flow in moderate stenosis lesions, and the new method proposed in this paper can significantly improves the accuracy of calculating pulsatile blood flow in moderate stenosis lesions. The proposed method provides a convenient clinical method for obtaining pressure-synchronized blood flow, which is expected to facilitate the application of waveform analysis in the diagnosis of coronary artery disease.


Assuntos
Vasos Coronários , Fluxo Pulsátil , Vasos Coronários/fisiologia , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Circulação Coronária , Simulação por Computador
6.
Int J Numer Method Biomed Eng ; 40(8): e3847, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982660

RESUMO

An epicardial approach is often used in radiofrequency (RF) catheter ablation to ablate ventricular tachycardia when an endocardial approach fails. Our objective was to analyze the effect of the position of the dispersive patch (DP) on lesion size using computer modeling during epicardial approach. We compared the posterior position (patient's back), commonly used in clinical practice, to the anterior position (patient's chest). The model considered ventricular wall thicknesses between 4 and 8 mm, and electrode insertion depths between .3 and .7 mm. RF pulses were simulated with 20 W of power for 30 s duration. Statistically significant differences (P < .001) were found between both DP positions in terms of baseline impedance, RF current (at 15 s) and thermal lesion size. The anterior position involved lower impedance (130.8 ± 4.7 vs. 146.2 ± 4.9 Ω) and a higher current (401.5 ± 5.6 vs. 377.5 ± 5.1 mA). The anterior position created lesion sizes larger than the posterior position: 8.9 ± 0.4 vs. 8.4 ± 0.4 mm in maximum width, 8.6 ± 0.4 vs. 8.1 ± 0.4 mm in surface width, and 4.5 ± 0.4 vs. 4.3 ± 0.4 mm in depth. Our results suggest that: (1) the redirection of the RF currents due to repositioning the PD has little impact on lesion size and only affects baseline impedance, and (2) the differences in lesion size are only 0.5 mm wider and 0.2 mm deeper for the anterior position, which does not seem to have a clinical impact in the context of VT ablation.


Assuntos
Ablação por Cateter , Simulação por Computador , Eletrodos , Ventrículos do Coração , Humanos , Ventrículos do Coração/cirurgia , Ablação por Cateter/métodos , Ablação por Radiofrequência/métodos , Modelos Cardiovasculares , Pericárdio/cirurgia , Taquicardia Ventricular/cirurgia , Taquicardia Ventricular/fisiopatologia
7.
Comput Biol Med ; 179: 108836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968764

RESUMO

Automated identification of cardiac vortices is a formidable task due to the complex nature of blood flow within the heart chambers. This study proposes a novel approach that algorithmically characterizes the identification criteria of these cardiac vortices based on Lagrangian Averaged Vorticity Deviation (LAVD). For this purpose, the Recurrent All-Pairs Field Transforms (RAFT) is employed to assess the optical flow over the Phase Contrast Magnetic Resonance Imaging (PC-MRI), and to construct a continuous blood flow velocity field and reduce errors that arise from the integral process of LAVD. Additionally, Generalized Hough Transform (GHT) is applied for automated depiction of the structure of cardiac vortices. The effectiveness of this method is demonstrated and validated by the computation of the acquired cardiac flow data. The results of this comprehensive visual and analytical study show that the evolution of cardiac vortices can be effectively described and displayed, and the RAFT framework for optical flow can synthesize the in-between PC-MRIs with high accuracy. This allows cardiologists to acquire a deeper understanding of intracardiac hemodynamics and its impact on cardiac functional performance.


Assuntos
Algoritmos , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Coração/fisiologia , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
8.
Comput Biol Med ; 179: 108695, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968763

RESUMO

This study uses CFD methods to investigate the effects of the impeller's geometry on the hemodynamic characteristics, pump performance, and blood damage parameters, in a percutaneous microaxial Mechanical Circulatory Support (MCS) device. The numerical simulations employ the steady state Reynolds-Averaged Navier-Stokes approximation using the SST k-ω turbulent model. Three different impeller models are examined with different hub conversion angles (α = 0○, 3○ and 5○). The analysis includes 23 cases for different pressure heads (Δp = 60-80 mmHg) and angular velocities (ω = 30-52 kRPM). The obtained flow rate is compared between the cases to assess the effect of the impeller's design and working conditions on the pump performance. The comparative risk of shear-induced platelet activation is estimated using the statistical median of the stress-accumulation values calculated along streamlines. The risk of hemolysis is estimated using the average exposure time to shear stress above a threshold (τ > 425 Pa). The results reveal that the shape of the impeller's hub has a great impact on the flow patterns, performance, and risk of blood damage, as well as the angular velocity. The highest flow rate (Q = 3.7 L/min) and efficiency (η = 11.3 %) were achieved using a straight hub (α = 0○). Similarly, for the same condition of flow and pressure, the straight hub impeller has the lowest blood damage risk parameters. This study shed light on the effect of pump design on the performance and risk of blood damage, indicating the roles of the hub shape and angular velocity as dominant parameters.


Assuntos
Coração Auxiliar , Modelos Cardiovasculares , Humanos , Hemólise , Simulação por Computador , Hemodinâmica , Estresse Mecânico
9.
Comput Biol Med ; 179: 108828, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996554

RESUMO

Transcatheter aortic heart valve thrombosis (THVT) affects long-term valve durability, transvalvular pressure gradient and leaflet mobility. In this study, we conduct high-fidelity fluid-structure interaction simulations to perform Lagrangian particle tracing in a generic model with larger aortic diameters (THVT model) with and without neo-sinus which is compared to a model of unaffected TAVI patients (control model). Platelet activation indices are computed for each particle to assess the risk of thrombus formation induced by high shear stresses followed by flow stagnation. Particle tracing indicates that fewer particles contribute to sinus washout of the THVT model with and without neo-sinus compared to the control model (-34.9%/-34.1%). Stagnating particles in the native sinus of the THVT model show higher platelet activation indices than for the control model (+39.6% without neo-sinus, +45.3% with neo-sinus). Highest activation indices are present for particles stagnating in the neo-sinus of the larger aorta representing THVT patients (+80.2% compared to control). This fluid-structure interaction (FSI) study suggests that larger aortas lead to less efficient sinus washout in combination with higher risk of platelet activation among stagnating particles, especially within the neo-sinus. This could explain (a) a higher occurrence of thrombus formation in transcatheter valves compared to surgical valves without neo-sinus and (b) the neo-sinus as the prevalent region for thrombi in TAV. Pre-procedural identification of larger aortic roots could contribute to better risk assessment of patients and improved selection of a patient-specific anti-coagulation therapy.


Assuntos
Valva Aórtica , Modelos Cardiovasculares , Ativação Plaquetária , Trombose , Humanos , Trombose/fisiopatologia , Trombose/patologia , Ativação Plaquetária/fisiologia , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Substituição da Valva Aórtica Transcateter , Aorta/fisiopatologia
10.
Comput Biol Med ; 179: 108832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002313

RESUMO

In this work we present a novel methodology for the numerical simulation of patient-specific aortic dissections. Our proposal, which targets the seamless virtual prototyping of customized scenarios, combines an innovative two-step segmentation procedure with a CutFEM technique capable of dealing with thin-walled bodies such as the intimal flap. First, we generate the fluid mesh from the outer aortic wall disregarding the intimal flap, similarly to what would be done in a healthy aorta. Second, we create a surface mesh from the approximate midline of the intimal flap. This approach allows us to decouple the segmentation of the fluid volume from that of the intimal flap, thereby bypassing the need to create a volumetric mesh around a thin-walled body, an operation widely known to be complex and error-prone. Once the two meshes are obtained, the original configuration of the dissection into true and false lumen is recovered by embedding the surface mesh into the volumetric one and calculating a level set function that implicitly represents the intimal flap in terms of the volumetric mesh entities. We then leverage the capabilities of unfitted mesh methods, specifically relying on a CutFEM technique tailored for thin-walled bodies, to impose the wall boundary conditions over the embedded intimal flap. We tested the method by simulating the flow in four patient-specific aortic dissections, all involving intricate geometrical patterns. In all cases, the preprocess is greatly simplified with no impact on the computational times. Additionally, the obtained results are consistent with clinical evidence and previous research.


Assuntos
Dissecção Aórtica , Simulação por Computador , Modelos Cardiovasculares , Humanos , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/fisiopatologia , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/fisiopatologia , Aorta/fisiopatologia , Aorta/diagnóstico por imagem
11.
Microvasc Res ; 155: 104715, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39004173

RESUMO

BACKGROUND: Flowmotion analysis of the microcirculatory blood flow is a method to extract information about the vessel regulatory function. It has previously shown promise when applied to measurements during a post-occlusive reactive hyperemia. However, the reperfusion peak and the following monotonic decline introduces false low frequencies that should not be interpreted as rhythmic vasomotion effect. AIM: To develop and validate a robust method for flowmotion analysis of post-occlusive reactive hyperemia signals. METHOD: The occlusion-induced reperfusion response contains a typical rapid increase followed by a monotonic decline to baseline. A mathematical model is proposed to detrend this transient part of the signal to enable further flowmotion analysis. The model is validated in 96 measurements on healthy volunteers. RESULTS: Applying the proposed model corrects the flowmotion signal without adding any substantial new false flowmotion components. CONCLUSION: Future studies should use the proposed method or equivalent when analyzing flowmotion during post-occlusive reactive hyperemia to ensure valid results.


Assuntos
Hiperemia , Microcirculação , Modelos Cardiovasculares , Fluxo Sanguíneo Regional , Humanos , Hiperemia/fisiopatologia , Velocidade do Fluxo Sanguíneo , Reprodutibilidade dos Testes , Voluntários Saudáveis , Fatores de Tempo , Masculino , Adulto , Feminino , Valor Preditivo dos Testes , Processamento de Sinais Assistido por Computador , Fluxometria por Laser-Doppler , Adulto Jovem
12.
Biomed Eng Online ; 23(1): 69, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039565

RESUMO

BACKGROUND: Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS: We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS: The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS: In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.


Assuntos
Aorta , Simulação por Computador , Hidrodinâmica , Imageamento por Ressonância Magnética , Humanos , Aorta/diagnóstico por imagem , Aorta/fisiologia , Modelos Cardiovasculares , Hemodinâmica , Velocidade do Fluxo Sanguíneo , Processamento de Imagem Assistida por Computador/métodos , Estresse Mecânico , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/fisiopatologia
13.
J Mol Cell Cardiol ; 193: 113-124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960316

RESUMO

The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.


Assuntos
Cálcio , Ventrículos do Coração , Miócitos Cardíacos , Sarcolema , Trocador de Sódio e Cálcio , Humanos , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Sinalização do Cálcio , Membrana Celular/metabolismo , Modelos Biológicos , Modelos Cardiovasculares
14.
Bull Math Biol ; 86(8): 104, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980556

RESUMO

Atherosclerotic plaques are fatty deposits that form in the walls of major arteries and are one of the major causes of heart attacks and strokes. Macrophages are the main immune cells in plaques and macrophage dynamics influence whether plaques grow or regress. Macrophage proliferation is a key process in atherosclerosis, particularly in the development of mid-stage plaques, but very few mathematical models include proliferation. In this paper we reframe the lipid-structured model of Ford et al. (J Theor Biol 479:48-63, 2019. https://doi.org/10.1016/j.jtbi.2019.07.003 ) to account for macrophage proliferation. Proliferation is modelled as a non-local decrease in the lipid structural variable. Steady state analysis indicates that proliferation assists in reducing eventual necrotic core lipid content and spreads the lipid load of the macrophage population amongst the cells. The contribution of plaque macrophages from proliferation relative to recruitment from the bloodstream is also examined. The model suggests that a more proliferative plaque differs from an equivalent (defined as having the same lipid content and cell numbers) recruitment-dominant plaque in the way lipid is distributed amongst the macrophages. The macrophage lipid distribution of an equivalent proliferation-dominant plaque is less skewed and exhibits a local maximum near the endogenous lipid content.


Assuntos
Aterosclerose , Proliferação de Células , Metabolismo dos Lipídeos , Macrófagos , Conceitos Matemáticos , Modelos Cardiovasculares , Placa Aterosclerótica , Macrófagos/patologia , Macrófagos/metabolismo , Aterosclerose/patologia , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Humanos , Animais , Simulação por Computador , Lipídeos
15.
PLoS One ; 19(7): e0307890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058711

RESUMO

Children with single ventricle heart disease typically require a series of three operations, (1) Norwood, (2) Glenn, and (3) Fontan, which ultimately results in complete separation of the pulmonary and systemic circuits to improve pulmonary/systemic circulation. In the last stage, the Fontan operation, the inferior vena cava (IVC) is connected to the pulmonary arteries (PAs), allowing the remainder of deoxygenated blood to passively flow to the pulmonary circuit. It is hypothesized that optimizing the Fontan anatomy would lead to decreased power loss and more balanced hepatic flow distribution. One approach to optimizing the geometry is to create a patient-specific digital twin to simulate various configurations of the Fontan conduit, which requires a computational model of the proximal PA anatomy and resistance, as well as the distal Pulmonary Vascular Resistance (PVR), at the Glenn stage. To that end, an optimization pipeline was developed using 3D computational fluid dynamics (CFD) and 0D lumped parameter (LP) simulations to iteratively refine the PVR of each lung by minimizing the simulated flow and pressure error relative to patients' cardiac magnetic resonance (CMR) and catheterization (CATH) data. While the PVR can also be estimated directly by computing the ratio of pressure gradients and flow from CATH and CMR data, the computational approach can separately identify the different components of PVR along the Glenn pathway, allowing for a more detailed depiction of the Glenn vasculature. Results indicate good correlation between the optimized PVR of the CFD and LP models (n = 16), with an intraclass correlation coefficient (ICC) of 0.998 (p = 0.976) and 0.991 (p = 0.943) for the left and right lung, respectively. Furthermore, compared to CMR flow and CATH pressure data, the optimized PVR estimates result in mean outlet flow and pressure errors of less than 5%. The optimized PVR estimates also agree well with the computed PVR estimates from CATH pressure and CMR flow for both lungs, yielding a mean difference of less than 4%.


Assuntos
Técnica de Fontan , Artéria Pulmonar , Resistência Vascular , Humanos , Resistência Vascular/fisiologia , Técnica de Fontan/métodos , Artéria Pulmonar/fisiologia , Simulação por Computador , Modelos Cardiovasculares , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Hemodinâmica/fisiologia , Circulação Pulmonar/fisiologia , Veia Cava Inferior/fisiologia , Veia Cava Inferior/diagnóstico por imagem , Criança , Imageamento por Ressonância Magnética
16.
Sci Rep ; 14(1): 15978, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987416

RESUMO

Blood flow through the abdominal aorta and iliac arteries is a crucial area of research in hemodynamics and cardiovascular diseases. To get in to the problem, this study presents detailed analyses of blood flow through the abdominal aorta, together with left and right iliac arteries, under Earth gravity and weightless conditions, both at the rest stage, and during physical activity. The analysis were conducted using ANSYS Fluent software. The results indicate, that there is significantly less variation in blood flow velocity under weightless conditions, compared to measurement taken under Earth Gravity conditions. Study presents, that the maximum and minimum blood flow velocities decrease and increase, respectively, under weightless conditions. Our model for the left iliac artery revealed higher blood flow velocities during the peak of the systolic phase (systole) and lower velocities during the early diastolic phase (diastole). Furthermore, we analyzed the shear stress of the vessel wall and the mean shear stress over time. Additionally, the distribution of oscillatory shear rate, commonly used in hemodynamic analyses, was examined to assess the effects of blood flow on the blood vessels. Countermeasures to mitigate the negative effects of weightlessness on astronauts health are discussed, including exercises performed on the equipment aboard the space station. These exercises aim to maintain optimal blood flow, prevent the formation of atherosclerotic plaques, and reduce the risk of cardiovascular complications.


Assuntos
Aorta Abdominal , Ausência de Peso , Humanos , Aorta Abdominal/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Artéria Ilíaca , Modelos Cardiovasculares , Planeta Terra , Simulação de Ausência de Peso
17.
PLoS Comput Biol ; 20(7): e1011946, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018334

RESUMO

Dynamical system models typically involve numerous input parameters whose "effects" and orthogonality need to be quantified through sensitivity analysis, to identify inputs contributing the greatest uncertainty. Whilst prior art has compared total-order estimators' role in recovering "true" effects, assessing their ability to recover robust parameter orthogonality for use in identifiability metrics has not been investigated. In this paper, we perform: (i) an assessment using a different class of numerical models representing the cardiovascular system, (ii) a wider evaluation of sampling methodologies and their interactions with estimators, (iii) an investigation of the consequences of permuting estimators and sampling methodologies on input parameter orthogonality, (iv) a study of sample convergence through resampling, and (v) an assessment of whether positive outcomes are sustained when model input dimensionality increases. Our results indicate that Jansen or Janon estimators display efficient convergence with minimum uncertainty when coupled with Sobol and the lattice rule sampling methods, making them prime choices for calculating parameter orthogonality and influence. This study reveals that global sensitivity analysis is convergence driven. Unconverged indices are subject to error and therefore the true influence or orthogonality of the input parameters are not recovered. This investigation importantly clarifies the interactions of the estimator and the sampling methodology by reducing the associated ambiguities, defining novel practices for modelling in the life sciences.


Assuntos
Simulação por Computador , Humanos , Biologia Computacional/métodos , Modelos Cardiovasculares , Modelos Estatísticos , Algoritmos , Modelos Biológicos , Incerteza
18.
Sci Rep ; 14(1): 16301, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009618

RESUMO

In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies. The model's geometry, elastic modulus, volumetric compliance, and diameter distensibility were characterized experimentally and numerically simulated. Moreover, a comparison with silicone models with the same anatomy was performed. A PVA-H vessel model was integrated into a mock circulatory loop for a preliminary ultrasound-based assessment of fluid dynamics. The vascular model's geometry was successfully replicated, and the elastic moduli amounted to 0.31 ± 0.007 MPa and 0.29 ± 0.007 MPa for PVA-H and silicone, respectively. Both materials exhibited nearly identical volumetric compliance (0.346 and 0.342% mmHg-1), which was higher compared to numerical simulation (0.248 and 0.290% mmHg-1). The diameter distensibility ranged from 0.09 to 0.20% mmHg-1 in the experiments and between 0.10 and 0.18% mmHg-1 in the numerical model at different positions along the vessel model, highlighting the influence of vessel geometry on local deformation. In conclusion, our study presents a method and provides insights into the manufacturing and mechanical characterization of hydrogel-based thin-wall vessel models, potentially allowing for a combination of fluid dynamics and tissue engineering studies in future cardio- and neurovascular research.


Assuntos
Estenose das Carótidas , Hidrogéis , Modelos Cardiovasculares , Álcool de Polivinil , Humanos , Estenose das Carótidas/fisiopatologia , Álcool de Polivinil/química , Hidrogéis/química , Impressão Tridimensional , Artérias Carótidas/fisiopatologia , Artérias Carótidas/diagnóstico por imagem , Módulo de Elasticidade , Hemodinâmica , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...