Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.760
Filtrar
1.
Clin Respir J ; 18(8): e13822, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39152779

RESUMO

BACKGROUND: Bazedoxifene is a third-generation selective estrogen receptor modulator that inhibits the IL6/IL6R/GP130 signaling pathway by inhibiting IL6-induced homodimerization of GP130. Considering that the IL6/IL6R/GP130 signaling pathway is important in tumorigenesis and metastasis, bazedoxifene is thought to have an antitumor effect, which has been proven preliminarily in breast cancer and pancreatic cancer but has not yet been studied in non-small cell lung cancer (NSCLC). This study is aimed at evaluating the antitumor effect of bazedoxifene in NSCLC. METHODS: A549 and H1299 NSCLC cell lines were employed and exposed to various concentrations of bazedoxifene, paclitaxel, gemcitabine, and their combinations for cell viability, colony formation, and wound healing assays to demonstrate the antitumor effect of bazedoxifene with or without paclitaxel or gemcitabine. RESULTS: MTT cell viability, colony formation, and wound healing assays showed that bazedoxifene was capable of inhibiting cell viability, colony formation, and cell migration in a dose-dependent manner. In addition, bazedoxifene was capable of working with paclitaxel or gemcitabine synergistically to inhibit cell viability, colony formation, and cell migration. CONCLUSION: This study demonstrated the potential antitumor effect of bazedoxifene and its ability to improve the treatment efficacy of paclitaxel and gemcitabine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Sobrevivência Celular , Desoxicitidina , Gencitabina , Indóis , Neoplasias Pulmonares , Paclitaxel , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Paclitaxel/farmacologia , Movimento Celular/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico
2.
Viruses ; 16(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39205306

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV), also known as the Dabie Banda virus, is an emerging tick-borne Bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS). Currently, symptomatic treatment and antiviral therapy with ribavirin and favipiravir are used in clinical management. However, their therapeutical efficacy is hardly satisfactory in patients with high viral load. In this study, we explored the antiviral effects of selective estrogen receptor modulators (SERMs) on SFTSV infection and the antiviral mechanisms of a representative SERM, bazedoxifene acetate (BZA). Our data show that SERMs potently inhibited SFTSV-induced cytopathic effect (CPE), the proliferation of infectious viral particles, and viral RNA replication and that BZA effectively protected mice from lethal viral challenge. The mode of action analysis reveals that BZA exerts antiviral effects during the post-entry stage of SFTSV infection. The transcriptome analysis reveals that GRASLND and CYP1A1 were upregulated, while TMEM45B and TXNIP were downregulated. Our findings suggest that SERMs have the potential to be used in the treatment of SFTSV infection.


Assuntos
Antivirais , Phlebovirus , Moduladores Seletivos de Receptor Estrogênico , Febre Grave com Síndrome de Trombocitopenia , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Phlebovirus/efeitos dos fármacos , Camundongos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Febre Grave com Síndrome de Trombocitopenia/virologia , Replicação Viral/efeitos dos fármacos , Humanos , Chlorocebus aethiops , Feminino , Linhagem Celular , Células Vero , Modelos Animais de Doenças
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201247

RESUMO

Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.


Assuntos
Neoplasias da Mama , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Moduladores Seletivos de Receptor Estrogênico , Tamoxifeno , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Tamoxifeno/farmacologia , Tamoxifeno/análogos & derivados , Feminino , Dioxigenases/genética , Dioxigenases/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Células MCF-7 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA/efeitos dos fármacos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201762

RESUMO

Alzheimer's disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the ß-amyloid precursor protein, a key factor in AD pathogenesis. Recent experimental evidence indicates that new selective ER modulators and phytoestrogens may be promising treatments for AD for their neuroprotective and anti-apoptotic properties. These alternatives may offer fewer side effects compared to traditional hormone therapies, which are associated with risks such as cardiovascular diseases, cancer, and metabolic dysfunctions. This review sheds light on estrogen-based treatments that may help to partially prevent or control the neurodegenerative processes characteristic of AD, paving the way for further investigation in the development of estrogen-based treatments.


Assuntos
Doença de Alzheimer , Receptores de Estrogênio , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Receptores de Estrogênio/metabolismo , Animais , Estrogênios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fitoestrógenos/uso terapêutico , Fitoestrógenos/farmacologia , Fitoestrógenos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia
5.
J Steroid Biochem Mol Biol ; 243: 106581, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38997071

RESUMO

Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERß. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Receptores de Estrogênio/metabolismo
6.
Expert Opin Ther Pat ; 34(5): 333-350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38836316

RESUMO

INTRODUCTION: Breast cancer is the most frequently diagnosed cancer worldwide. With around 70% of breast cancers expressing the estrogen receptor (ER), molecules capable of antagonizing and degrading ER (SERDs) or covalently binding to and antagonizing ER (SERCAs) are at the forefront of efforts to bring better treatments to patients. AREAS COVERED: This review summarizes patent applications that claim estrogen receptor degraders (SERDs) and covalent antagonists (SERCAs) identified using SciFinder between the period July 2021 to December 2023. A total of 91 new patent applications from 32 different applicants are evaluated with stratification into acidic SERDs, basic SERDs, SERCAs and miscellaneous degraders. EXPERT OPINION: The widespread adoption of fulvestrant in the treatment of ER+ breast cancer continues to stimulate research into orally bioavailable SERDs and SERCAs. A number of molecules have entered clinical development and, although some have been discontinued, a cohort of potential new treatments have generated encouraging efficacy and safety data. Notably, the first example of an oral SERD, elacestrant, has now been approved by the FDA and EMA, providing further encouragement for this class of targeted therapies.


Assuntos
Neoplasias da Mama , Desenvolvimento de Medicamentos , Patentes como Assunto , Receptores de Estrogênio , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Receptores de Estrogênio/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Terapia de Alvo Molecular , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Antineoplásicos Hormonais/farmacologia
7.
Schizophr Res ; 267: 432-440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642484

RESUMO

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Assuntos
Modelos Animais de Doenças , Maleato de Dizocilpina , Estradiol , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Inibição Pré-Pulso , Cloridrato de Raloxifeno , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Feminino , Estradiol/farmacologia , Cloridrato de Raloxifeno/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Poli I-C/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Atividade Motora/efeitos dos fármacos
8.
Exp Eye Res ; 242: 109879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570182

RESUMO

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Iodatos , Camundongos Endogâmicos C57BL , Degeneração Retiniana , Tamoxifeno , Tomografia de Coerência Óptica , Animais , Iodatos/toxicidade , Camundongos , Tomografia de Coerência Óptica/métodos , Tamoxifeno/farmacologia , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Rodopsina/metabolismo , Rodopsina/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
9.
Expert Rev Anticancer Ther ; 24(6): 397-405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642015

RESUMO

INTRODUCTION: Estrogen receptor positive (ER+) breast cancer is the most common breast cancer subtype, and therapeutic management relies primarily on inhibiting ER signaling. In the metastatic setting, ER signaling is typically targeted by selective estrogen receptor degraders (SERDs) or aromatase inhibitors (AIs), the latter of which prevent estrogen production. Activating ESR1 mutations are among the most common emergent breast cancer mutations and confer resistance to AIs. AREAS COVERED: Until 2023, fulvestrant was the only approved SERD; fulvestrant is administered intramuscularly, and in some cases may also have limited efficacy in the setting of certain ESR1 mutations. In 2023, the first oral SERD, elacestrant, was approved for use in ESR1-mutated, ER+/HER2- advanced breast cancer and represents a new class of therapeutic options. While the initial approval was as monotherapy, ongoing studies are evaluating elacestrant (as well as other oral SERDs) in combination with other therapies including CDK4/6 inhibitors and PI3K inhibitors, which parallels the current combination uses of fulvestrant. EXPERT OPINION: Elacestrant's recent approval sheds light on the use of biomarkers such as ESR1 to gauge a tumor's endocrine sensitivity. Ongoing therapeutic and correlative biomarker studies will offer new insight and expanding treatment options for patients with advanced breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Administração Oral , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Animais , Mutação , Fulvestranto/administração & dosagem , Fulvestranto/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
10.
Eur J Med Chem ; 270: 116393, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588626

RESUMO

Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Antagonistas de Estrogênios/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Resistencia a Medicamentos Antineoplásicos
11.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431238

RESUMO

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismo
12.
Sci Rep ; 14(1): 3043, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321096

RESUMO

Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Antígeno CTLA-4 , Antígeno B7-H1 , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptor de Morte Celular Programada 1 , Moduladores de Receptor Estrogênico , Quercetina , Imunoterapia , Neoplasias/terapia
13.
Eur J Pharmacol ; 969: 176424, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402929

RESUMO

The therapeutic landscape of estrogen receptor (ER)-positive breast cancer includes endocrine treatments with aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), and selective estrogen receptor degraders (SERDs). Fulvestrant is the first approved SERD with proven efficacy and good tolerability in clinical practice. However, drug resistance, low receptor affinity, and parental administration stimulated the search for new oral SERDs opening a new therapeutic era in ER + breast cancer. Elacestrant is an orally bioavailable SERD that has been recently approved by the FDA for postmenopausal women with ER+, human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy. Other molecules of the same class currently tested in clinical trials are amcenestrant, giredestrant, camizestrant, and imlunestrant. The current review article offers a detailed pharmacological perspective of this emerging drug class, which may help with their possible future clinical applications.


Assuntos
Neoplasias da Mama , Neoplasias Bucais , Feminino , Humanos , Neoplasias da Mama/patologia , Fulvestranto , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Neoplasias Bucais/tratamento farmacológico
14.
Breast Cancer Res Treat ; 203(2): 383-396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847455

RESUMO

PURPOSE: Estrogen Receptor α (ERα) is a well-established therapeutic target for Estrogen Receptor (ER)-positive breast cancers. Both Selective Estrogen Receptor Degraders (SERD) and PROTAC ER degraders are synthetic compounds suppressing the ER activity through the degradation of ER. However, the differences between SERD and PROTAC ER degraders are far from clear. METHODS: The effect of PROTAC ER degrader ERD-148 and SERD fulvestrant on protein degradation was evaluated by western blot analysis. The cell proliferation was tested by WST-8 assays and the gene expressions were assessed by gene microarray and real-time RT-PCR analysis after the compound treatment. RESULTS: ERD-148 is a potent and selective PROTAC ERα degrader. It degrades not only unphosphorylated ERα but also the phosphorylated ERα in the cells. In contrast, the SERD fulvestrant showed much-reduced degradation potency on the phosphorylated ERα. The more complete degradation of ERα by ERD-148 translates into a greater maximum cell growth inhibition. However, ERD-148 and fulvestrant share a similar gene regulation profile except for the variation of regulation potency. Further studies indicate that ERD-148 degrades the ERα in fulvestrant-resistant cells. CONCLUSION: PROTAC ER degrader has a different mechanism of action compared to SERD which may be used in treating fulvestrant-resistant cancers.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia
15.
Drug Dev Res ; 85(1): e22127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877739

RESUMO

Estrogen receptor is an important target in breast cancer. Serotonin receptors (5-HT2A and 5-HT2C , in particular) were investigated for a potential role in development and progression of breast cancer. Ligands that interact with estrogenic receptors influence the emotional state of females. Thus, designing selective estrogen receptor modulator (SERM) analogs with potential serotonergic activity is a plausible approach. The dual ligands can augment cytotoxic effect of SERMs, help in both physical and emotional menopausal symptom relief, enhance cognitive function and support bone health. Herein, we report triarylethylene analogs as potential candidates for treatment of breast cancer. Compound 2e showed (ERα relative ß- galactosidase activity = 0.70), 5-HT2A (Ki = 0.97 µM), and 5-HT2C (Ki = 3.86 µM). It was more potent on both MCF-7 (GI50 = 0.27 µM) and on MDA-MB-231 (GI50 = 1.86 µM) compared to tamoxifen (TAM). Compound 4e showed 40 times higher antiproliferative activity on MCF-7 and 15 times on MDA-MBA compared to TAM. Compound 4e had higher average potency than TAM on all nine tested cell line panels. Our in-silico model revealed the binding interactions of compounds 2 and 2e in the three receptors; further structural modifications are suggested to optimize binding to the ERα, 5-HT2A , and 5-HT2C .


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Feminino , Humanos , Receptor alfa de Estrogênio/metabolismo , Serotonina , Tamoxifeno , Antagonistas de Estrogênios , Neoplasias da Mama/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptores de Estrogênio/metabolismo
16.
Eur J Med Chem ; 264: 115934, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007911

RESUMO

Breast cancer is one of the most common malignant tumors in women worldwide, with the majority of cases showing expression of estrogen receptors (ERs). Although drugs targeting ER have significantly improved survival rates in ER-positive patients, drug resistance remains an unmet clinical need. Fulvestrant, which overcomes selective estrogen receptor modulator (SERM) and AI (aromatase inhibitor) resistance, is currently the only long-acting selective estrogen receptor degrader (SERD) approved for both first and second-line settings. However, it fails to achieve satisfactory efficacy due to its poor solubility. Therefore, we designed and synthesized a series of novel scaffold (THC) derivatives, identifying their activities as ER antagonists and degraders. G-5b, the optimal compound, exhibited binding, antagonistic, degradation or anti-proliferative activities comparable to fulvestrant in ER+ wild type and mutants breast cancer cells. Notably, G-5b showed considerably improved stability and solubility. Research into the underlying mechanism indicated that G-5b engaged the proteasome pathway to degrade ER, subsequently inhibiting the ER signaling pathway and leading to the induction of apoptosis and cell cycle arrest events. Furthermore, G-5b displayed superior in vivo pharmacokinetics and pharmacodynamics properties, coupled with a favorable safety profile in the MCF-7 tamoxifen-resistant (MCF-7/TR) tumor xenograft model. Collectively, G-5b has emerged as a highly promising lead compound, offering potent antagonistic and degradation activities, positioning it as a novel long-acting SERD worthy of further refinement and optimization.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Antagonistas do Receptor de Estrogênio , Fulvestranto , Antagonistas de Estrogênios/farmacologia , Tamoxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/metabolismo
17.
Future Med Chem ; 15(15): 1427-1442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37706220

RESUMO

Tamoxifen, a triphenylethylene-based selective estrogen-receptor modulator, is a landmark drug for the treatment of breast cancer and is also used for treating liver cancer and osteoporosis. Structural studies of tamoxifen have led to the synthesis of more than 20 novel tamoxifen analogs as receptor modulators, including 16 ERα modulators 2-17, an ERRß inverse agonist 19 and six ERRγ inverse agonists 20-25. This paper summarizes the research progress and structure-activity relationships of tamoxifen analogs modulating these three nuclear receptors reported in the literature, and introduces the relationship between these three nuclear receptor-mediated diseases and tamoxifen analogs to guide the research of novel tamoxifen analogs.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Agonismo Inverso de Drogas , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Receptor alfa de Estrogênio , Receptores de Estrogênio/química , Receptores de Estrogênio/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
18.
Eur J Med Chem ; 259: 115654, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467618

RESUMO

Osteoporosis is a metabolic bone disorder typified by a reduction in bone mass and structural degradation of bone tissue, leading to heightened fragility and vulnerability to fractures. The incidence of osteoporosis increases with age, making it a significant public health challenge. The pathogenesis of osteoporosis involves an imbalance between osteoblast-mediated bone formation and resorption. The current treatment options for osteoporosis include bisphosphonates, hormone replacement therapy (HRT), selective estrogen receptor modulators (SERMs), and denosumab. The recent advances in small-molecule drugs for the clinical treatment of osteoporosis offer promising options for improving bone health and reducing fracture risk. This review aims to provide an overview of the clinical applications and synthetic routes of representative small-molecule drugs for the treatment of osteoporosis. A comprehensive understanding of the synthetic methods of drug molecules for osteoporosis may inspire the development of new, more effective, and practical synthetic techniques for treating this condition.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose/tratamento farmacológico , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia
19.
Biomed Pharmacother ; 165: 115008, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442065

RESUMO

Raloxifene belongs to the family of Selective Estrogen Receptor Modulators (SERMs), which are drugs widely prescribed for Estrogen Receptor alpha (ERα)-related pathologies. Recently, SERMs are being tested in repurposing strategies for ERα-independent clinical indications, including a wide range of microbial infections. Macrophages are central in the fight against pathogen invasion. Despite estrogens have been shown to regulate macrophage phenotype, SERMs activity in these cells is still poorly defined. We investigated the activity of Raloxifene in comparison with another widely used SERM, Tamoxifen, on immune gene expression in macrophages obtained from mouse and human tissues, including mouse peritoneal macrophages, bone marrow-derived macrophages, microglia or human blood-derived macrophages, assaying for the involvement of the ERα, PI3K and NRF2 pathways also under inflammatory conditions. Our data demonstrate that Raloxifene acts by a dual mechanism, which entails ERα antagonism and off-target mediators. Moreover, micromolar concentrations of Raloxifene increase the expression of immune metabolic genes, such as Vegfa and Hmox1, through PI3K and NRF2 activation selectively in peritoneal macrophages. Conversely, Il1b mRNA down-regulation by SERMs is consistently observed in all macrophage subtypes and unrelated to the PI3K/NRF2 system. Importantly, the production of the inflammatory cytokine TNFα induced by the bacterial endotoxin, LPS, is potentiated by SERMs and paralleled by the cell subtype-specific increase in IL1ß secretion. This work extends our knowledge on the biological and molecular mechanisms of SERMs immune activity and indicate macrophages as a pharmacological target for the exploitation of the antimicrobial potential of these drugs.


Assuntos
Cloridrato de Raloxifeno , Moduladores Seletivos de Receptor Estrogênico , Camundongos , Humanos , Animais , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação para Baixo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tamoxifeno/farmacologia , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
20.
J Med Chem ; 66(13): 8339-8381, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37377342

RESUMO

Estrogen receptor alpha (ERα) is a well-established therapeutic target for the treatment of ER-positive (ER+) breast cancers. Despite the tremendous successes achieved with tamoxifen, a selective ER modulator, and aromatase inhibitors (AIs), resistance to these therapies is a major clinical problem. Therefore, induced protein degradation and covalent inhibition have been pursued as new therapeutic approaches to target ERα. This Perspective summarizes recent progress in the discovery and development of oral selective ER degraders (SERDs), complete estrogen receptor antagonists (CERANs), selective estrogen receptor covalent antagonists (SERCAs), and proteolysis targeting chimera (PROTAC) ER degraders. We focus on those compounds which have been advanced into clinical development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Antagonistas de Estrogênios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...