Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.439
Filtrar
1.
Nat Commun ; 15(1): 8153, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300061

RESUMO

Limb reduction has occurred multiple times in tetrapod history. Among ratites, wing reductions range from mild vestigialization to complete loss, with emus (Dromaius novaehollandiae) serving as a model for studying the genetic mechanisms behind limb reduction. Here, we explore the developmental mechanisms underlying wing reduction in emu. Our analyses reveal that immobilization resulting from the absence of distal muscles contributes to skeletal shortening, fusion and left-right intraindividual variation. Expression analysis and single cell-RNA sequencing identify muscle progenitors displaying a dual lateral plate mesodermal and myogenic signature. These cells aggregate at the proximal region of wing buds and undergo cell death. We propose that this cell death, linked to the lack of distal muscle masses, underlines the morphological features and variability in skeletal elements due to reduced mechanical loading. Our results demonstrate that differential mobility during embryonic development may drive morphological diversification in vestigial structures.


Assuntos
Morte Celular , Dromaiidae , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais , Animais , Asas de Animais/metabolismo , Dromaiidae/genética , Morte Celular/genética , Mesoderma/metabolismo , Músculo Esquelético/metabolismo , Padronização Corporal/genética , Mioblastos/metabolismo , Mioblastos/citologia
2.
Neuromolecular Med ; 26(1): 39, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278970

RESUMO

BACKGROUND: Ischemic stroke (IS) is a severe neurological disorder with a pathogenesis that remains incompletely understood. Recently, a novel form of cell death known as disulfidptosis has garnered significant attention in the field of ischemic stroke research. This study aims to investigate the mechanistic roles of disulfidptosis-related genes (DRGs) in the context of IS and to examine their correlation with immunopathological features. METHODS: To enhance our understanding of the mechanistic underpinnings of disulfidptosis in IS, we initially retrieved the expression profile of peripheral blood from human IS patients from the GEO database. We then utilized a suite of machine learning algorithms, including LASSO, random forest, and SVM-RFE, to identify and validate pivotal genes. Furthermore, we developed a predictive nomogram model, integrating multifactorial logistic regression analysis and calibration curves, to evaluate the risk of IS. For the analysis of single-cell sequencing data, we employed a range of analytical tools, such as "Monocle" and "CellChat," to assess the status of immune cell infiltration and to characterize intercellular communication networks. Additionally, we utilized an oxygen-glucose deprivation (OGD) model to investigate the effects of SLC7A11 overexpression on microglial polarization. RESULTS: This study successfully identified key genes associated with disulfidptosis and developed a reliable nomogram model using machine learning algorithms to predict the risk of ischemic stroke. Examination of single-cell sequencing data showed a robust correlation between disulfidptosis levels and the infiltration of immune cells. Furthermore, "CellChat" analysis elucidated the intricate characteristics of intercellular communication networks. Notably, the TNF signaling pathway was found to be intimately linked with the disulfidptosis signature in ischemic stroke. In an intriguing finding, the OGD model demonstrated that SLC7A11 expression suppresses M1 polarization while promoting M2 polarization in microglia. CONCLUSION: The significance of our findings lies in their potential to shed light on the pathogenesis of ischemic stroke, particularly by underscoring the pivotal role of disulfidptosis-related genes (DRGs). These insights could pave the way for novel therapeutic strategies targeting DRGs to mitigate the impact of ischemic stroke.


Assuntos
AVC Isquêmico , Aprendizado de Máquina , Análise de Célula Única , AVC Isquêmico/genética , Humanos , Microglia/metabolismo , Animais , Algoritmos , Camundongos , Nomogramas , Morte Celular/genética , Transcriptoma , Masculino
3.
Nat Commun ; 15(1): 8002, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266533

RESUMO

The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.


Assuntos
Sistema de Sinalização das MAP Quinases , Mutação , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas p21(ras) , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Feminino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sistema de Sinalização das MAP Quinases/genética , Morte Celular/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Nus , Proteínas dos Microfilamentos
4.
J Ovarian Res ; 17(1): 180, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232764

RESUMO

Pannexin1 (PANX1) is a highly glycosylated membrane channel-forming protein, which has been found to implicate in multiple physiological and pathophysiological functions. Variants in the PANX1 gene have been reported to be associated with oocyte death and recurrent in vitro fertilization failure. In this study, we identified a novel heterozygous PANX1 variant (NM_015368.4 c.410 C > T (p.Ser137Leu)) associated with the phenotype of oocyte death in a non-consanguineous family, followed by an autosomal dominant (AD) mode. We explored the molecular mechanism of the novel variant and the variant c.976_978del (p.Asn326del) that we reported previously. Both of the variants altered the PANX1 glycosylation pattern in cultured cells, led to aberrant PANX1 channel activation, affected ATP release and membrane electrophysiological properties, which resulted in mouse and human oocyte death in vitro. For the first time, we presented the direct evidence of the effect of the PANX1 variants on human oocyte development. Our findings expand the variant spectrum of PANX1 genes associated with oocyte death and provide new support for the genetic diagnosis of female infertility.


Assuntos
Morte Celular , Conexinas , Heterozigoto , Infertilidade Feminina , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Oócitos , Humanos , Oócitos/metabolismo , Feminino , Conexinas/genética , Conexinas/metabolismo , Infertilidade Feminina/genética , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Morte Celular/genética , Linhagem , Adulto , Glicosilação
5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273285

RESUMO

Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Morte Celular/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 14(1): 19294, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164344

RESUMO

Lumbar disc herniation (LDH) is a common clinical spinal disorder, yet its etiology remains unclear. We aimed to explore the role of cuproptosis-related genes (CRGs) and identify potential diagnostic biomarkers. Our analysis involved interrogating the GSE124272 and GSE150408 datasets for differential gene expression profiles associated with CRGs and immune characteristics. Molecular clustering was performed on LDH samples, followed by expression and immune infiltration analyses. Using the WGCNA algorithm, specific genes within CRG clusters were identified. After selecting the most predictive genes from the optimal model, four machine learning models were constructed and validated. This study identified nine CRGs associated with copper-regulated cell death. Two copper-containing molecular clusters linked to death were detected in LDH samples. Elevated expression and immune infiltration levels were found in LDH patients, particularly in CRG cluster C2. Utilizing XGB, five genes were identified for constructing a diagnostic model, achieving an area under the curve values of 0.715. In conclusion, this research provides valuable insights into the association between LDH and copper-regulated cell death, alongside proposing a promising predictive model.


Assuntos
Cobre , Deslocamento do Disco Intervertebral , Aprendizado de Máquina , Deslocamento do Disco Intervertebral/genética , Humanos , Perfilação da Expressão Gênica , Vértebras Lombares/patologia , Análise por Conglomerados , Biomarcadores , Morte Celular/genética , Transcriptoma
7.
New Phytol ; 244(1): 318-331, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39081031

RESUMO

Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.


Assuntos
Morte Celular , Cobre , Éxons , Regulação da Expressão Gênica de Plantas , Integrases , Nicotiana , Plantas Geneticamente Modificadas , Transgenes , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Integrases/metabolismo , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cobre/farmacologia , Cobre/toxicidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167355, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39009172

RESUMO

BACKGROUND: HOIP is the catalytic subunit of the E3 ligase complex (linear ubiquitin chain assembly complex), which is able to generate linear ubiquitin chains. However, the role of rare HOIP functionally deficient variants remains unclear. The pathogenic mechanism and the relationship with immune deficiency phenotypes remain to be clarified. METHODS: Based on a next-generation sequencing panel of 270 genes, we identified a HOIP deletion variant that causes common variable immunodeficiency disease. Bioinformatics analysis and cell-based experiments were performed to study the molecular mechanism by which the variant causes immunodeficiency diseases. FINDINGS: A homozygous loss-of-function variant in HOIP was identified. The variant causes a frameshift and generates a premature termination codon in messenger RNA, resulting in a C-terminal truncated HOIP mutant, that is, the loss of the linear ubiquitin chain-specific catalytic domain. The truncated HOIP mutant has impaired E3 ligase function in linear ubiquitination, leading to the suppression of canonical NF-κB signalling and increased TNF-induced multiple forms of cell death. INTERPRETATION: The loss-of-function HOIP variant accounts for the immune deficiencies. The canonical NF-κB pathway and cell death are involved in the pathogenesis of the disease. FUNDING: This study was funded by the National Natural Science Foundation of China (No. 82270444 and 81501851). RESEARCH IN CONTEXT: Evidence before this study LUBAC is the only known linear ubiquitin chain assembly complex for which HOIP is an essential catalytic subunit. Three HOIP variants have now been identified in two immunodeficient patients and functionally characterised. However, there have been no reports on the pathogenicity of only catalytic domain deletion variants in humans, or the pathogenic mechanisms of catalytic domain deletion variants. Added value of this study We report the first case of an autosomal recessive homozygous deletion variant that results in deletion of the HOIP catalytic structural domain. We demonstrate that this variant is a loss-of-function variant using a heterologous expression system. The variant has impaired E3 ligase function. It can still bind to other subunits of LUBAC, but it fails to generate linear ubiquitin chains. We also explored the underlying mechanisms by which this variant leads to immunodeficiency. The variant attenuates the canonical NF-κB and MAPK signalling cascades and increases the sensitivity of TNFα-induced diverse cell death and activation of mitochondrial apoptosis pathways. These findings provide support for the treatment and drug development of patients with inborn errors of immunity in HOIP and related signalling pathways. Implications of all the available evidence First, this study expands the HOIP pathogenic variant database and phenotypic spectrum. Furthermore, studies on the biological functions of pathogenic variants in relation to the NF-κB signalling pathway and cell death provided new understanding into the genetic basis and pathogenesis of HOIP-deficient immune disease, indicating the necessity of HOIP and related signalling pathway variants as diagnostic targets in patients with similar genetic deficiency phenotypes..


Assuntos
Mutação da Fase de Leitura , NF-kappa B , Transdução de Sinais , Fator de Necrose Tumoral alfa , Ubiquitina-Proteína Ligases , Feminino , Humanos , Masculino , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células HEK293 , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Criança , Linhagem
9.
Front Immunol ; 15: 1410603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044829

RESUMO

Introduction: Hepatocellular carcinoma (HCC), representing more than 80% of primary liver cancer cases, lacks satisfactory etiology and diagnostic methods. This study aimed to elucidate the role of programmed cell death-associated genes (CDRGs) in HCC by constructing a diagnostic model using single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data. Methods: Six categories of CDRGs, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA-seq data from blood-derived exosomes were sourced from the exoRBase database, RNA-seq data from cancer tissues from the TCGA database, and scRNA-seq data from the GEO database. Subsequently, we intersected the differentially expressed genes (DEGs) of the HCC cohort from exoRBase and TCGA databases with CDRGs, as well as DEGs obtained from single-cell datasets. Candidate biomarker genes were then screened using clinical indicators and a machine learning approach, resulting in the construction of a seven-gene diagnostic model for HCC. Additionally, scRNA-seq and spatial transcriptome sequencing (stRNA-seq) data of HCC from the Mendeley data portal were used to investigate the underlying mechanisms of these seven key genes and their association with immune checkpoint blockade (ICB) therapy. Finally, we validated the expression of key molecules in tissues and blood-derived exosomes through quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry experiments. Results: Collectively, we obtained a total of 50 samples and 104,288 single cells. Following the meticulous screening, we established a seven-gene diagnostic model for HCC, demonstrating high diagnostic efficacy in both the exoRBase HCC cohort (training set: AUC = 1; testing set: AUC = 0.847) and TCGA HCC cohort (training set: AUC = 1; testing set: AUC = 0.976). Subsequent analysis revealed that HCC cluster 3 exhibited a higher stemness index and could serve as the starting point for the differentiation trajectory of HCC cells, also displaying more abundant interactions with other cell types in the microenvironment. Notably, key genes TRIB3 and NQO1 displayed elevated expression levels in HCC cells. Experimental validation further confirmed their elevated expression in both tumor tissues and blood-derived exosomes of cancer patients. Additionally, stRNA analysis not only substantiated these findings but also suggested that patients with high TRIB3 and NQO1 expression might respond more favorably to ICB therapy. Conclusions: The seven-gene diagnostic model demonstrated remarkable accuracy in HCC screening, with TRIB3 emerging as a promising diagnostic tool and therapeutic target for HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Análise de Célula Única , Morte Celular/genética , Transcriptoma , Exossomos/metabolismo , Exossomos/genética , Multiômica
10.
Cell Biol Toxicol ; 40(1): 61, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075259

RESUMO

Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.


Assuntos
Sistemas CRISPR-Cas , Morte Celular , Neoplasias , Medicina de Precisão , Humanos , Neoplasias/genética , Neoplasias/terapia , Sistemas CRISPR-Cas/genética , Medicina de Precisão/métodos , Morte Celular/genética , Transdução de Sinais/genética , Edição de Genes/métodos , Apoptose/genética , Mutação/genética , Animais
11.
Mol Metab ; 86: 101973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914291

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW: Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS: We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Predisposição Genética para Doença , Animais , Morte Celular/genética , Estudo de Associação Genômica Ampla
12.
Apoptosis ; 29(9-10): 1309-1329, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38886311

RESUMO

Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.


Assuntos
Morte Celular , Humanos , Morte Celular/genética , Animais , Apoptose/genética , NADP/metabolismo , Autofagia/genética , Glucose/metabolismo , Ferroptose/genética
13.
Wiley Interdiscip Rev RNA ; 15(3): e1862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837618

RESUMO

Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Morte Celular , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Animais , Morte Celular/genética , Caspases/metabolismo , Caspases/genética , Transdução de Sinais , Apoptose/genética
14.
Front Biosci (Landmark Ed) ; 29(6): 233, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940043

RESUMO

BACKGROUND: This study investigated the mechanism by which tazarotene-induced gene 1 (TIG1) inhibits melanoma cell growth. The main focus was to analyze downstream genes regulated by TIG1 in melanoma cells and its impact on cell growth. METHODS: The effects of TIG1 expression on cell viability and death were assessed using water-soluble tetrazolium 1 (WST-1) mitochondrial staining and lactate dehydrogenase release assays. RNA sequencing and Western blot analysis were employed to investigate the genes regulated by TIG1 in melanoma cells. Additionally, the correlation between TIG1 expression and its downstream genes was analyzed in a melanoma tissue array. RESULTS: TIG1 expression in melanoma cells was associated with decreased cell viability and increased cell death. RNA-sequencing (RNA-seq), quantitative reverse transcription PCR (reverse RT-QPCR), and immunoblots revealed that TIG1 expression induced the expression of Endoplasmic Reticulum (ER) stress response-related genes such as Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (HERPUD1), Binding immunoglobulin protein (BIP), and DNA damage-inducible transcript 3 (DDIT3). Furthermore, analysis of the melanoma tissue array revealed a positive correlation between TIG1 expression and the expression of HERPUD1, BIP, and DDIT3. Additionally, attenuation of the ER stress response in melanoma cells weakened the impact of TIG1 on cell growth. CONCLUSIONS: TIG1 expression effectively hinders the growth of melanoma cells. TIG1 induces the upregulation of ER stress response-related genes, leading to an increase in caspase-3 activity and subsequent cell death. These findings suggest that the ability of retinoic acid to prevent melanoma formation may be associated with the anticancer effect of TIG1.


Assuntos
Sobrevivência Celular , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Melanoma , Humanos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Morte Celular/genética , Apoptose/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana
15.
Sci Rep ; 14(1): 14667, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918587

RESUMO

Bladder urothelial carcinoma (BLCA) presents a persistent challenge in clinical management. Despite recent advancements demonstrating the BLCA efficacy of immune checkpoint inhibitors (ICI) in BLCA patients, there remains a critical need to identify and expand the subset of individuals who benefit from this treatment. Mitochondria, as pivotal regulators of various cell death pathways in eukaryotic cells, exert significant influence over tumor cell fate and survival. In this study, our objective was to investigate biomarkers centered around mitochondrial function and cell death mechanisms to facilitate prognostic prediction and guide therapeutic decision-making in BLCA. Utilizing ssGSEA and LASSO regression, we developed a prognostic signature termed mitochondrial function and cell death (mtPCD). Subsequently, we evaluated the associations between mtPCD score and diverse clinical outcomes, including prognosis, functional pathway enrichment, immune cell infiltration, immunotherapy response analysis and drug sensitivity, within high- and low-risk subgroups. Additionally, we employed single-cell level functional assays, RT-qPCR, and immunohistochemistry to validate the differential expression of genes comprising the mtPCD signature. The mtPCD signature comprises a panel of 10 highly influential genes, strongly correlated with survival outcomes in BLCA patients and exhibiting robust predictive capabilities. Importantly, individuals classified as high-risk according to mtPCD score displayed a subdued overall immune response, characterized by diminished immunotherapeutic efficacy. In summary, our findings highlight the development of a novel prognostic signature, which not only holds promise as a biomarker for BLCA prognosis but also offers insights into the immune landscape of BLCA. This paradigm may pave the way for personalized treatment strategies in BLCA management.


Assuntos
Biomarcadores Tumorais , Mitocôndrias , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos , Prognóstico , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Morte Celular/genética , Masculino , Perfilação da Expressão Gênica
16.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916773

RESUMO

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Assuntos
Forminas , Mitose , Podócitos , Transcriptoma , Humanos , Mitose/genética , Podócitos/metabolismo , Podócitos/patologia , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Morte Celular/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , Mutação , Núcleo Celular/metabolismo , Núcleo Celular/genética , Linhagem Celular
17.
Neoplasia ; 54: 101009, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850836

RESUMO

BACKGROUND: Lipid metabolism and regulated cell death (RCD) play a role in the remodeling of tumor immune microenvironment and regulation of cancer progression. Since the underlying immune mechanisms of colon cancer remain elusive, this study aims to identify potential therapeutic target genes. METHODS: Differential genes related to lipid metabolism and RCD in COAD patients were identified using R language and online tools. Based on the expression of genes, two groups were classified using consensus clustering. CIBERSORT and ssGSEA were used to detect immune infiltration in both groups. Prognostic signature genes for colon cancer were screened using machine learning algorithms. KEGG, GO and GSEA for gene pathway enrichment. In addition, interacting genes in the immune module were obtained using a weighted gene co-expression network (WGCNA). Finally, expression and mutation of key in colon cancer genes were detected using TIMER, HPR, cBioPortal website and qPCR. RESULTS: The consensus clustering analysis revealed that 231 relevant differential genes were highly associated with immune infiltration. A series of machine learning and website analyses identified AGT as a hub gene linked to lipid metabolism and regulated cell death, which is overexpressed in colon cancer. CONCLUSION: AGT, as a signature gene of lipid metabolism and regulated cell death, plays a critical role in the development of COAD and is associated with tumor immune infiltration.


Assuntos
Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos , Microambiente Tumoral , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Metabolismo dos Lipídeos/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Morte Celular/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma
18.
Nat Commun ; 15(1): 4920, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858353

RESUMO

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase , Células Estromais , Útero , Feminino , Animais , Útero/metabolismo , Células Estromais/metabolismo , Camundongos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Interferons/metabolismo , Interferons/genética , Retrovirus Endógenos/genética , Apoptose/genética , Camundongos Endogâmicos C57BL , Morte Celular/genética , Necroptose/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Histonas/metabolismo , Análise de Célula Única , Camundongos Knockout , Diferenciação Celular/genética
19.
Sci Rep ; 14(1): 12749, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830963

RESUMO

Keratoconus is corneal disease in which the progression of conical dilation of cornea leads to reduced visual acuity and even corneal perforation. However, the etiology mechanism of keratoconus is still unclear. This study aims to identify the signature genes related to cell death in keratoconus and examine the function of these genes. A dataset of keratoconus from the GEO database was analysed to identify the differentially expressed genes (DEGs). A total of 3558 DEGs were screened from GSE151631. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they mainly involved in response to hypoxia, cell-cell adhesion, and IL-17 signaling pathway. Then, the cell death-related genes datasets were intersected with the above 3558 DEGs to obtain 70 ferroptosis-related DEGs (FDEGs), 32 autophagy-related DEGs (ADEGs), six pyroptosis-related DEGs (PDEGs), four disulfidptosis-related DEGs (DDEGs), and one cuproptosis-related DEGs (CDEGs). After using Least absolute shrinkage and selection operator (LASSO), Random Forest analysis, and receiver operating characteristic (ROC) curve analysis, one ferroptosis-related gene (TNFAIP3) and five autophagy-related genes (CDKN1A, HSPA5, MAPK8IP1, PPP1R15A, and VEGFA) were screened out. The expressions of the above six genes were significantly decreased in keratoconus and the area under the curve (AUC) values of these genes was 0.944, 0.893, 0.797, 0.726, 0.882 and 0.779 respectively. GSEA analysis showed that the above six genes mainly play an important role in allograft rejection, asthma, and circadian rhythm etc. In conclusion, the results of this study suggested that focusing on these genes and autoimmune diseases will be a beneficial perspective for the keratoconus etiology research.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Ceratocone , Ceratocone/genética , Ceratocone/patologia , Humanos , Biologia Computacional/métodos , Ontologia Genética , Morte Celular/genética , Redes Reguladoras de Genes , Ferroptose/genética , Bases de Dados Genéticas , Transcriptoma , Mapas de Interação de Proteínas/genética
20.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847472

RESUMO

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioma , Aprendizado de Máquina , Nomogramas , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Morte Celular/genética , Masculino , Feminino , Curva ROC , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...