Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.915
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1448104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239637

RESUMO

The chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in people with cystic fibrosis (CF). Within CF lungs, P. aeruginosa persists in the conducting airways together with human mucins as the most abundant structural component of its microenvironment. We investigated the adhesion of 41 serial CF airway P. aeruginosa isolates to airway mucin preparations from CF sputa. Mucins and bacteria were retrieved from five modulator-naïve patients with advanced CF lung disease. The P. aeruginosa isolates from CF airways and non-CF reference strains showed a strain-specific signature in their adhesion to ovine, porcine and bovine submaxillary mucins and CF airway mucins ranging from no or low to moderate and strong binding. Serial CF clonal isolates and colony morphotypes from the same sputum sample were as heterogeneous in their affinity to mucin as representatives of other clones thus making 'mucin binding' one of the most variable intraclonal phenotypic traits of P. aeruginosa known to date. Most P. aeruginosa CF airway isolates did not adhere more strongly to CF airway mucins than to plastic surfaces. The strong binders, however, exhibited a strain-specific affinity gradient to O-glycans, CF airway and mammalian submaxillary mucins.


Assuntos
Aderência Bacteriana , Fibrose Cística , Mucinas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Escarro , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Mucinas/metabolismo , Humanos , Animais , Escarro/microbiologia , Infecções por Pseudomonas/microbiologia , Suínos , Bovinos , Ovinos
2.
Sci Rep ; 14(1): 21350, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266622

RESUMO

Native mucus is heterogeneous, displays high inter-individual variation and is prone to changes during harvesting and storage. To overcome the lack of reproducibility and availability of native mucus, commercially available purified mucins, porcine gastric mucin (PGM) and mucin from bovine submaxillary gland (BSM), have been widely used. However, the question is to which extent the choice of mucin matters in studies of their interaction with polymers as their composition, structure and hence physicochemical properties differ. Accordingly, the interactions between PGM or BSM with two widely used polymers in drug delivery, polyethylene oxide and chitosan, was studied with orthogonal methods: turbidity, dynamic light scattering, and quartz crystal microbalance with dissipation monitoring. Polymer binding and adsorption to the two commercially available and purified mucins, PGM and BSM, is different depending on the mucin type. PEO, known to interact weakly with mucin, only displayed limited interaction with both mucins as confirmed by all employed methods. In contrast, chitosan was able to bind to both PGM and BSM. Interestingly, the results suggest that chitosan interacts with BSM to a greater extent than with PGM indicating that the choice of mucin, PGM or BSM, can affect the outcome of studies of mucin interactions with polymers.


Assuntos
Quitosana , Mucinas Gástricas , Mucinas , Glândula Submandibular , Animais , Bovinos , Suínos , Quitosana/química , Quitosana/metabolismo , Glândula Submandibular/metabolismo , Glândula Submandibular/química , Mucinas Gástricas/metabolismo , Mucinas Gástricas/química , Mucinas/metabolismo , Mucinas/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polímeros/química , Polímeros/metabolismo , Estômago/química
3.
Appl Environ Microbiol ; 90(9): e0123524, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39133001

RESUMO

Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N-acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE: Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria's access to carbohydrate components.


Assuntos
Bactérias , Aderência Bacteriana , Microbioma Gastrointestinal , Animais , Suínos , Humanos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Mucinas/metabolismo , Mucinas Gástricas/metabolismo
4.
J Ovarian Res ; 17(1): 161, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118097

RESUMO

Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.


Assuntos
Imunoconjugados , Mucinas , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Mucinas/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
5.
Langmuir ; 40(36): 18977-18987, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39169607

RESUMO

The crucial role of zwitterionic phosphatidylcholines (PC) within mucus gel is essential for maintaining intestinal homeostasis, while the underlying mechanism remains incompletely understood. Herein, we compared the dynamic interfacial adsorption behavior of saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated dioleoylphosphatidylcholine (DOPC) to intestinal mucin and their impact on the intestinal mucus barrier function. Results of quartz crystal microbalance with dissipation showed that the highly surface-hydrated DPPC vesicles exhibited significantly faster and more extensive adsorption to purified intestinal mucin than the slightly surface-hydrated DOPC vesicles. Utilizing an intestinal Caco-2/HT29-MTX coculture model, we observed that DPPC vesicles adsorbed much more to the mucus gel compared to DOPC vesicles. Additionally, DPPC vesicle adsorption displayed increased wetting, and converse for DOPC vesicles. Interestingly, both of them exhibited nearly the same protective effects against cell injury induced by peptic-tryptic digests of gliadin (PTG). The partial mechanism involved the binding of PTG to DPPC and DOPC within the mucus gel, thereby restricting PTG contact with the underlying epithelial cells. These findings shed light on the intricate interfacial dynamics of PC adsorption to mucin and their implications for maintaining the integrity of the intestinal mucus barrier.


Assuntos
Mucinas , Fosfatidilcolinas , Humanos , Fosfatidilcolinas/química , Adsorção , Mucinas/química , Mucinas/metabolismo , Células CACO-2 , 1,2-Dipalmitoilfosfatidilcolina/química , Mucosa Intestinal/metabolismo , Células HT29 , Propriedades de Superfície , Animais
6.
Fish Shellfish Immunol ; 153: 109862, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209006

RESUMO

Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.


Assuntos
Aeromonas salmonicida , Homosserina , Mucinas , Oncorhynchus mykiss , Percepção de Quorum , Animais , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida/fisiologia , Mucinas/genética , Mucinas/metabolismo , Homosserina/análogos & derivados , Liases de Carbono-Enxofre/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Proteínas de Bactérias/genética , Lactonas , Pele/imunologia , Pele/microbiologia , Brânquias/imunologia , Brânquias/metabolismo
7.
Environ Microbiol ; 26(8): e16687, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39168162

RESUMO

Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments. In surface sediments from an Arctic fjord of Svalbard, we investigated mechanisms of biopolymer hydrolysis using four polysaccharides and mucin, a glycoprotein. Extracellular hydrolysis of all biopolymers was rapid. Moreover, rapid degradation of mucin suggests that it may be a key substrate for benthic microbes. Although selfish uptake is common in ocean waters, only a small fraction (0.5%-2%) of microbes adhering to sediments used this mechanism. Selfish uptake was carried out primarily by Planctomycetota and Verrucomicrobiota. The overall dominance of extracellular hydrolysis in sediments, however, suggests that the bulk of biopolymer processing is carried out by a benthic community relying on the sharing of enzymatic capabilities and scavenging of public goods.


Assuntos
Bactérias , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Biopolímeros/metabolismo , Bactérias/metabolismo , Hidrólise , Água do Mar/microbiologia , Água do Mar/química , Polissacarídeos/metabolismo , Regiões Árticas , Svalbard , Mucinas/metabolismo
8.
Carbohydr Polym ; 343: 122471, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174097

RESUMO

Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.


Assuntos
Mucosa Intestinal , Ácido N-Acetilneuramínico , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Animais , Ácido N-Acetilneuramínico/metabolismo , Microbioma Gastrointestinal , Sialiltransferases/metabolismo , Mucinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/imunologia
9.
PLoS One ; 19(8): e0308609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121037

RESUMO

Current prophylactic and disease control measures in aquaculture highlight the need of alternative strategies to prevent disease and reduce antibiotic use. Mucus covered mucosal surfaces are the first barriers pathogens encounter. Mucus, which is mainly composed of highly glycosylated mucins, has the potential to contribute to disease prevention if we can strengthen this barrier. Therefore, aim of this study was to develop and characterize fish in vitro mucosal surface models based on commercially available cell lines that are functionally relevant for studies on mucin regulation and host-pathogen interactions. The rainbow trout (Oncorhynchus mykiss) gill epithelial cell line RTgill-W1 and the embryonic cell line from Chinook salmon (Oncorhynchus tshawytscha) CHSE-214 were grown on polycarbonate membrane inserts and chemically treated to differentiate the cells into mucus producing cells. RTGill-W1 and CHSE-214 formed an adherent layer at two weeks post-confluence, which further responded to treatment with the γ-secretase inhibitor DAPT and prolonged culture by increasing the mucin production. Mucins were metabolically labelled with N-azidoacetylgalactosamine 6 h post addition to the in vitro membranes. The level of incorporated label was relatively similar between membranes based on RTgill-W1, while larger interindividual variation was observed among the CHSE in vitro membranes. Furthermore, O-glycomics of RTgill-W1 cell lysates identified three sialylated O-glycans, namely Galß1-3(NeuAcα2-6)GalNAcol, NeuAcα-Galß1-3GalNAcol and NeuAcα-Galß1-3(NeuAcα2-6)GalNAcol, resembling the glycosylation present in rainbow trout gill mucin. These glycans were also present in CHSE-214. Additionally, we demonstrated binding of the fish pathogen A. salmonicida to RTgill-W1 and CHSE-214 cell lysates. Thus, these models have similarities to in vivo mucosal surfaces and can be used to investigate the effect of pathogens and modulatory components on mucin production.


Assuntos
Interações Hospedeiro-Patógeno , Mucinas , Oncorhynchus mykiss , Animais , Mucinas/metabolismo , Oncorhynchus mykiss/metabolismo , Linhagem Celular , Mucosa/metabolismo , Salmão/metabolismo , Brânquias/metabolismo , Células Epiteliais/metabolismo , Muco/metabolismo
10.
J Mater Chem B ; 12(34): 8465-8476, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39109448

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) pneumonia can have serious physiological consequences, particularly when P. aeruginosa biofilms are formed. Although inhaled therapy is preferred, inhaled drugs tend to get trapped by pulmonary mucus, which hinders efficient antibiotic permeability through mucus and biofilms. In this study, we prepare poly[2-(pentamethyleneimino)ethyl methacrylate]-block-poly[2-(N-oxide-pentamethyleneimino)ethyl methacrylate] (PPEMA-b-PPOEMA) micelles loaded with azithromycin (AZM) using reversible addition-fragmentation chain transfer (RAFT) polymerization to achieve effective treatment of P. aeruginosa pneumonia. The zwitterionic structure on the surface of the micelle facilitates the successful traversal of the mucus and optimal concentration within the biofilm. Furthermore, the protonation of piperidine in the polymer enables the micelles to exhibit a positive charge in the acidic environment of a bacterial infection, enhancing AZM's interaction with the bacterium. Both in vivo and in vitro experiments demonstrate that this transmucosal zwitterionic polymer, in combination with a charge reversal strategy, effectively promotes the enrichment of micelles at the site of bacterial infection, thereby increasing the number of antibiotics reaching the bacterial interior and demonstrating remarkable antibacterial synergy. Overall, this work offers a promising approach for trans-airway drug delivery in the treatment of pneumonia.


Assuntos
Antibacterianos , Micelas , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Mucinas/química , Mucinas/metabolismo , Camundongos , Administração por Inalação , Azitromicina/química , Azitromicina/farmacologia , Azitromicina/administração & dosagem , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Pneumonia/tratamento farmacológico , Doença Crônica , Portadores de Fármacos/química
11.
Int J Biol Macromol ; 277(Pt 4): 134564, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116979

RESUMO

Binary systems of citrus peel pectin (a major food carbohydrate) and mucin (a principal oral-gastrointestinal glycoprotein) are studied, as to understand the interactions and thermodynamics between food and biofluids during oral processing and digestion. The fluorimetry emission spectra of mucin were quenched by pectin addition at 293, 301, 310 and 318 K, indicating direct contact between the two macromolecular populations. A red shift, suggesting pectin-induced alterations on mucin conformation, has been observed at 318 K. Intensity-based Stern - Volmer plots fitted second-order polynomial equations, suggesting the coexistence of both static and dynamic quenching, while the increase of the slopes with temperature points to the predominance of dynamic phenomena. Time-resolved fluorescence measurements also point to dynamic quenching related to transient interactions, rather than to specific bonding. Thermodynamic analysis yields negative free energy changes in all cases, with positive changes for enthalpy and large positive values for TΔS. These are in agreement with the Stern - Volmer analysis, suggesting the predominance of transient, dynamic (here entropic) interactions. These provide an image of mucin interacting with pectin macromolecules during the oral processing and digestion of foods, and can relate to the texture, flavor (e.g. astringency) and bioavailability of polysaccharide-based foods.


Assuntos
Mucinas , Pectinas , Fluorometria/métodos , Mucinas/química , Mucinas/metabolismo , Pectinas/química , Pectinas/metabolismo , Ligação Proteica , Espectrometria de Fluorescência/métodos , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 121(36): e2400341121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186657

RESUMO

Elevated bacterial sialidase activity in the female genital tract is strongly associated with poor health outcomes including preterm birth and bacterial vaginosis (BV). These negative effects may arise from sialidase-mediated degradation of the protective mucus layer in the cervicovaginal environment. Prior biochemical studies of vaginal bacterial sialidases have focused solely on the BV-associated organism Gardnerella vaginalis. Despite their implications for sexual and reproductive health, sialidases from other vaginal bacteria have not been characterized. Here, we show that vaginal Prevotella species produce sialidases that possess variable activity toward mucin substrates. The sequences of sialidase genes and their presence are largely conserved across clades of Prevotella from different geographies, hinting at their importance globally. Finally, we find that Prevotella sialidase genes and transcripts, including those encoding mucin-degrading sialidases from Prevotella timonensis, are highly prevalent and abundant in human vaginal genomes and transcriptomes. Together, our results identify Prevotella as a critical source of sialidases in the vaginal microbiome, improving our understanding of this detrimental bacterial activity.


Assuntos
Microbiota , Neuraminidase , Prevotella , Vagina , Humanos , Prevotella/enzimologia , Prevotella/genética , Prevotella/isolamento & purificação , Neuraminidase/metabolismo , Neuraminidase/genética , Feminino , Vagina/microbiologia , Mucinas/metabolismo , Vaginose Bacteriana/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
13.
Histopathology ; 85(4): 671-685, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031700

RESUMO

AIMS: Ulcerative colitis-associated neoplasia (UCAN) is characterised by multifocal tumourigenesis. A wide range of metachronous lesions have been reported to occur after endoscopic treatment of UCAN, which suggests the development of sporadic tumours in lesions treated as UCAN. Therefore, we aimed to evaluate differences of immunohistochemistry (IHC) in features and clinicopathological characteristics of intramucosal lesions in patients with ulcerative colitis (UC). METHODS AND RESULTS: We examined 35 intramucosal lesions resected for carcinoma or dysplasia by total colectomy from patients with UC and 71 sporadic adenomas (SAs) endoscopically resected from patients without UC. UC lesions were divided into the conventional UCAN group, defined as p53 mutant pattern and normal expression of ß-catenin, and the non-conventional UCAN group, defined as the rest. Ki-67 distribution, α-methylacyl-CoA racemase (AMACR) expression and mucin phenotypes were compared using IHC, and clinicopathological characteristics were investigated. Conventional and non-conventional UCAN lesions were located in the left colon and rectum. Relative to the SA lesions, UCAN lesions occurred in much younger patients and exhibited more frequent basal distribution of Ki-67 in tumour crypts. Conventional UCAN lesions tended to be non-polyploid and exhibited a higher frequency of normal AMACR expression than SA lesions. UC lesions were heterogeneous-only two of the eight patients with multiple lesions had lesions (both non-conventional UCAN lesions) exhibiting concordant IHC staining features. CONCLUSIONS: The basal pattern of Ki-67 distribution, normal expression of AMACR and a non-intestinal mucin phenotype were determined as characteristic features suggestive of UCAN. Non-polypoid growth was another a key feature of UCAN.


Assuntos
Colite Ulcerativa , Antígeno Ki-67 , Mucinas , Racemases e Epimerases , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Colite Ulcerativa/patologia , Colite Ulcerativa/complicações , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/etiologia , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Mucinas/metabolismo , Fenótipo , Racemases e Epimerases/metabolismo
14.
Gut Microbes ; 16(1): 2377576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068517

RESUMO

The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.


A HFD can lead to the development of colitis by disrupting tryptophan metabolism in the gut microbiome and lowering levels of IAA. Supplementation with IAA has been shown to alleviate colitis in mice and improve intestinal barrier function. It is believed that IAA may activate the AHR to upregulate the expression of Papss2 and Slc35b3, promoting sulfation modification of mucins and protecting the intestinal barrier. HFD, high-fat diet; AHR, aryl hydrocarbon receptor; IAA, indole-3-acetic acid; Papss2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Slc35b3, solute carrier family 35 member B3.


Assuntos
Microbioma Gastrointestinal , Homeostase , Ácidos Indolacéticos , Mucosa Intestinal , Mucinas , Animais , Humanos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucinas/metabolismo , Ácidos Indolacéticos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Colite/microbiologia , Colite/metabolismo , Colite/induzido quimicamente , Limosilactobacillus reuteri/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Masculino , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Modelos Animais de Doenças
15.
J Control Release ; 373: 306-318, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004103

RESUMO

Dry eye disease (DED) is a prevalent ocular disorder characterized by unstable tear film condition with loss of aqueous or mucin, excessive oxidative stress, and inflammation, leading to discomfort and potential damage to the ocular surface. Current DED therapies have shown restricted therapeutic effects such as frequent dosing and temporary relief with potential unwanted side effects, urgently necessitating the development of innovative efficient therapeutic approaches. Herein, we developed rosmarinic acid (RosA) conjugated gelatin nanogels loading diquafosol sodium (DQS), DRGNG, for simultaneous ROS-scavenging and mucin-secreting DED treatment. Mechanically, DRGNG suppressed the ROS production, reduced inflammatory factors, and prompted mucin secretion in vitro and in vivo. The whole transcriptome RNA sequencing in vitro further provided a detailed analysis of the upregulation of anti-oxidant, anti-inflammatory, and mucin-promotion pathways. Therapeutically, both in evaporative DED and aqueous deficient DED models, the dual-functional DRGNG could prolong the retention time at the ocular surface, efficiently suppress the oxidative stress response, reverse ocular surface morphology, and recover tear film homeostasis, thus alleviating the DED when the dosage is halved compared to the commercial Diquas®. Our findings contribute to developing innovative therapies for DED and offer insights into the broader applications of nanogels in ocular drug delivery and oxidative stress-related conditions.


Assuntos
Cinamatos , Depsídeos , Síndromes do Olho Seco , Gelatina , Nanogéis , Ácido Rosmarínico , Nucleotídeos de Uracila , Depsídeos/administração & dosagem , Depsídeos/química , Depsídeos/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Animais , Gelatina/química , Cinamatos/administração & dosagem , Cinamatos/química , Nucleotídeos de Uracila/administração & dosagem , Polifosfatos/química , Humanos , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Sistemas de Liberação de Medicamentos , Estresse Oxidativo/efeitos dos fármacos , Mucinas/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Masculino , Espécies Reativas de Oxigênio/metabolismo , Lágrimas/metabolismo , Camundongos
16.
Sci Rep ; 14(1): 16568, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019950

RESUMO

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Assuntos
Mucina-5B , Muco , Humanos , Animais , Mucina-5B/metabolismo , Ratos , Muco/metabolismo , Sialiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Fibrose Cística/metabolismo , Mucinas/metabolismo , Células Epiteliais/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Brônquios/metabolismo
17.
J Med Life ; 17(3): 326-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044931

RESUMO

Intestinal homeostasis involves the collaboration of gut barrier components, such as goblet cells and IgA-microbiota complexes, that are under the control of stress that promotes inflammatory responses addressed primarily in the colon. The aim of this study was to evaluate the effect of stress on mucins, goblet cells, and proinflammatory parameters in the proximal and distal regions of the small intestine. A group (n = 6) of female 8-week-old BALB/c mice underwent board immobilization stress (2 h per day for 4 days) and were sacrificed with isoflurane. Samples from proximal and distal small segments were collected to analyze the following: 1) goblet cells stained with periodic acid-Schiff (PAS) and with alcian blue (AB) to visualize histologically neutral and acidic mucins, respectively; 2) IgA-microbiota complexes identified by flow cytometry in intestinal lavages; and 3) MUC2, MUC5AC, and IL-18 mRNA levels in whole mucosal scrapings by reverse transcription-qPCR. Regarding the unstressed group, in the proximal region of small intestine both PAS+ and AB+ goblet cells were unchanged; however, MUC5AC and IL-18 mRNA levels were increased, and the percentage of IgA-microbiota complexes was reduced. In the distal segment, the number of PAS+ goblet cells was increased, whereas the number of AB+ goblet cells was reduced and did not affect the remaining parameters. The data suggest that stress induces inflammation in the proximal small intestine; these findings may provide an experimental reference for human diseases that may affect the proximal small intestine, such as Crohn's disease, in which stress contributes to the progression of intestinal inflammation or relapse.


Assuntos
Células Caliciformes , Intestino Delgado , Camundongos Endogâmicos BALB C , Mucinas , Animais , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Feminino , Camundongos , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Mucinas/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/imunologia , Interleucina-18/metabolismo , Mucina-5AC/metabolismo , Estresse Fisiológico , Imunoglobulina A/metabolismo , Mucina-2/metabolismo , Mucina-2/genética
18.
Gene ; 927: 148747, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972557

RESUMO

The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.


Assuntos
Exoesqueleto , Gastrópodes , Perfilação da Expressão Gênica , Transcriptoma , Animais , Exoesqueleto/ultraestrutura , Exoesqueleto/metabolismo , Gastrópodes/genética , Gastrópodes/metabolismo , Gastrópodes/ultraestrutura , Perfilação da Expressão Gênica/métodos , Mucinas/genética , Mucinas/metabolismo , Biomineralização/genética , Microscopia Eletrônica de Varredura
19.
Curr Protoc ; 4(7): e1100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984456

RESUMO

Mucin-domain glycoproteins are characterized by their high density of glycosylated serine and threonine residues, which complicates their analysis by mass spectrometry. The dense glycosylation renders the protein backbone inaccessible to workhorse proteases like trypsin, the vast heterogeneity of glycosylation often results in ion suppression from unmodified peptides, and search algorithms struggle to confidently analyze and site-localize O-glycosites. We have made a number of advances to address these challenges, rendering mucinomics possible for the first time. Here, we summarize these contributions and provide a detailed protocol for mass spectrometric analysis of mucin-domain glycoproteins. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Enrichment of mucin-domain glycoproteins Basic Protocol 2: Enzymatic digestion of mucin-domain glycoprotein(s) Basic Protocol 3: Mass spectrometry data collection for O-glycopeptides Basic Protocol 4: Mass spectrometry data analysis of O-glycopeptides.


Assuntos
Glicoproteínas , Espectrometria de Massas , Mucinas , Espectrometria de Massas/métodos , Mucinas/química , Mucinas/metabolismo , Mucinas/análise , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicoproteínas/análise , Glicosilação , Humanos , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo
20.
ACS Appl Bio Mater ; 7(8): 5411-5422, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38996006

RESUMO

3D printing can revolutionize personalized medicine by allowing cost-effective, customized tissue-engineering constructs. However, the limited availability and diversity of biopolymeric hydrogels restrict the variety and applications of bioinks. In this study, we introduce a composite bioink for 3D bioprinting, combining a photo-cross-linkable derivative of Mucin (Mu) called Methacrylated Mucin (MuMA) and Hyaluronic acid (HA). The less explored Mucin is responsible for the hydrogel nature of mucus and holds the potential to be used as a bioink material because of its plethora of features. HA, a crucial extracellular matrix component, is mucoadhesive and enhances ink viscosity and printability. Photo-cross-linking with 405 nm light stabilizes the printed scaffolds without damaging cells. Rheological tests reveal shear-thinning behavior, aiding cell protection during printing and improved MuMA bioink viscosity by adding HA. The printed structures exhibited porous behavior conducive to nutrient transport and cell migration. After 4 weeks in phosphate-buffered saline, the scaffolds retain 70% of their mass, highlighting stability. Biocompatibility tests with lung epithelial cells (L-132) confirm cell attachment and growth, suggesting suitability for lung tissue engineering. It is envisioned that the versatility of bioink could lead to significant advancements in lung tissue engineering and various other biomedical applications.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Ácido Hialurônico , Teste de Materiais , Mucinas , Impressão Tridimensional , Engenharia Tecidual , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Mucinas/química , Mucinas/metabolismo , Tinta , Luz , Pulmão/citologia , Tamanho da Partícula , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...