Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.588
Filtrar
2.
PLoS Pathog ; 20(8): e1012440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39207937

RESUMO

Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.


Assuntos
Poríferos , Animais , Camundongos , Virulência , Poríferos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Fatores de Virulência/genética , Feminino , Evolução Biológica , Humanos , Filogenia , Mycobacterium/patogenicidade , Mycobacterium/genética
3.
Infect Genet Evol ; 123: 105645, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067582

RESUMO

Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.


Assuntos
Mycobacterium , Ribonucleases , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium/genética , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Filogenia , Ribonucleases/metabolismo , Ribonucleases/genética
4.
Acta Trop ; 258: 107333, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067841

RESUMO

To evaluate the prevalence of Mycobacterium leprae and Mycobacterium lepromatosis in road killed armadillos identified along Brazilian regions, samples of liver, spleen, muscle, ear, nose and tail were collected on highways from 78 animals. The armadillos were of four different species, Cabassous tatouay, Dasypus novemcinctus, Dasypus septemcinctus and Euphractus sexcinctus. After DNA extraction from two tissues, specific primers were used for the detection of each pathogen using SYBR green qualitative Real-Time PCR, and amplicons were sequenced. The species with the highest prevalence was D. novemcinctus, mainly in the Central-West, South, and Southeast regions of Brazil. We detected M. leprae DNA in 32 (41 %) of the 78 individuals and M. lepromatosis DNA was not identified in any of the examined samples. The zoonotic component of leprosy may play a role in the transmission of the disease in endemic areas in which environmental conditions and contact with reservoirs must be investigated.


Assuntos
Tatus , Hanseníase , Mycobacterium leprae , Tatus/microbiologia , Brasil/epidemiologia , Animais , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Prevalência , Hanseníase/epidemiologia , Hanseníase/microbiologia , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Mycobacterium/classificação , DNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Microb Biotechnol ; 17(6): e14511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925606

RESUMO

Ethylene and ethylene oxide are widely used in the chemical industry, and ethylene is also important for its role in fruit ripening. Better sensing systems would assist risk management of these chemicals. Here, we characterise the ethylene regulatory system in Mycobacterium strain NBB4 and use these genetic parts to create a biosensor. The regulatory genes etnR1 and etnR2 and cognate promoter Petn were combined with a fluorescent reporter gene (fuGFP) in a Mycobacterium shuttle vector to create plasmid pUS301-EtnR12P. Cultures of M. smegmatis mc2-155(pUS301-EtnR12P) gave a fluorescent signal in response to ethylene oxide with a detection limit of 0.2 µM (9 ppb). By combining the epoxide biosensor cells with another culture expressing the ethylene monooxygenase, the system was converted into an ethylene biosensor. The co-culture was capable of detecting ethylene emission from banana fruit. These are the first examples of whole-cell biosensors for epoxides or aliphatic alkenes. This work also resolves long-standing questions concerning the regulation of ethylene catabolism in bacteria.


Assuntos
Técnicas Biossensoriais , Óxido de Etileno , Etilenos , Técnicas Biossensoriais/métodos , Etilenos/metabolismo , Óxido de Etileno/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Musa/microbiologia , Genes Reporter , Plasmídeos/genética
6.
Microbes Environ ; 39(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897967

RESUMO

To investigate mycobacterial cases of farmed yellowtail fish in coastal areas of western Japan (Kagoshima, Kyushu), where aquaculture fisheries are active, Mycobacterium pseudoshottsii, the causative agent, was isolated from six neighboring fishing ports in 2012 and 2013. A phylogenetic ana-lysis revealed that the strains isolated from one fishing port were closely related to those isolated from other regions of Japan, suggesting the nationwide spread of a single strain. However, strains from Japan were phylogenetically distinct from those from the Mediterranean and the United States; therefore, worldwide transmission was not observed based on the limited data obtained on the strains exami-ned in this study. The present results demonstrate that a bacterial genomic ana-lysis of infected cases, a mole-cular epidemiology strategy for public health, provides useful data for estimating the prevalence and transmission pathways of M. pseudoshottsii in farmed fish. A bacterial genome ana-lysis of strains, such as that performed herein, may play an important role in monitoring the prevalence of this pathogen in fish farms and possible epidemics in the future as a result of international traffic, logistics, and trade in fisheries.


Assuntos
Aquicultura , Doenças dos Peixes , Genoma Bacteriano , Infecções por Mycobacterium , Filogenia , Japão/epidemiologia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/epidemiologia , Infecções por Mycobacterium/veterinária , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/epidemiologia , Genoma Bacteriano/genética , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Peixes/microbiologia , Pesqueiros , Genômica , Epidemiologia Molecular , Prevalência
7.
Life Sci ; 351: 122778, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879157

RESUMO

Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.


Assuntos
Biofilmes , Biofilmes/crescimento & desenvolvimento , Humanos , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/genética , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Animais
8.
Microbiol Spectr ; 12(8): e0006224, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38912807

RESUMO

Programmed cell death protein 4 (PDCD4) is instrumental in regulating a range of cellular processes such as translation, apoptosis, signal transduction, and inflammatory responses. There is a notable inverse correlation between PDCD4 and the mammalian target of rapamycin (mTOR) pathway, which is integral to cellular growth control. Activation of mTOR is associated with the degradation of PDCD4. Although the role of PDCD4 is well established in oncogenesis and immune response regulation, its function in mycobacterial infections and its interplay with the mTOR pathway necessitate further elucidation. This study investigates the modulation of PDCD4 expression in the context of mycobacterial infections, revealing a consistent pattern of downregulation across diverse mycobacterial species. This observation underscores the potential utility of PDCD4 as a biomarker for assessing mTOR pathway activation during such infections. Building on this finding, we employed a novel approach using PDCD4-based mTOR (Tor)-signal-indicator (TOSI) reporter cells for the high-throughput screening of FDA-approved drugs, focusing on mTOR inhibitors. This methodology facilitated the identification of several agents, inclusive of known mTOR inhibitors, which upregulated PDCD4 expression and concurrently exhibited efficacy in impeding mycobacterial proliferation within macrophages. These results not only reinforce the significance of PDCD4 as a pivotal marker in the understanding of infectious diseases, particularly mycobacterial infections, but also illuminate its potential in the identification of mTOR inhibitors, thereby contributing to the advancement of therapeutic strategies. IMPORTANCE: This study emphasizes the critical role of the mammalian target of rapamycin (mTOR) pathway in macrophage responses to mycobacterial infections, elucidating how mycobacteria activate mTOR, resulting in PDCD4 degradation. The utilization of the (Tor)-signal-indicator (TOSI) vector for real-time monitoring of mTOR activity represents a significant advancement in understanding mTOR regulation during mycobacterial infection. These findings deepen our comprehension of mycobacteria's innate immune mechanisms and introduce PDCD4 as a novel marker for mTOR activity in infectious diseases. Importantly, this research laid the groundwork for high-throughput screening of mTOR inhibitors using FDA-approved drugs, offering the potential for repurposing treatments against mycobacterial infections. The identification of drugs that inhibit mTOR activation opens new avenues for host-directed therapies, marking a significant step forward in combating tuberculosis and other mycobacterial diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Biomarcadores , Infecções por Mycobacterium , Proteínas de Ligação a RNA , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/imunologia , Biomarcadores/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Mycobacterium/genética
9.
Genes Cells ; 29(9): 710-721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38923083

RESUMO

The second messenger guanosine 3',5'-bis(diphosphate)/guanosine tetraphosphate (ppGpp) and guanosine 3'-diphosphate 5'-triphosphate/guanosine pentaphosphate (pppGpp) ((p)ppGpp) has been shown to be crucial for the survival of mycobacteria under hostile conditions. Unexpectedly, deletion of primary (p)ppGpp synthetase-Rel did not completely diminish (p)ppGpp levels leading to the discovery of novel bifunctional enzyme-RelZ, which displayed guanosine 5'-monophosphate,3'-diphosphate (pGpp), ppGpp, and pppGpp ((pp)pGpp) synthesis and RNAseHII activity. What conditions does it express itself under, and does it work in concert with Rel? The regulation of its transcription and whether the Rel enzyme plays a role in such regulation remain unclear. In this article, we have studied relZ promoter and compared its activity with rel promoter in different growth conditions. We observed that the promoter activity of relZ was constitutive; it is weaker than rel promoter, lies within 200 bp upstream of translation-start site, and it increased under carbon starvation. Furthermore, the promoter activity of relZ was compromised in the rel-knockout strain in the stationary phase. Our study unveils the dynamic regulation of relZ promoter activity by SigA and SigB sigma factors in different growth phases in mycobacteria. Importantly, elucidating the regulatory network of RelZ would enable the development of the targeted interventions for treating mycobacterial infections.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ligases , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ligases/metabolismo , Ligases/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo
10.
Int J Mycobacteriol ; 13(2): 158-164, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916386

RESUMO

BACKGROUND: Environmental mycobacteria are involved in several infections ranging from lung to skin infections. In Côte d'Ivoire, apart from Mycobacterium ulcerans and Mycobacterium tuberculosis, little information exists on other species. The culture of these species, a real challenge, especially in developing countries like Cote d'Ivoire, limits their identification. However, there are reports in literature of infections caused by these mycobacteria, and few species have never been described in human or animal infections. These are difficult cases to treat because of their resistance to most antituberculosis antibiotics. The aim of our work was to study the diversity of potentially pathogenic mycobacterial species in wastewater drainage channels in different townships and in two hospital effluents in the city of Abidjan. METHODS: Wastewater samples were cultured, followed by conventional polymerase chain reaction (PCR) targeting mycobacterial 16S ribonucleic acid (16S RNA) using PA/MSHA primers. 16 S RNA identified were sequenced by Sanger techniques. Sequences obtained were analyzed, and a phylogenic tree was built. RESULTS: Fast-growing mycobacteria, including Mycobacterium fortuitum, Mycobacterium phocaicum, Mycobacterium sp., and others presence, were confirmed both by culture and molecular techniques. M. fortuitum strain was the same in effluents of the Treichville University Hospital and in the wastewater of the township of Koumassi. New species never isolated in Côte d'Ivoire, such as M. phocaicum, have been identified in wastewater of the township of Yopougon. CONCLUSION: This study showed that the sewer network in the city of Abidjan is colonized by both potentially pathogenic mycobacteria and saprophytic environmental mycobacteria.


Assuntos
Micobactérias não Tuberculosas , Filogenia , RNA Ribossômico 16S , Côte d'Ivoire , RNA Ribossômico 16S/genética , Humanos , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Micobactérias não Tuberculosas/classificação , Águas Residuárias/microbiologia , Reação em Cadeia da Polimerase , DNA Bacteriano/genética , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Mycobacterium/classificação
11.
BMC Microbiol ; 24(1): 205, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851713

RESUMO

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.


Assuntos
Tipagem de Sequências Multilocus , Humanos , Tipagem de Sequências Multilocus/métodos , Temperatura de Transição , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Proteínas de Bactérias/genética , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/isolamento & purificação , DNA Bacteriano/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico
12.
BMC Genom Data ; 25(1): 62, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890591

RESUMO

OBJECTIVES: The rising of antibiotic resistance has sparked a renewed interest in mycobacteriophage as alternative therapeutic strategies against mycobacterial infections. So far, the vast majority of mycobacteriophages have been isolated using the model species Mycobacterium smegmatis, implying an overwhelming majority of mycobacteriophages in the environment remain uncultured, unclassified, and their specific hosts and infection strategies are still unknown. This study was undertaken to isolate and characterize novel mycobacteriophages targeting Mycobacterium septicum. DATA DESCRIPTION: Here a novel mycobacteriophage WXIN against M. septicum was isolated from soil samples in Wuhan, China. Whole genome analysis indicates that the phage genome consists of 115,158 bp with a GC content of 61.9%. Of the 260 putative open reading frames, 46 may be associated with phage packaging, structure, lysis, lysogeny, genome modification/replication, and other functional roles. The limited genome-wide similarity, along with phylogenetic trees constructed based on viral proteome and orthologous genes show that phage WXIN represents a novel cluster distantly related to cluster J mycobacteriophages (genus Omegavirus). Overall, these results provide novel insights into the genomic properties of mycobacteriophages, highlighting the great genetic diversity of mycobacteriophages in relation to their hosts.


Assuntos
Genoma Viral , Micobacteriófagos , Filogenia , Genoma Viral/genética , Micobacteriófagos/genética , Micobacteriófagos/isolamento & purificação , China , Fases de Leitura Aberta/genética , Mycobacterium/virologia , Mycobacterium/genética , Microbiologia do Solo , Composição de Bases
13.
J Clin Microbiol ; 62(6): e0014924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38690881

RESUMO

We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Humanos , Genoma Bacteriano , Hospitais , Água Potável/microbiologia , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Masculino , Microbiologia da Água , Genômica , Feminino , Pessoa de Meia-Idade , Idoso , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Adulto
14.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 360-362, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599813

RESUMO

Here, we reported the diagnosis and treatment of a case of HIV infected person complicated by an extremely rare infection with Mycobacterium celatum. Due to the similarity of homologous sequence regions between Mycobacterium celatum and Mycobacterium tuberculosis complex, the identification of conventional Mycobacterium species was incorrect, which was corrected after first-generation 16S rRNA sequencing. This report aimed to improve the clinical understanding of Mycobacterium celatum infection and the level of differential diagnosis between non-tuberculous mycobacterial disease and tuberculosis.


Assuntos
Infecções por HIV , Infecções por Mycobacterium , Mycobacterium , Humanos , RNA Ribossômico 16S/genética , Mycobacterium/genética , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/microbiologia , Micobactérias não Tuberculosas/genética , Infecções por HIV/complicações
15.
mBio ; 15(5): e0255223, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567992

RESUMO

Since the discovery of extracellular vesicles (EVs) in mycobacterial species 15 years back, we have learned that this phenomenon is conserved in the Mycobacterium genus and has critical roles in bacterial physiology and host-pathogen interactions. Mycobacterium tuberculosis (Mtb), the tuberculosis (TB) causative agent, produces EVs both in vitro and in vivo including a diverse set of biomolecules with demonstrated immunomodulatory effects. Moreover, Mtb EVs (MEVs) have been shown to possess vaccine properties and carry biomarkers with diagnostic capacity. Although information on MEV biogenesis relative to other bacterial species is scarce, recent studies have shed light on how MEVs originate and are released to the extracellular space. In this minireview, we discuss past and new information about the vesiculogenesis phenomenon in Mtb, including biogenesis, MEV cargo, aspects in the context of host-pathogen interactions, and applications that could help to develop effective tools to tackle the disease.


Assuntos
Vesículas Extracelulares , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Tuberculose , Vesículas Extracelulares/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Tuberculose/diagnóstico , Animais , Biomarcadores , Mycobacterium/genética , Mycobacterium/metabolismo
16.
Eur J Clin Microbiol Infect Dis ; 43(6): 1091-1098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607578

RESUMO

PURPOSE: Rapid, reliable identification of mycobacteria from positive cultures is essential for patient management, particularly for the differential diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) species. The aim of the present study was to evaluate a new "In-Vitro-Diagnostic"-certified PCR kit, FluoroType®-Mycobacteria VER 1.0 (Hain Lifescience GmbH) for NTM and MTBC identification from cultures. METHODS: Mycobacteria identification isolated from positive cultures during routine practice at the Lyon university hospital mycobacteria laboratory obtained by hsp65 amplification/sequencing were compared retrospectively and prospectively to those obtained by and the FluoroType®-Mycobacteria VER 1.0 kit. RESULTS: The overall agreement between hsp65 amplification/sequencing and the FluoroType®-Mycobacteria VER 1.0 kit was 88.4% (84/95); 91.2% (52/57) for the retrospective period and 84.2% (32/38) for the prospective period. There were 9 (9.5%) minor discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified at genus level): 4 during the retrospective period, 5 during the prospective period; and 2 (2.1%) major discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified incorrectly to species level): 1 during the retrospective period (M. kumamotonense identified as M. abscessus subsp massiliense by the kit) and 1 during the prospective period (M. chimaera identified as M. smegmatis by the kit). Including concordant results at genus level and minor discrepancies, 17.9% (17/95) of strains were identified as Mycobacterium sp. by the FluoroType®-Mycobacteria-VER 1.0 kit. CONCLUSION: The good performance of the FluoroType®-Mycobacteria-VER 1.0 kit with few major discrepancies could enable its use for first-line identification of positive mycobacteria cultures. However, an alternative identification method at least for reference laboratories is needed owing to the non-negligible proportion of NTM strains were identified at genus level.


Assuntos
Micobactérias não Tuberculosas , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Micobactérias não Tuberculosas/isolamento & purificação , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/genética , França , Proteínas de Bactérias/genética , Mycobacterium/isolamento & purificação , Mycobacterium/genética , Mycobacterium/classificação , Reação em Cadeia da Polimerase/métodos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Chaperonina 60/genética , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
17.
J Vet Diagn Invest ; 36(4): 569-572, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653781

RESUMO

A 23-y-old gelding was presented to a veterinary teaching hospital with a history of chronic, refractory diarrhea. Clinically, the horse was in poor body condition, with a thickened and corrugated large intestine identified by transcutaneous abdominal ultrasonography. At postmortem examination following euthanasia, the large colon and cecum had segmental thickening of the intestinal wall with innumerable mucosal ulcers and prominent polypoid mucosal masses. Many mesenteric and hepatic lymph nodes were enlarged. Histology revealed granulomatous and ulcerative typhlocolitis and granulomatous lymphadenitis with myriad acid-fast, variably gram-positive, intrahistiocytic bacilli that stained by immunohistochemistry for mycobacteria. Molecular testing by PCR and sequencing identified the causative agent as Mycobacterium genavense, which is an unusual presentation of infection in a horse.


Assuntos
Doenças dos Cavalos , Mycobacterium , Animais , Cavalos , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/patologia , Doenças dos Cavalos/diagnóstico , Mycobacterium/isolamento & purificação , Mycobacterium/genética , Masculino , Infecções por Mycobacterium/veterinária , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Infecções por Mycobacterium/diagnóstico , Tiflite/veterinária , Tiflite/patologia , Tiflite/microbiologia , Tiflite/diagnóstico , Colite/veterinária , Colite/microbiologia , Colite/patologia , Evolução Fatal
18.
Life Sci ; 346: 122632, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615748

RESUMO

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacologia , Ciclo Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico
19.
Microbiol Spectr ; 12(3): e0352823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353553

RESUMO

Mycobacterium abscessus is a non-tuberculous mycobacterium, causing lung infections in cystic fibrosis patients. During pulmonary infection, M. abscessus switches from smooth (Mabs-S) to rough (Mabs-R) morphotypes, the latter being hyper-virulent. Previously, we isolated the lsr2 gene as differentially expressed during S-to-R transition. lsr2 encodes a pleiotropic transcription factor that falls under the superfamily of nucleoid-associated proteins. Here, we used two functional genomic methods, RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), to elucidate the molecular role of Lsr2 in the pathobiology of M. abscessus. Transcriptomic analysis shows that Lsr2 differentially regulates gene expression across both morphotypes, most of which are involved in several key cellular processes of M. abscessus, including host adaptation and antibiotic resistance. These results were confirmed through quantitative real-time PCR, as well as by minimum inhibitory concentration tests and infection tests on macrophages in the presence of antibiotics. ChIP-seq analysis revealed that Lsr2 extensively binds the M. abscessus genome at AT-rich sequences and appears to form long domains that participate in the repression of its target genes. Unexpectedly, the genomic distribution of Lsr2 revealed no distinctions between Mabs-S and Mabs-R, implying more intricate mechanisms at play for achieving target selectivity.IMPORTANCELsr2 is a crucial transcription factor and chromosome organizer involved in intracellular growth and virulence in the smooth and rough morphotypes of Mycobacterium abscessus. Using RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), we investigated the molecular role of Lsr2 in gene expression regulation along with its distribution on M. abscessus genome. Our study demonstrates the pleiotropic regulatory role of Lsr2, regulating the expression of many genes coordinating essential cellular and molecular processes in both morphotypes. In addition, we have elucidated the role of Lsr2 in antibiotic resistance both in vitro and in vivo, where lsr2 mutant strains display heightened sensitivity to antibiotics. Through ChIP-seq, we reported the widespread distribution of Lsr2 on M. abscessus genome, revealing a direct repressive effect due to its extensive binding on promoters or coding sequences of its targets. This study unveils the significant regulatory role of Lsr2, intricately intertwined with its function in shaping the organization of the M. abscessus genome.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Mycobacterium abscessus/genética , Mycobacterium/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Fatores de Transcrição/genética
20.
Front Cell Infect Microbiol ; 14: 1335104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379773

RESUMO

Background: The accurate identification of the Mycobacterium tuberculosis complex (MTBC) and different nontuberculous mycobacteria (NTM) species is crucial for the timely diagnosis of NTM infections and for reducing poor prognoses. Nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been extensively used for microbial identification with high accuracy and throughput. However, its efficacy for Mycobacterium species identification has been less studied. The objective of this study was to evaluate the performance of nucleotide MALDI-TOF-MS for Mycobacterium species identification. Methods: A total of 933 clinical Mycobacterium isolates were preliminarily identified as NTM by the MPB64 test. These isolates were identified by nucleotide MALDI-TOF-MS and Sanger sequencing. The performance of nucleotide MALDI-TOF MS for identifying various Mycobacterium species was analyzed based on Sanger sequencing as the gold standard. Results: The total correct detection rate of all 933 clinical Mycobacterium isolates using nucleotide MALDI-TOF-MS was 91.64% (855/933), and mixed infections were detected in 18.65% (174/933) of the samples. The correct detection rates for Mycobacterium intracellulare, Mycobacterium abscessus, Mycobacterium kansasii, Mycobacterium avium, MTBC, Mycobacterium gordonae, and Mycobacterium massiliense were 99.32% (585/589), 100% (86/86), 98.46% (64/65), 94.59% (35/37), 100.00% (34/34), 95.65% (22/23), and 100% (19/19), respectively. For the identification of the MTBC, M. intracellulare, M. abscessus, M. kansasii, M. avium, M. gordonae, and M. massiliense, nucleotide MALDI-TOF-MS and Sanger sequencing results were in good agreement (k > 0.7). Conclusion: In conclusion, nucleotide MALDI-TOF-MS is a promising approach for identifying MTBC and the most common clinical NTM species.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Mycobacterium/genética , Micobactérias não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium avium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...