RESUMO
Mycobacterium marinum (M. marinum) is the most common causative bacteria of cutaneous non-tuberculous mycobacterial (NTM) infections, including fish tank granuloma. Treating M. marinum-caused infection takes longer than other NTM diseases because M. marinum is less susceptible to antimicrobial agents. A standard treatment regimen for M. marinum infection has not been established yet, and few in vivo experiments have been performed in mammals to evaluate the bactericidal effects of antimicrobials. In this study, we developed a noninvasive in vivo imaging method to assess the therapeutic efficacy of antimicrobials against M. marinum infection. The data obtained using fluorescent protein or bioluminescence from luciferase will offer valuable insights into bacteria visualization across various bacterial infections. Furthermore, through this imaging technique, we demonstrated that combining clarithromycin, rifampicin, ethambutol, and minocycline effectively cleared M. marinum from the footpad. Granulomas with necrotic abscesses formed on the footpad of M. marinum-infected mice, primarily due to neutrophils involved in the host's cell-mediated immune response. Inflammatory cytokine and chemokine levels significantly increased 7 days post-infection, aligning with the footpad swelling and granuloma formation observed in the untreated group. Interestingly, immune mediators and cells induced by M. marinum footpad infection were crucial factors associated with hypersensitivity and granuloma formation, as seen in pulmonary tuberculosis. This novel imaging analysis using a cutaneous NTM mouse model might be a powerful tool for the comprehensive analysis of mycobacterial infections.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Animais , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico por imagem , Mycobacterium marinum/efeitos dos fármacos , Camundongos , Pé/microbiologia , Pé/patologia , Modelos Animais de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Citocinas/metabolismoRESUMO
The incidence of Mycobacterium marinum infection is on the rise; however, the existing drug treatment cycle is lengthy and often requires multi-drug combination. Therefore, there is a need to develop new and effective anti-M. marinum drugs. Cochliomycin A, a 14-membered resorcylic acid lactone with an acetonide group at C-5' and C-6', exhibits a wide range of antimicrobial, antimalarial, and antifouling activities. To further explore the effect of this structural change at C-5' and C-6' on this compound's activity, we synthesized a series of compounds with a structure similar to that of cochliomycin A, bearing ketal groups at C-5' and C-6'. The R/S configuration of the diastereoisomer at C-13' was further determined through an NOE correlation analysis of CH3 or CH2 at the derivative C-13' position and the H-5' and H-6' by means of a 1D NOE experiment. Further comparative 1H NMR analysis of diastereoisomers showed the difference in the chemical shift (δ) value of the diastereoisomers. The synthetic compounds were screened for their anti-microbial activities in vitro. Compounds 15-24 and 28-35 demonstrated promising activity against M. marinum, with MIC90 values ranging from 70 to 90 µM, closely approaching the MIC90 of isoniazid. The preliminary structure-activity relationships showed that the ketal groups with aromatic rings at C-5' and C-6' could enhance the inhibition of M. marinum. Further study demonstrated that compounds 23, 24, 29, and 30 had significant inhibitory effects on M. marinum and addictive effects with isoniazid and rifampicin. Its effective properties make it an important clue for future drug development toward combatting M. marinum resistance.
Assuntos
Antibacterianos , Lactonas , Testes de Sensibilidade Microbiana , Mycobacterium marinum , Mycobacterium marinum/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/química , Lactonas/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Animais , Organismos Aquáticos , Estrutura Molecular , EstereoisomerismoRESUMO
The host limits Mycobacterium tuberculosis (Mtb) by enriching copper in high concentrations. This research investigates how Mtb escapes copper stress. The membrane protein encoded by Mtb Rv0102, when its homolog in M. smegmatis (MSMEG_4702) was knocked out, resulted in a fourfold decrease in intracellular copper levels and enhanced tolerance to elevated extracellular copper concentrations. Similarly, knockout mutants of its homolog in M. marinum (MMAR_0267) showed increased virulence in zebrafish and higher bacterial load within macrophages. In THP-1 cells infected with MMAR_0267 deletion mutants, the intracellular survival of these mutants increased, along with reduced THP-1 cell apoptosis. Deficiency in copper down-regulated the transcriptional level of the virulence factor CFP-10 in M. marinum, suppressed cytosolic signaling via the macrophage STING pathway, leading to decreased production of IFN-ß and reduced cell apoptosis. In conclusion, these findings highlight the significant impact of copper on the survival and reproduction of mycobacteria, underscoring the importance of studying mycobacterial adaptation mechanisms in copper-rich environments.
Assuntos
Cobre , Mycobacterium marinum , Fagossomos , Peixe-Zebra , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Mycobacterium marinum/efeitos dos fármacos , Cobre/metabolismo , Animais , Peixe-Zebra/microbiologia , Humanos , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Macrófagos/microbiologia , Macrófagos/metabolismo , Células THP-1 , Virulência , Infecções por Mycobacterium não Tuberculosas/microbiologia , Apoptose , Regulação Bacteriana da Expressão GênicaRESUMO
Purpose: Tuberculosis (TB) remains a major health threat worldwide, and the spread of drug-resistant (DR) TB impedes the reduction of the global disease burden. Ebselen (EbSe) targets bacterial thioredoxin reductase (bTrxR) and causes an imbalance in the redox status of bacteria. Previous work has shown that the synergistic action of bTrxR and sensitization to common antibiotics by EbSe is a promising strategy for the treatment of DR pathogens. Thus, we aimed to evaluate whether EbSe could enhance anti-TB drugs against Mycobacterium marinum (M. marinum) which is genetically related to Mycobacterium tuberculosis (Mtb) and resistant to many antituberculosis drugs. Methods: Minimum inhibitory concentrations (MIC) of isoniazid (INH), rifampicin (RFP), and streptomycin (SM) against M. marinum were determined by microdilution. The Bliss Independence Model was used to determine the adjuvant effects of EbSe over the anti-TB drugs. Thioredoxin reductase activity was measured using the DTNB assay, and its effects on bacterial redox homeostasis were verified by the elevation of intracellular ROS levels and intracellular GSH levels. The adjuvant efficacy of EbSe as an anti-TB drug was further evaluated in a mouse model of M. marinum infection. Cytotoxicity was observed in the macrophage cells Raw264.7 and mice model. Results: The results reveal that EbSe acts as an antibiotic adjuvant over SM on M. marinum. EbSe + SM disrupted the intracellular redox microenvironment of M. marinum by inhibiting bTrxR activity, which could rescue mice from the high bacterial load, and accelerated recovery from tail injury with low mammalian toxicity. Conclusion: The above studies suggest that EbSe significantly enhanced the anti-Mtb effect of SM, and its synergistic combination showed low mammalian toxicity in vitro and in vivo. Further efforts are required to study the underlying mechanisms of EbSe as an antibiotic adjuvant in combination with anti-TB drug MS.
Assuntos
Homeostase , Isoindóis , Testes de Sensibilidade Microbiana , Compostos Organosselênicos , Oxirredução , Estreptomicina , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Isoindóis/farmacologia , Animais , Camundongos , Homeostase/efeitos dos fármacos , Estreptomicina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium marinum/efeitos dos fármacos , Azóis/farmacologia , Azóis/química , Relação Dose-Resposta a Droga , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Estrutura Molecular , Camundongos Endogâmicos BALB CRESUMO
Tuberculosis (TB) remains a major public health challenge, with research on new anti-TB drugs crucial for global TB elimination efforts. Here, we report a novel class of anti-TB agents. Especially, compounds 5b and 5j exhibited the highest activity [minimum inhibitory concentration (MIC) H37Rv: 0.16 and 0.12 µg/mL]. Chiral resolution was performed on compounds 5b and 5j; the isomers were evaluated for their activity and safety, confirming that the R-isomer 5bb and 5jb displayed significant anti-TB activity (MIC H37Rv: 0.03-0.06 µg/mL; MDR-Mtb: 0.125-0.06 µg/mL) and low hERG toxicity. Further evaluations on 5bb and 5jb demonstrated good metabolic stability, favorable kinetic parameters and oral bioavailability (F: 56.7 and 63.8%, respectively). The results of in vivo activity assessment indicate that 5bb and 5jb exhibit protective and therapeutic effects on zebrafish larvae and adult zebrafish infected with Mycobacterium marinum. Based on these results, compounds 5bb and 5jb are considered promising candidates for further in-depth studies.
Assuntos
Antituberculosos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Peixe-Zebra , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/farmacocinética , Antituberculosos/química , Animais , Relação Estrutura-Atividade , Mycobacterium tuberculosis/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacocinética , Humanos , Mycobacterium marinum/efeitos dos fármacos , Estrutura MolecularRESUMO
Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.
Assuntos
Benzotiazóis , Sinergismo Farmacológico , Mycobacterium marinum , Peixe-Zebra , Animais , Benzotiazóis/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Rifampina/farmacologiaRESUMO
Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.
Assuntos
Proteínas de Bactérias , Cisteína , Metabolismo Energético , Glicopeptídeos , Homeostase , Mycobacterium tuberculosis , Oxirredução , Estresse Oxidativo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antituberculosos/farmacologia , Ergotioneína/metabolismo , Inositol/metabolismo , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Deleção de GenesRESUMO
Nontuberculosis mycobacterial (NTM) infections are increasing in prevalence across the world. In many cases, treatment options for these infections are limited. However, there has been progress in recent years in the development of new antimycobacterial drugs. Here, we investigate the in vitro activity of SPR719, a novel aminobenzimidazole antibiotic and the active form of the clinical-stage compound, SPR720, against several isolates of Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. We show that SPR719 is active against these NTM species with a MIC range of 0.125-4 µg/ml and that this compares favorably with the commonly utilized antimycobacterial antibiotics, rifampicin and clarithromycin. Our findings suggest that SPR720 should be further evaluated for the treatment of NTM infections.
Assuntos
Antibacterianos/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium ulcerans/efeitos dos fármacos , Mycobacterium/efeitos dos fármacos , DNA Girase/genética , DNA Girase/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , MutaçãoRESUMO
Glucocorticoids are effective drugs for treating immune-related diseases, but prolonged therapy is associated with an increased risk of various infectious diseases, including tuberculosis. In this study, we have used a larval zebrafish model for tuberculosis, based on Mycobacterium marinum (Mm) infection, to study the effect of glucocorticoids. Our results show that the synthetic glucocorticoid beclomethasone increases the bacterial burden and the dissemination of a systemic Mm infection. The exacerbated Mm infection was associated with a decreased phagocytic activity of macrophages, higher percentages of extracellular bacteria, and a reduced rate of infected cell death, whereas the bactericidal capacity of the macrophages was not affected. The inhibited phagocytic capacity of macrophages was associated with suppression of the transcription of genes involved in phagocytosis in these cells. The decreased bacterial phagocytosis by macrophages was not specific for Mm, since it was also observed upon infection with Salmonella Typhimurium. In conclusion, our results show that glucocorticoids inhibit the phagocytic activity of macrophages, which may increase the severity of bacterial infections like tuberculosis.
Assuntos
Glucocorticoides/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Animais , Carga Bacteriana , Beclometasona/metabolismo , Imunofenotipagem , Imunossupressores/efeitos adversos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Peixe-ZebraRESUMO
Macrophages use diverse strategies to restrict intracellular pathogens, including either depriving the bacteria of (micro)nutrients such as transition metals or intoxicating them via metal accumulation. Little is known about the chemical warfare between Mycobacterium marinum, a close relative of Mycobacterium tuberculosis (Mtb), and its hosts. We use the professional phagocyte Dictyostelium discoideum to investigate the role of Zn2+ during M. marinum infection. We show that M. marinum senses toxic levels of Zn2+ and responds by upregulating one of its isoforms of the Zn2+ efflux transporter CtpC. Deletion of ctpC (MMAR_1271) leads to growth inhibition in broth supplemented with Zn2+ as well as reduced intracellular growth. Both phenotypes were fully rescued by constitutive ectopic expression of the Mtb CtpC orthologue demonstrating that MMAR_1271 is the functional CtpC Zn2+ efflux transporter in M. marinum Infection leads to the accumulation of Zn2+ inside the Mycobacterium-containing vacuole (MCV), achieved by the induction and recruitment of the D. discoideum Zn2+ efflux pumps ZntA and ZntB. In cells lacking ZntA, there is further attenuation of M. marinum growth, presumably due to a compensatory efflux of Zn2+ into the MCV, carried out by ZntB, the main Zn2+ transporter in endosomes and phagosomes. Counterintuitively, bacterial growth is also impaired in zntB KO cells, in which MCVs appear to accumulate less Zn2+ than in wild-type cells, suggesting restriction by other Zn2+-mediated mechanisms. Absence of CtpC further epistatically attenuates the intracellular proliferation of M. marinum in zntA and zntB KO cells, confirming that mycobacteria face noxious levels of Zn2+IMPORTANCE Microelements are essential for the function of the innate immune system. A deficiency in zinc or copper results in an increased susceptibility to bacterial infections. Zn2+ serves as an important catalytic and structural cofactor for a variety of enzymes including transcription factors and enzymes involved in cell signaling. But Zn2+ is toxic at high concentrations and represents a cell-autonomous immunity strategy that ensures killing of intracellular bacteria in a process called zinc poisoning. The cytosolic and lumenal Zn2+ concentrations result from the balance of import into the cytosol via ZIP influx transporters and efflux via ZnT transporters. Here, we show that Zn2+ poisoning is involved in restricting Mycobacterium marinum infections. Our study extends observations during Mycobacterium tuberculosis infection and explores for the first time how the interplay of ZnT transporters affects mycobacterial infection by impacting Zn2+ homeostasis.
Assuntos
Proteínas de Transporte/fisiologia , Dictyostelium/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Zinco/metabolismo , Dictyostelium/metabolismo , Mycobacterium marinum/metabolismo , Vacúolos/metabolismo , Zinco/toxicidadeRESUMO
Through our previous work, we have identified that novel oxazolidinone structures, the biaryloxazolidinone analogues containing a hydrazone moiety, act as promising antibacterial agents against gram-positive bacterial strains. Based on this active structure, in this study, we synthesized a series of novel oxazolidinones and determined their anti-mycobacterial activities in vitro and in Mycobacterium marinum-infected zebrafish. The in vitro anti-mycobacterial assay demonstrated that all of the synthesized compounds have potent efficacy against both H37Rv and clinical mycobacterial isolates. Among all the generated active agents, (S)-N-(3-(2-fluoro-4'-(2-amino-4-thiazolyl)biphenyl-4-yl)-2-oxo-1,3-oxazolidie-5-ylmethyl)acetamide (compound 7), whose in vitro MIC was 10-fold lower than that of linezolid, showed the strongest bactericidal effects, with ~2.2-log reduction of M. marinum load in zebrafish at 10 mg/kg dosage. Other novel oxazolidinones, compounds 9, 12, 16, and 21, exhibited reduction range of 1.1-1.8 log against M. marinum and displayed better efficacy than linezolid. Our results indicate that these identified compounds have the potential to be further developed as novel anti-mycobacterial agents.
Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium marinum/efeitos dos fármacos , Oxazolidinonas/farmacologia , Animais , China , Testes de Sensibilidade Microbiana , Peixe-ZebraRESUMO
Several virulence lipids populate the outer cell wall of pathogenic mycobacteria. Phthiocerol dimycocerosate (PDIM), one of the most abundant outer membrane lipids, plays important roles in both defending against host antimicrobial programs and in evading these programs altogether. Immediately following infection, mycobacteria rely on PDIM to evade Myd88-dependent recruitment of microbicidal monocytes which can clear infection. To circumvent the limitations in using genetics to understand virulence lipids, we developed a chemical approach to track PDIM during Mycobacterium marinum infection of zebrafish. We found that PDIM's methyl-branched lipid tails enabled it to spread into host epithelial membranes to prevent immune activation. Additionally, PDIM's affinity for cholesterol promoted this phenotype; treatment of zebrafish with statins, cholesterol synthesis inhibitors, decreased spreading and provided protection from infection. This work establishes that interactions between host and pathogen lipids influence mycobacterial infectivity and suggests the use of statins as tuberculosis preventive therapy by inhibiting PDIM spread.
Assuntos
Membrana Celular/microbiologia , Células Epiteliais/microbiologia , Lipídeos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/patogenicidade , Fatores de Virulência/metabolismo , Células A549 , Animais , Animais Geneticamente Modificados , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Estrutura Molecular , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Relação Estrutura-Atividade , Células THP-1 , Virulência , Fatores de Virulência/química , Peixe-ZebraRESUMO
The present study aimed to formulate anti-tubercular drugs (Rifampicin, Isoniazid and Pyrazinamide) loaded solid lipid nanoparticles (ATDs-SLNs) using microemulsion technique for oral administration. Central composite designed (CCD) was applied to study the effect of stearic acid (X1), Compritol® 888 ATO (X2) and equal ratio of poloxamer 188: sodium taurocholate (% w/w) (X3) on particle size, zeta potential and entrapment efficiency. The optimised formulation (SLN8) was found to be spherical in shape with mean particle size 187.9 ± 10.73 nm and zeta potential -47.4 mV. The maximum percentage entrapment of RIF, INH and PYZ in the optimised formulation was found to be 86.40 ± 0.274, 83.84 ± 0.269 and 81.43 ± 0.576, respectively. The in-vitro drug release study demonstrated that the release of drug from SLNs was slow in comparison to marketed formulation and pure ATDs. Cytotoxicity of the ATDs-SLNs was studied on murine macrophage cell line (RAW 264.7) using modified MTT assay demonstrated two folds growth inhibition of M. marinum as compared to standard antitubercular drugs. Overall, the developed SLNs may be considered as a promising anti-mycobacterial nano-drug, providing a new direction to the tuberculosis clinics.
Assuntos
Antituberculosos/farmacocinética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/isolamento & purificação , Nanopartículas/ultraestrutura , Animais , Antituberculosos/administração & dosagem , Modelos Animais de Doenças , Camundongos , Microscopia Eletrônica de Varredura , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium marinum/efeitos dos fármacos , Tamanho da PartículaRESUMO
Lipids represent an important source of nutrition for infecting mycobacteria, accumulating within the necrotic core of granulomas and present in foamy macrophages associated with mycobacterial infection. In order to better understand the timing, process and importance of lipid accumulation, we developed methods for direct in vivo visualization and quantification of this process using the zebrafish-M. marinum larval model of infection. We find that neutral lipids accumulate cell-autonomously in mycobacterium-infected macrophages in vivo during early infection, with detectable levels of accumulation by two days post-infection. Treatment with ezetimibe, an FDA-approved drug, resulted in decreased levels of free cholesterol and neutral lipids, and a reduction of bacterial growth in vivo. The effect of ezetimibe in reducing bacterial growth was dependent on the mce4 operon, a key bacterial determinant of lipid utilization. Thus, in vivo, lipid accumulation can occur cell-autonomously at early timepoints of mycobacterial infection, and limitation of this process results in decreased bacterial burden.
Assuntos
Metabolismo dos Lipídeos , Mycobacterium marinum/crescimento & desenvolvimento , Ezetimiba/farmacologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/fisiologia , Óperon/genéticaRESUMO
The zebrafish infected with Mycobacterium marinum (M. marinum) is an attractive tuberculosis disease model, showing similar pathogenesis to Mycobacterium tuberculosis (M. tuberculosis) infections in humans. To translate pharmacological findings from this disease model to higher vertebrates, a quantitative understanding of the natural growth of M. marinum in comparison to the natural growth of M. tuberculosis is essential. Here, the natural growth of two strains of M. marinum, E11 and MUSA , is studied over an extended period using an established model-based approach, the multistate tuberculosis pharmacometric (MTP) model, for comparison to that of M. tuberculosis. Poikilotherm-derived strain E11 and human-derived strain MUSA were grown undisturbed up to 221 days and viability of cultures (colony forming unit (CFU)/mL) was determined by plating at different time points. Nonlinear mixed effects modeling using the MTP model quantified the bacterial growth, the transfer among fast, slow, and non-multiplying states, and the inoculi. Both strains showed initial logistic growth, reaching a maximum after 20-25 days for E11 and MUSA , respectively, followed by a decrease to a new plateau. Natural growth of both E11 and MUSA was best described with Gompertz growth functions. For E11, the inoculum was best described in the slow-multiplying state, for MUSA in the fast-multiplying state. Natural growth of E11 was most similar to that of M. tuberculosis, whereas MUSA showed more aggressive growth behavior. Characterization of natural growth of M. marinum and quantitative comparison with M. tuberculosis brings the zebrafish tuberculosis disease model closer to the quantitative translational pipeline of antituberculosis drug development.
Assuntos
Antituberculosos/farmacologia , Mycobacterium marinum/crescimento & desenvolvimento , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/uso terapêutico , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/isolamento & purificação , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Peixe-Zebra/microbiologiaRESUMO
The rapid and persistent increase of drug-resistant Mycobacterium tuberculosis (Mtb) infections poses increasing global problems in combatting tuberculosis (TB), prompting for the development of alternative strategies including host-directed therapy (HDT). Since Mtb is an intracellular pathogen with a remarkable ability to manipulate host intracellular signaling pathways to escape from host defense, pharmacological reprogramming of the immune system represents a novel, potentially powerful therapeutic strategy that should be effective also against drug-resistant Mtb. Here, we found that host-pathogen interactions in Mtb-infected primary human macrophages affected host epigenetic features by modifying histone deacetylase (HDAC) transcriptomic levels. In addition, broad spectrum inhibition of HDACs enhanced the antimicrobial response of both pro-inflammatory macrophages (MÏ1) and anti-inflammatory macrophages (MÏ2), while selective inhibition of class IIa HDACs mainly decreased bacterial outgrowth in MÏ2. Moreover, chemical inhibition of HDAC activity during differentiation polarized macrophages into a more bactericidal phenotype with a concomitant decrease in the secretion levels of inflammatory cytokines. Importantly, in vivo chemical inhibition of HDAC activity in Mycobacterium marinum-infected zebrafish embryos, a well-characterized animal model for tuberculosis, significantly reduced mycobacterial burden, validating our in vitro findings in primary human macrophages. Collectively, these data identify HDACs as druggable host targets for HDT against intracellular Mtb.
Assuntos
Antituberculosos/administração & dosagem , Benzamidas/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Ácidos Hidroxâmicos/administração & dosagem , Macrófagos/enzimologia , Macrófagos/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/administração & dosagem , Tuberculose/tratamento farmacológico , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia , Animais , Doadores de Sangue , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Histona Desacetilases/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Peixe-Zebra/embriologia , Peixe-Zebra/imunologiaRESUMO
Antimicrobial resistance in tuberculosis (TB) is a public health threat of global dimension, worsened by increasing drug resistance. Host-directed therapy (HDT) is an emerging concept currently explored as an adjunct therapeutic strategy for TB. One potential host target is the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which binds TB virulence factors and controls antibacterial responses. Here, we demonstrate that in the context of therapy, the AhR binds several TB drugs, including front line drugs rifampicin (RIF) and rifabutin (RFB), resulting in altered host defense and drug metabolism. AhR sensing of TB drugs modulates host defense mechanisms, notably impairs phagocytosis, and increases TB drug metabolism. Targeting AhR in vivo with a small-molecule inhibitor increases RFB-treatment efficacy. Thus, the AhR markedly impacts TB outcome by affecting both host defense and drug metabolism. As a corollary, we propose the AhR as a potential target for HDT in TB in adjunct to canonical chemotherapy.
Assuntos
Antituberculosos/metabolismo , Mycobacterium tuberculosis , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Fagocitose/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Rifabutina/metabolismo , Rifabutina/uso terapêutico , Rifampina/metabolismo , Rifampina/uso terapêutico , Células THP-1 , Resultado do Tratamento , Tuberculose/microbiologia , Peixe-ZebraRESUMO
Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18ß/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,ß)/CyC8(α,ß)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.
Assuntos
Antibacterianos/síntese química , Bactérias/crescimento & desenvolvimento , Compostos Organofosforados/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Organofosforados/química , Compostos Organofosforados/farmacologiaRESUMO
We recently identified inhibitors targeting Mycobacterium marinum MelF (Rv1936) by in silico analysis, which exhibited bacteriostatic/bactericidal activity against M. marinum and M. tuberculosis in vitro. Herein, we evaluated the effect of best four inhibitors (# 5175552, # 6513745, # 5255829, # 9125618) obtained from the ChemBridge compound libraries, on intracellular replication and persistence of bacteria within IFN-γ activated murine RAW264.7 and human THP-1 macrophages infected with M. marinum. Inhibitors # 5175552 and # 6513745 significantly reduced (p < 0.05) the intracellular replication of bacilli during day 7 post-infection (p.i.) within RAW264.7 and THP-1 macrophages infected at multiplicity of infection (MOI) of ~1.0. These observations were substantiated by electron microscopy, which revealed the protective effect of # 5175552 in clearing the bacilli inside murine macrophages. Strikingly, # 6513745 displayed synergism with isoniazid against M. marinum in murine macrophages, whereas # 5175552 significantly suppressed (p < 0.05) the persistent bacilli during day 10-14 p.i. in infected RAW264.7 and THP-1 macrophages (MOI of ~ 0.1). Moreover, # 5175552 and # 6513745 were non-cytotoxic to host macrophages at both 1X and 5X MIC. Further validation of these inhibitors against M. tuberculosis-infected macrophages and animal models has potential for development as novel anti-tubercular agents.
Assuntos
Antituberculosos/farmacologia , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Sinergismo Farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferon gama/genética , Interferon gama/imunologia , Isoniazida/farmacologia , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Células THP-1RESUMO
The second messenger 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) has been shown to be involved in the regulation of many biological processes ranging from carbon catabolite repression in bacteria to cell signalling in eukaryotes. In mycobacteria, the role of cAMP and the mechanisms utilized by the bacterium to adapt to and resist immune and pharmacological sterilization remain poorly understood. Among the stresses encountered by bacteria, ionic and non-ionic osmotic stresses are among the best studied. However, in mycobacteria, the link between ionic osmotic stress, particularly sodium chloride, and cAMP has been relatively unexplored. Using a targeted metabolic analysis combined with stable isotope tracing, we show that the pathogenic Mycobacterium tuberculosis but not the opportunistic pathogen Mycobacterium marinum nor the non-pathogenic Mycobacterium smegmatis responds to NaCl stress via an increase in intracellular cAMP levels. We further showed that this increase in cAMP is dependent on the cAMP receptor protein and in part on the threonine/serine kinase PnkD, which has previously been associated with the NaCl stress response in mycobacteria.