Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
1.
Sci Rep ; 14(1): 19026, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152186

RESUMO

Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Replicação do DNA , Proteínas de Ligação a DNA , Complexos Multiproteicos , Mycobacterium smegmatis , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/metabolismo , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107302

RESUMO

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Assuntos
Guanosina Trifosfato , IMP Desidrogenase , IMP Desidrogenase/metabolismo , IMP Desidrogenase/química , IMP Desidrogenase/antagonistas & inibidores , Regulação Alostérica , Guanosina Trifosfato/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Guanosina Pentafosfato/metabolismo , Inosina Monofosfato/metabolismo , Inosina Monofosfato/química , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(34): e2322938121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141351

RESUMO

The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.


Assuntos
Replicação do DNA , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mutação
4.
Redox Biol ; 75: 103285, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128229

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).


Assuntos
Metabolismo Energético , Homeostase , Proteínas Ferro-Enxofre , Mycobacterium tuberculosis , Oxirredução , Ácido Peroxinitroso , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efeitos dos fármacos , Superóxidos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/microbiologia , Tuberculose/metabolismo
5.
Commun Biol ; 7(1): 1035, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179666

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a serious threat to global public health. Fluoroquinolones (FQs) are effective against M. tuberculosis; however, resistant strains have limited their efficacy. Mycobacterium fluoroquinolone resistance protein A (MfpA) confers intrinsic resistance to FQs; however, its regulatory mechanisms remain largely unknown. Using M. smegmatis as a model, we investigated whether MfpC is necessary for FQ susceptibility. MfpC mutants were sensitive to moxifloxacin, indicating that MfpC is involved in FQ susceptibility. By testing the mfpC inactivation phenotype in different mutants and using mycobacterial protein fragment complementation, we demonstrated that the function of MfpC depends on its interactions with MfpB. Guanine nucleotide exchange assays and site-directed mutagenesis confirmed that MfpC acts as a guanine nucleotide exchange factor to regulate MfpB. We propose that MfpB influences MfpA at the translational level. In summary, we reveal the role of MfpC in regulating the function of MfpA in FQ resistance.


Assuntos
Proteínas de Bactérias , Fluoroquinolonas , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Mutação
6.
Front Cell Infect Microbiol ; 14: 1427829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113823

RESUMO

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods: Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion: The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.


Assuntos
Proteínas de Bactérias , Carbono , Regulação Bacteriana da Expressão Gênica , Glucose , Mycobacterium smegmatis , Propilenoglicóis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Glucose/metabolismo , Propilenoglicóis/metabolismo , Propilenoglicóis/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Regiões Promotoras Genéticas
7.
Mol Microbiol ; 122(2): 243-254, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38994875

RESUMO

Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29∆NTD) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29∆NTD is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29∆NTD-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29∆NTD, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.


Assuntos
Parede Celular , Endopeptidases , Micobacteriófagos , Mycobacterium tuberculosis , Peptidoglicano , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Endopeptidases/metabolismo , Endopeptidases/genética , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Mycobacterium tuberculosis/virologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Domínios Proteicos , Vírion/metabolismo , Bacteriólise , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
8.
mBio ; 15(8): e0124824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39012146

RESUMO

Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.


Assuntos
Reparo do DNA , Ficusina , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Ficusina/química , Ficusina/farmacologia , Ficusina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Dano ao DNA , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Mitomicina/farmacologia , Mitomicina/metabolismo , Deleção de Genes
9.
Microbiol Spectr ; 12(8): e0320723, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916330

RESUMO

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE: The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Riboflavina , Riboflavina/biossíntese , Riboflavina/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Vias Biossintéticas/genética , Técnicas de Silenciamento de Genes , Células T Invariantes Associadas à Mucosa/metabolismo , Regulação Bacteriana da Expressão Gênica
10.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38860795

RESUMO

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Glicopeptídeos , Inositol , Ferro , Mycobacterium smegmatis , Oxirredução , Ferro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inositol/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/biossíntese , Regiões Promotoras Genéticas , Cisteína/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Elementos de DNA Transponíveis , Proteínas Repressoras
11.
Int J Biol Macromol ; 272(Pt 1): 132727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823743

RESUMO

Due to the uniqueness and essentiality of MEP pathway for the synthesis of crucial metabolites- isoprenoids, hopanoids, menaquinone etc. in mycobacterium, enzymes of this pathway are considered promising anti-tubercular drug targets. In the present study we seek to understand the consequences of downregulation of three of the essential genes- DXS, IspD, and IspF of MEP pathway using CRISPRi approach combined with transcriptomics in Mycobacterium smegmatis. Conditional knock down of either DXS or IspD or IspF gene showed strong bactericidal effect and a profound change in colony morphology. Impaired MEP pathway due to downregulation of these genes increased the susceptibility to frontline anti-tubercular drugs. Further, reduced EtBr accumulation in all the knock down strains in the presence and absence of efflux inhibitor indicated altered cell wall topology. Subsequently, transcriptional analysis validated by qRT-PCR of +154DXS, +128IspD, +104IspF strains showed that modifying the expression of these MEP pathway enzymes affects the regulation of mycobacterial core components. Among the DEGs, expression of small and large ribosomal binding proteins (rpsL, rpsJ, rplN, rplX, rplM, rplS, etc), essential protein translocases (secE, secY and infA, infC), transcriptional regulator (CarD and SigB) and metabolic enzymes (acpP, hydA, ald and fabD) were significantly depleted causing the bactericidal effect. However, mycobacteria survived under these damaging conditions by upregulating mostly the genes needed for the repair of DNA damage (DNA polymerase IV, dinB), synthesis of essential metabolites (serB, LeuA, atpD) and those strengthening the cell wall integrity (otsA, murA, D-alanyl-D-alanine dipeptidase etc.).


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antituberculosos/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Redes e Vias Metabólicas
12.
Nat Commun ; 15(1): 5276, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902248

RESUMO

Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.


Assuntos
Microscopia Crioeletrônica , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimologia , Transporte de Elétrons , Oxirredução , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Prótons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Domínio Catalítico , Modelos Moleculares
13.
Nat Commun ; 15(1): 4161, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755122

RESUMO

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Assuntos
Proteínas de Bactérias , Biotina , Mycobacterium tuberculosis , Biotina/metabolismo , Biotina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sulfurtransferases/metabolismo , Sulfurtransferases/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimologia , Escherichia coli/metabolismo , Escherichia coli/genética
14.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697952

RESUMO

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Assuntos
Proteínas de Bactérias , Cálcio , Parede Celular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Cálcio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Parede Celular/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mutação , Ligação Proteica , Ácidos Micólicos/metabolismo
15.
Nat Commun ; 15(1): 4065, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744895

RESUMO

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Assuntos
Antibacterianos , Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteólise , Proteólise/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Aprendizado de Máquina
16.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776712

RESUMO

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Assuntos
Nucleotídeos de Desoxiguanina , Proteínas de Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Especificidade por Substrato , Nucleotídeos de Desoxiguanina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Substituição de Aminoácidos , Pirofosfatases/metabolismo , Pirofosfatases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/análogos & derivados
17.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698289

RESUMO

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Transaminases , Camundongos , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Animais , Células RAW 264.7 , Virulência , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transaminases/metabolismo , Transaminases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimologia , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Humanos , Imunidade Inata , Interações Hospedeiro-Patógeno/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
18.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600064

RESUMO

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Óperon/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulação Bacteriana da Expressão Gênica
19.
J Biol Chem ; 300(5): 107287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636658

RESUMO

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Assuntos
Proteínas de Bactérias , AMP Cíclico , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Viabilidade Microbiana , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Ligação Proteica
20.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644371

RESUMO

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Assuntos
Vacina BCG , Proteínas de Bactérias , Proteínas de Ligação a DNA , Interferon gama , Mycobacterium tuberculosis , Processamento de Proteína Pós-Traducional , Humanos , Interferon gama/metabolismo , Proteínas de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Ilhas de CpG , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...