RESUMO
BACKGROUND: Multidrug- or rifampicin-resistant tuberculosis (TB; MDR/RR-TB) is a significant public health threat. However, the mechanisms involved in its transmission in Sichuan, China are unclear. To provide a scientific basis for MDR/RR-TB control and prevention, we investigated the drug-resistance characteristics, genetic diversity, and transmission dynamics and analyzed the demographic and clinical characteristics of patients to identify risk factors for the acquisition of MDR/RR-TB in Sichuan, Western China. METHODS: Whole-genome sequencing was performed using a sample comprised of all MDR/RR-TB strains isolated from patients with pulmonary TB (≥ 15 years) at the 22 surveillance sites in Sichuan province between January 2019 and December 2021, to analyze genotypic drug resistance and genetic diversity. Moreover, we performed statistical analyses of the epidemiological characteristics and risk factors associated with the transmission dynamics of MDR/RR-TB. RESULTS: The final analysis included 278 MDR/RR TB strains. Lineage 2.2, the major sub-lineage, accounted for 82.01% (228/278) of isolates, followed by lineage 4.5 (9.72%, 27/278), lineage 4.4 (6.83%, 19/278), and lineage 4.2 (1.44%, 4/278). The drug resistance rates, ranging from high to low, were as follows: isoniazid (229 [82.37%]), streptomycin (177 [63.67%]), ethambutol (144 [51.80%]), pyrazinamide (PZA, 119 [42.81%]), fluoroquinolones (FQs, 93 [33.45%]). Further, the clofazimine, bedaquiline, and delamanid resistance rates were 2.88, 2.88, and 1.04%, respectively. The gene composition cluster rate was 32.37% (90/278). In addition, 83.81% (233/278) of MDR/RR-TB cases were determined to be likely caused by transmission. Finally, patients infected with lineage two strains and strains with the KatG S315T amino acid substitution presented a higher risk of MDR/RR-TB transmission. CONCLUSION: Transmission plays a significant role in the MDR/RR-TB burden in Sichuan province, and lineage 2 strains and strains harboring KatG S315T have a high probability of transmission. Further, high levels of FQ and PZA drug resistance suggest an urgent need for drug susceptibility testing prior to designing therapeutic regimens. New anti-TB drugs need to be used standardly and TB strains should be regularly monitored for resistance to these drugs.
Assuntos
Antituberculosos , Farmacorresistência Bacteriana Múltipla , Variação Genética , Mycobacterium tuberculosis , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Rifampina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Masculino , Feminino , Antituberculosos/farmacologia , Adulto , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Fatores de Risco , Idoso , Genótipo , Adulto Jovem , Tuberculose Pulmonar/transmissão , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/epidemiologia , AdolescenteRESUMO
Several human-adapted Mycobacterium tuberculosis complex (Mtbc) lineages exhibit a restricted geographical distribution globally. These lineages are hypothesized to transmit more effectively among sympatric hosts, that is, those that share the same geographical area, though this is yet to be confirmed while controlling for exposure, social networks and disease risk after exposure. Using pathogen genomic and contact tracing data from 2,279 tuberculosis cases linked to 12,749 contacts from three low-incidence cities, we show that geographically restricted Mtbc lineages were less transmissible than lineages that have a widespread global distribution. Allopatric host-pathogen exposure, in which the restricted pathogen and host are from non-overlapping areas, had a 38% decrease in the odds of infection among contacts compared with sympatric exposures. We measure tenfold lower uptake of geographically restricted lineage 6 strains compared with widespread lineage 4 strains in allopatric macrophage infections. We conclude that Mtbc strain-human long-term coexistence has resulted in differential transmissibility of Mtbc lineages and that this differs by human population.
Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Simpatria , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Busca de Comunicante , Feminino , Adulto , Masculino , Macrófagos/microbiologia , Incidência , FilogeniaRESUMO
The incidence of tuberculosis (TB) has declined more slowly in rural than urban areas in China, and data on the patterns of transmission and the high-risk populations in rural areas remains scarce. We conducted a population-based study of culture-positive pulmonary TB patients diagnosed in rural Linzhou City, Henan Province from July 2018 to February 2023. Genomic clusters were defined based on whole-genome sequencing and risk factors for clustering were identified by logistic regression. Transmission events were inferred with phybreak and transmission links were sought through epidemiological investigation of clustered patients. Logistic regression was used to explore the relationship between genomic differences of patient isolates and geographical distances of patient residences. Spatial hotspots were defined using kernel density estimation. Of 455 culture-positive patients, 430 were included in the final analysis. Overall, 192 (44.7%,192/430) patients were grouped into 49 clusters. Clusters containing ≥5 patients accounted for 18.4% (9/49) of the clusters and clustering was highest in student patients. No super-spreaders were detected. Confirmed epidemiologic links were identified for only 18.2% of clustered patients. The clustering risk decreased rapidly with increasing distances between patient residences, but 77.6% of clustered patient pairs lived ≥5.0 km apart. Both the Central Subdistrict and Rencun Township were identified as hotspots for TB transmission. Recent transmission appears to be an important driver of the TB burden in Linzhou. The formulation of effective strategies to reduce TB incidence in rural areas will require further studies to identify high-risk populations and venues where local inhabitants congregate and transmit the infection.
Assuntos
Mycobacterium tuberculosis , População Rural , Humanos , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/classificação , Estudos Prospectivos , Adulto Jovem , Fatores de Risco , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/transmissão , Tuberculose Pulmonar/microbiologia , Sequenciamento Completo do Genoma , Incidência , Idoso , Adolescente , Análise por Conglomerados , Tuberculose/epidemiologia , Tuberculose/transmissão , Tuberculose/microbiologiaRESUMO
The transition from MIRU-VNTR-based epidemiology studies in tuberculosis (TB) to genomic epidemiology has transformed how we track transmission. However, short-read sequencing is poor at analyzing repetitive regions such as the MIRU-VNTR loci. This causes a gap between the new genomic data and the large amount of information stored in historical databases. Long-read sequencing could bridge this knowledge gap by allowing analysis of repetitive regions. However, the feasibility of extracting MIRU-VNTRs from long reads and linking them to historical data has not been evaluated. In our study, an in silico arm, consisting of inference of MIRU patterns from long-read sequences (using MIRUReader program), was compared with an experimental arm, involving standard amplification and fragment sizing. We analyzed overall performance on 39 isolates from South Africa and confirmed reproducibility in a sample enriched with 62 clustered cases from Spain. Finally, we ran 25 consecutive incident cases, demonstrating the feasibility of correctly assigning new clustered/orphan cases by linking data inferred from genomic analysis to MIRU-VNTR databases. Of the 3,024 loci analyzed, only 11 discrepancies (0.36%) were found between the two arms: three attributed to experimental error and eight to misassigned alleles from long-read sequencing. A second round of analysis of these discrepancies resulted in agreement between the experimental and in silico arms in all but one locus. Adjusting the MIRUReader program code allowed us to flag potential in silico misassignments due to suboptimal coverage or unfixed double alleles. Our study indicates that long-read sequencing could help address potential chronological and geographical gaps arising from the transition from molecular to genomic epidemiology of tuberculosis. IMPORTANCE: The transition from molecular epidemiology in tuberculosis (TB), based on the analysis of repetitive regions (VNTR-based genotyping), to genomic epidemiology transforms in the precision with which we track transmission. However, short-read sequencing, the most common method for performing genomic analysis, is poor at analyzing repetitive regions. This means that we face a gap between the new genomic data and the large amount of information stored in historical databases, which is also an obstacle to cross-national surveillance involving settings where only molecular data are available. Long-read sequencing could help bridge this knowledge gap by allowing analysis of repetitive regions. Our study demonstrates that MIRU-VNTR patterns can be successfully inferred from long-read sequences, allowing the correct assignment of new cases as clustered/orphan by linking new data extracted from genomic analysis to historical MIRU-VNTR databases. Our data may provide a starting point for bridging the knowledge gap between the molecular and genomic eras in tuberculosis epidemiology.
Assuntos
Repetições Minissatélites , Epidemiologia Molecular , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/epidemiologia , Tuberculose/microbiologia , Epidemiologia Molecular/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Repetições Minissatélites/genética , África do Sul/epidemiologia , Espanha/epidemiologia , Genótipo , Reprodutibilidade dos Testes , GenômicaRESUMO
Complete identification methods are critical for evaluating nontuberculous mycobacteria (NTM). Here, we describe a novel diagnostic method for identification of eight NTM, Mycobacterium tuberculosis complex, and three drug resistance markers using PCR/matrix-assisted, laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) from cultured organisms. With this technology, a multiplex end-point PCR is performed for targets of interest. Detection probes that are extended in the presence of a target are added. The extended probes have greater molecular weight and can be detected by MALDI-TOF MS. An AFB Primary Panel was designed to differentiate Mycobacterium avium; Mycobacterium intracellulare subsp. chimaera; Mycobacterium avium complex (other); Mycobacterium abscessus subsp. abscessus, bolletii, and massiliense; Mycobacterium kansasii, and M. tuberculosis complex. This design should cover 90% (3,483/3,691) of mycobacteria seen onsite. A development set of unblinded isolates (n = 217) was used to develop PCR primers, detection probes, and probe barcodes. It demonstrated 99.1% (215/217) agreement with reference methods. An evaluation set using blinded isolates (n = 320) showed an overall sensitivity of 94.3% (range by target: 90.0-100%). Overall specificity from negative media, non-target mycobacteria, and bacteria was 99.1% (108/109; range by target: 94.4-100%). Three drug resistance markers erm (41), rrl, and rrs demonstrated 100%, 91%, and 100% sensitivity, respectively, and >99% specificity. Limit of detection per target ranged from 2.2 × 103 to 9.9 × 106 CFU/mL. The AFB Primary Panel allows for mycobacterial speciation, subspeciation, and resistance mutation detection, which is essential for diagnosis, appropriate therapy, identifying outbreaks, and managing treatment-refractory disease. It can perform with high-throughput and high specificity and sensitivity from isolates.IMPORTANCEEven closely related mycobacteria can have unique treatment patterns, but differentiating these organisms is a challenge. Here, we tested an innovative platform that combines two commonly used technologies and creates something new: matrix-assisted, laser-desorption ionization time-of flight mass spectrometry was performed on PCR amplicons instead of on proteins. This created a robust system with the advantages of PCR (high discriminatory power, high throughput, detection of resistance) with the advantages of mass spectrometry (more targets, lower operational cost) in order to identify closely related mycobacterial organisms.
Assuntos
Farmacorresistência Bacteriana , Micobactérias não Tuberculosas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Micobactérias não Tuberculosas/classificação , Farmacorresistência Bacteriana/genética , Marcadores Genéticos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , DNA Bacteriano/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase/métodosRESUMO
OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , AdultoRESUMO
The continuous advancement of molecular diagnostic techniques, particularly whole-genome sequencing (WGS), has greatly facilitated the early diagnosis of drug-resistant tuberculosis patients. Nonetheless, the interpretation of results from various types of mutations in drug-resistant-associated genes has become the primary challenge in the field of molecular drug-resistance diagnostics. In this study, our primary objective is to evaluate the diagnosis accuracy of the World Health Organization (WHO) catalog of mutations and five WGS analysis tools (PhyResSE, Mykrobe, TB Profiler, Gen-TB, and SAM-TB) in drug resistance to 10 anti-Mycobacterium tuberculosis (MTB) drugs. We utilized the data of WGS collected between 2014 and 2017 in Zhejiang Province, consisting of 110 MTB isolates as detailed in our previous study. Based on phenotypic drug susceptibility testing (DST) results using the proportion method on Löwenstein-Jensen medium with antibiotics, we evaluated the predictive accuracy of genotypic DST obtained by these tools. The results revealed that the WHO catalog of mutations and five WGS analysis tools exhibit robust predictive capabilities concerning resistance to isoniazid, rifampicin, ethambutol, streptomycin, amikacin, kanamycin, and capreomycin. Notably, Mykrobe, SAM-TB, and TB Profiler demonstrate the most accurate predictions for resistance to pyrazinamide, prothionamide, and para-aminosalicylic acid, respectively. These findings are poised to significantly guide and influence future clinical treatment strategies and resistance monitoring protocols.IMPORTANCEWhole-genome sequencing (WGS) has the potential for the early diagnosis of drug-resistant tuberculosis. However, the interpretation of mutations of drug-resistant-associated genes represents a significant challenge as the amount and complexity of WGS data. We evaluated the accuracy of the World Health Organization catalog of mutations and five WGS analysis tools in predicting drug resistance to first-line and second-line anti-TB drugs. Our results offer clinicians guidance on selecting appropriate WGS analysis tools for predicting resistance to specific anti-TB drugs.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/classificação , Antituberculosos/farmacologia , China , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Organização Mundial da Saúde , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Genótipo , Farmacorresistência Bacteriana/genéticaRESUMO
For facilitating tuberculosis (TB) control, we used a whole-genome sequencing (WGS)-based approach to delineate transmission networks in a country with an intermediate burden of TB. A cluster was defined as Mycobacterium tuberculosis isolates with identical genotypes, and an outbreak was defined as clustered cases with epidemiological links (epi-links). To refine a cluster predefined using space oligonucleotide typing and mycobacterial interspersed repetitive unit variable tandem repeat typing, we analyzed one pansusceptible TB (C1) and three multidrug-resistant (MDR)-TB (C2-C4) clusters from different scenarios. Pansusceptible TB cluster (C1) consisting of 28 cases had ≤5 single nucleotide polymorphisms (SNPs) difference between their isolates. C1 was a definite outbreak, with cases attending the same junior high school in 2012. Three MDR-TB clusters (C2-C4) with distinct genotypes were identified, each consisting of 12-22 cases. Some of the cases had either ≤5 or ≤15 SNPs difference with clear or probable epi-links. Of note, even though WGS could effectively assist TB contact tracing, we still observed missing epi-links in some cases within the same cluster. Our results showed that thresholds of ≤5 and ≤15 SNPs difference between isolates were used to categorize definite and probable TB transmission, respectively. Furthermore, a higher SNP threshold might be required to define an MDR-TB outbreak. WGS still needs to be combined with classical epidemiological methods for improving outbreak investigations. Importantly, different SNP thresholds have to be applied to define outbreaks. IMPORTANCE: TB is a chronic disease. Depending on host factors and TB burden, clusters of cases may continue to increase for several years. Conventional genotyping methods overestimate TB transmission, hampering precise detection of outbreaks and comprehensive surveillance. WGS can be used to obtain SNP information of M. tuberculosis to improve discriminative limitations of conventional methods and to strengthen delineation of transmission networks. It is important to define the country-specific SNP thresholds for investigation of transmission. This study demonstrated the use of thresholds of ≤5 and ≤15 SNPs difference between isolates to categorize definite and probable transmission, respectively. Different SNP thresholds should be applied while a higher cutoff was required to define an MDR-TB outbreak. The utilization of SNP thresholds proves to be crucial for guiding public health interventions, eliminating the need for unnecessary public health actions, and potentially uncovering undisclosed TB transmissions.
Assuntos
Genótipo , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Sequenciamento Completo do Genoma , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Masculino , Feminino , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Surtos de Doenças , Genoma Bacteriano/genética , Adulto , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Epidemiologia MolecularRESUMO
China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento Completo do Genoma , Humanos , China/epidemiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/classificação , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Estudos Transversais , Estudos Retrospectivos , Adulto Jovem , Fatores de Risco , Adolescente , Idoso , Rifampina/farmacologia , Antituberculosos/farmacologia , Genoma Bacteriano , Farmacorresistência Bacteriana MúltiplaRESUMO
PURPOSE: Tuberculosis is an important public health problem among infectious diseases. The problem becomes more concerning with the emergence of MDR-TB and pre-XDR-TB. Whole genome sequencing (WGS) detection of resistance has recently gained popularity as it has advantages over other commercial techniques. METHODS: We performed in-house WGS followed by detailed analysis by an in-house pipeline to identify the resistance markers. This was accompanied by Phenotypic DST, and Sanger sequencing on all the 12 XDR, 06 pre-XDR, and 06 susceptible M. tb isolates. These results were collated with online M. tb WGS pipelines (TB profiler, PhyResSE, Mykrobe predictor) for comparative analysis. RESULTS: Following our in-house analysis, we observed 64 non-synonymous SNPs, fifteen synonymous SNPs, and five INDELs in 25 drug resistance-associated genes/intergenic regions (IGRs) in M. tb isolates. Sensitivity for detecting XDR is 33%, 58%, 83%, and 83%, respectively, using Mykrobe predictor, PhyResSE, TB-profiler, and in-house pipeline for WGS analysis, respectively. TB-profiler detected a rare mutation H70R in the gyrA gene in one pre-XDR isolate. Lineage 2.2.1 East-Asian (Beijing sublineage type) predominated (60%) in WGS data analysis of the XDR isolates. CONCLUSIONS: Our findings suggest that in-house analysis of WGS data and TB-profiler sensitivity was better for the detection of second-line resistance as compared to other automated tested tools. Frequent upgradation of newer mutations associated with resistance needs to be updated, as it potentiates tailored treatment for patients.
Assuntos
Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/classificação , Índia , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Genoma Bacteriano/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologiaRESUMO
Los métodos diagnósticos clásicos de tuberculosis (TB) se basan en la utilización de baciloscopía y cultivo. La identificación del agente etiológico desde la positivización del cultivo requiere entre 10 y 15 días, mientras que el empleo de la reacción en cadena de la polimerasa (PCR) disminuye el tiempo a 24 h, lo que permite no solo identificar las subespecies del complejo Mycobacterium tuberculosis (CMTB) sino también diferenciarlas de otras especies ambientales clínicamente importantes (MOTT) facilitando el diagnóstico y tratamiento. El objetivo del presente trabajo fue determinar la utilidad de la PCR en la identificación temprana de las micobacterias pertenecientes al CMTB, a partir de cultivos positivos, de pacientes con sospecha de TB, atendidos en un hospital pediátrico de alta complejidad, durante un período de cuatro años. A cada muestra, se le realizó baciloscopía y cultivo en medio líquido. A los cultivos positivos, una inmunocromatografía lateral (TBIDR) y luego PCR. El 4,6% del total de muestras (510/11.162) pertenecientes a 198 pacientes presentó cultivos positivos. Cuatrocientos veintiseis (84%) correspondieron a muestras respiratorias. El rendimiento de la baciloscopía directa fue del 41% (194/470). Cuatrocientos treinta y ocho (86%) resultaron M. tuberculosis, 21 (4%) Mycobacterium bovis, 7 (1%), M. bovis-BCG y 44 (9%) MOTT. La utilización de medios de cultivos líquidos junto con el empleo de PCR favorecen una rápida orientación microbiológica y constituye una estrategia útil para optimizar el manejo clínico de estas infecciones, desde el punto de vista terapéutico y epidemiológico, especialmente en pediatría (AU)
Classical diagnostic methods for tuberculosis (TB) are based on the use of smear microscopy and culture. The identification of the etiological agent from positive culture requires 10 to 15 days, while the use of the polymerase chain reaction (PCR) reduces the time to 24 h, which allows not only to identify the subspecies of the Mycobacterium tuberculosis complex (MTC) but also to differentiate them from clinically important environmental mycobacteria other than tuberculosis (MOTT), facilitating diagnosis and treatment. The aim of this study was to determine the usefulness of PCR in the early identification of mycobacteria belonging to the MTC, from positive cultures of patients with suspected TB seen in a pediatric tertiary hospital over a 4-year period. For each sample, smear microscopy and culture in liquid medium was performed. Positive cultures were subjected to lateral immunochromatography (TBIDR) and then PCR. Of the total number of samples (510/11,162) belonging to 198 patients, 4.6% showed positive cultures; 426 (84%) were respiratory samples. The direct smear microscopy yield was 41% (194/470). Overall, 438 (86%) were found to be M. tuberculosis, 21 (4%) Mycobacterium bovis, 7 (1%), M. bovis-BCG, and 44 (9%) MOTT. The use of liquid culture media together with the use of PCR favors a rapid microbiological orientation and is a useful strategy to optimize the clinical management of these infections, from a therapeutic and epidemiological point of view, especially in children (AU)
Assuntos
Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Reação em Cadeia da Polimerase/instrumentação , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/classificação , Estudos RetrospectivosRESUMO
Background: Tuberculosis (TB) is a leading cause of morbidity and mortality in Ethiopia. Investigation of the Mycobacterium tuberculosis complex (MTBC) species circulating in the Ethiopian population would contribute to the efforts made to control TB in the country. Therefore, this study was conducted to investigate the MTBC species and spoligo patterns in the Oromia region (central) of Ethiopia. Methods: A cross-sectional study design was used to recruit 450 smear positive pulmonary TB (PTB) cases from the Oromia region between September 2017 and August 2018. Mycobacteria were isolated from sputum samples on the Lowenstein Jensen (LJ) medium. Molecular identification of the isolates was performed by spoligotyping. The results of spoligotyping were transferred into a query box in the SITVIT2 database and Run TB-Lineage in the TB Insight website for the identification of spoligo international type (SIT) number and linages of the isolates, respectively. Statistical Product and Service Solutions (SPSS) 20 was applied for statistical analysis. Results: Three hundred and fifteen isolates were grouped under 181 different spoligotype patterns. The most dominantly isolated spoligotype pattern was SIT149 and it consisted of 23 isolates. The majority of the isolates were grouped under Euro-American (EA), East-African-Indian (EAI), and Indo-Oceanic (IO) lineages. These lineages consisted of 79.4, 9.8, and 9.8% of the isolates, respectively. One hundred and sixty-five of the isolates were classified under 31 clustered spoligotypes whereas the remaining 150 were singleton types. Furthermore, 91.1% of the total isolates were classified as orphan types. Clustering of spoligotypes was associated (p < 0.001) with EAI lineage. Conclusion: SIT149 and EA lineage were predominantly isolated from the Oromia region substantiating the findings of the similar studies conducted in other regions of Ethiopia. The observation of significant number of singleton and orphan spoligotypes warrants for additional genetic typing of the isolates using method(s) with a better discriminatory power than spoligotyping.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Técnicas de Tipagem Bacteriana , Estudos Transversais , Etiópia/epidemiologia , Humanos , Mycobacterium tuberculosis/classificação , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologiaRESUMO
To tackle the spread of tuberculosis (TB), epidemiological studies are undertaken worldwide to investigate TB transmission chains. Clustered regulatory interspaced short palindromic repeats (CRISPR) locus diversity, also called spoligotyping, is a widely used genotyping assay for the characterization of Mycobacterium tuberculosis complex (MTBC). We compared herein the spoligotyping of MTBC clinical isolates using a membrane-based method (following an initial PCR step) and whole-genome sequencing (WGS)-based method (i.e., in silico spoligotyping). All MTBC strains isolated at the Lyon University Hospital, France, between November 2016 and December 2020 were included (n = 597). Spoligotyping profiles were also used for species identification among the MTBC. Outputs of both methods were analyzed, and discrepant results were investigated thanks to CRISPRbuilder-TB. The overall agreement was 85.7%. Spacer discrepancies observed between the methods were due to the insertion of IS6110 within the direct repeat (DR) sequence upstream or downstream of spacers, mutated DR sequences, or truncated spacers. Discrepancies did not impact species identification. Although spoligotyping-based species identification was inconclusive for 29 isolates, SNP-based phylogeny conducted after WGS allowed the identification of 23 M. tuberculosis (Mtb), 2 M. canettii, and 4 mixed MTBC infections. WGS yielded very few discrepancies compared to membrane-based spoligotyping. Overall agreement was significantly improved (92.4%) by the CRISPR locus reconstruction using CRISPRbuilder-TB for the MTBC isolates with the shared international type 53 in silico spoligotyping. A smooth transition from the membrane-based to the in silico-based genotyping of M. tuberculosis isolates is, therefore, possible for TB diagnosis and epidemiologic survey. IMPORTANCE Whole-genome sequencing (WGS) has profoundly transformed the perspectives of tuberculosis (TB) diagnosis, providing a better discriminatory power to determine relatedness between Mycobacterium tuberculosis complex (MTBC) isolates. Previous genotyping approaches, such as spoligotyping consisting of an initial PCR step followed by reverse dot hybridization, are currently being replaced by WGS. Several pipelines have been developed to extract a spoligotype from WGS data (in silico spoligotyping) allowing for the continuity of MTBC molecular surveys before and after WGS implementation. The present study found very good overall agreement between hybridization to membrane-based spoligotyping and in silico spoligotyping, indicating the possibility of a smooth transition from the traditional to the in silico-based genotyping of MTBC isolates for TB diagnosis and epidemiological survey.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Técnicas de Tipagem Bacteriana , Genótipo , Humanos , Mycobacterium tuberculosis/classificação , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Tuberculose/microbiologia , Sequenciamento Completo do Genoma/métodosRESUMO
Infections with multiple strains of Mycobacterium tuberculosis are now widely recognized as a common occurrence. Identification of patients infected with multiple strains provides both insight into the disease dynamics and the epidemiology of tuberculosis. Analysis of Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeats (MIRU-VNTR) has been shown to be highly sensitive in detecting multiple M. tuberculosis strains even in sputum. The goal of this study was to identify cases of multiple M. tuberculosis strain infections among patients diagnosed with pulmonary tuberculosis in Southwestern Uganda and assessment of factors associated with multiple strain infections. DNA extracted directly from 78 sputum samples, each from an individual patient, was analyzed using the standard 24 loci MIRU-VNTR typing. Five (6.4%) of the 78 patients were infected with multiple strains of M. tuberculosis with all of them being the newly diagnosed cases while two-thirds of them were co-infected with HIV. Exact regression analysis projected that the natives were more likely to harbor multiple strains (OR; 0.981, 95% CI 0-7.926) as well as those with a high microbial load (OR; 0.390, 95% CI 0-3.8167). Despite these findings being not statistically significant due to the small sample size, this points to a critical component of disease dynamics that has clinical implications and emphasizes a need for a study using a larger cohort. It is also essential to study the potential factors associated with higher risk of exposure to newly diagnosed and HIV positive patients at the community level. In addition, our ability to detect multiple M. tuberculosis strains using the standard 24 loci MIRU-VNTR typing especially with allelic diversity in loci 2059 and 3171, which are excluded from the 15-locus MIRU-VNTR, lead us to recommend the use of this genotyping technique, especially in areas with tuberculosis endemicity similar to this study.
Assuntos
Técnicas Bacteriológicas , DNA Bacteriano/genética , Técnicas de Genotipagem , Sequências Repetitivas Dispersas , Repetições Minissatélites , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adolescente , Adulto , Coinfecção , DNA Bacteriano/isolamento & purificação , Feminino , Genótipo , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Valor Preditivo dos Testes , Prevalência , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Uganda/epidemiologia , Adulto JovemRESUMO
To gain a deep insight into the additional drug-resistant profiles, genetic diversity, and transmission dynamics of rifampicin-resistant tuberculosis (RR-TB) circulating in Hunan province, drug susceptibility testing and whole-genome-sequencing were performed among RR-TB strains collected from Jan. 2013 to Jun. 2018 in Hunan province. A total of 124 RR-TB strains were recovered successfully and included into the final analysis. Lineage 2.2.1 was the dominant sublineage, accounting for 72.6% (90/124), followed by lineage 4.5 (11.3%, 14/124), lineage 4.4 (8.1%, 10/124), lineage 4.2 (6.5%, 8/124) and lineage 2.2.2 (1.6%, 2/124). Overall, 83.1% (103/124) and 3.2% (4/124) of RR-TB were MDR-TB and XDR-TB, respectively. Nearly 30% of RR-TB isolates were resistant to fluoroquinolones, and 26.6% (33/124) were pre-XDR-TB. Moreover, 30.6% (38/124) of RR-TB strains were identified as phenotypically resistance to pyrazinamide. Totally, 17 clusters containing 48 (38.7%, 48/124) RR-TB strains were identified, ranging in size from 2 to 10 isolates. No significant difference was detected in clustering rate between lineage 2 and lineage 4 (χ2 = 0.027, P = 0.870). Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions. IMPORTANCE Comprehensive information such as genetic background and drug-resistant profile of MTB strains could help to tailor public interventions. However, these data are limited in Hunan province, one of the provinces with high-TB burden in China. So, this study aimed to provide us with deep insight into the molecular epidemiology of RR-TB isolates circulating in Hunan province by combining phenotypic drug susceptibility testing and whole-genome sequencing. To our knowledge, this is the first study to use whole-genome sequencing data of RR-TB strains spanning more than 5 years for molecular epidemiology analysis in Hunan province, which allows us to identify genetic background information and clustered strains more accurately. Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Variação Genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Feminino , Genoma Bacteriano , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/epidemiologia , Tuberculose/transmissão , Sequenciamento Completo do Genoma , Adulto JovemRESUMO
BACKGROUND: Mycobacterium tuberculosis population in Russia is dominated by the notorious Beijing genotype whose major variants are characterized by contrasting resistance and virulence properties. Here we studied how these strain features could impact the progression of pulmonary tuberculosis (TB) concerning clinical manifestation and lethal outcome. RESULTS: The study sample included 548 M. tuberculosis isolates from 548 patients with newly diagnosed pulmonary TB in Omsk, West Siberia, Russia. Strains were subjected to drug susceptibility testing and genotyping to detect lineages, sublineages, and subtypes (within Beijing genotype). The Beijing genotype was detected in 370 (67.5%) of the studied strains. The strongest association with multidrug resistance (MDR) was found for epidemic cluster Beijing B0/W148 (modern sublineage) and two recently discovered MDR clusters 1071-32 and 14717-15 of the ancient Beijing sublineage. The group of patients infected with hypervirulent and highly lethal (in a mouse model) Beijing 14717-15 showed the highest rate of lethal outcome (58.3%) compared to Beijing B0/W148 (31.4%; P = 0.06), Beijing Central Asian/Russian (29.7%, P = 0.037), and non-Beijing (15.2%, P = 0.001). The 14717-15 cluster mostly included isolates from patients with infiltrative but not with fibrous-cavernous and disseminated TB. In contrast, a group infected with low virulent 1071-32-cluster had the highest rate of fibrous-cavernous TB, possibly reflecting the capacity of these strains for prolonged survival and chronicity of the TB process. CONCLUSIONS: The group of patients infected with hypervirulent and highly lethal in murine model 14717-15 cluster had the highest proportion of the lethal outcome (58.3%) compared to the groups infected with Beijing B0/W148 (31.4%) and non-Beijing (15.2%) isolates. This study carried out in the TB high-burden area highlights that not only drug resistance but also strain virulence should be considered in the implementation of personalized TB treatment.
Assuntos
Variação Genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/mortalidade , Adolescente , Adulto , Antituberculosos/farmacologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Federação Russa/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Virulência , Adulto JovemRESUMO
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94â% were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Assuntos
Bordetella pertussis/genética , Variação Genética , Mycobacterium tuberculosis/genética , Bordetella pertussis/classificação , Genes Bacterianos/genética , Genoma Bacteriano , Instabilidade Genômica , Mutação , Mycobacterium tuberculosis/classificação , Filogenia , Virulência/genética , Coqueluche/microbiologiaRESUMO
Next-generation sequencing (NGS) enables rapid identification of common and rare drug-resistant genetic variations from tuberculosis (TB) patients' sputum samples and MTB isolates. However, whether this technology is effective for formalin-fixed and paraffin-embedded (FFPE) tissues remains unclear. An amplicon-based targeted NGS sequencing panel was developed to predict susceptibility to 9 antituberculosis drugs, including 3 first-line drugs, by directly detecting FFPE tissues. A total of 178 tissue samples from TB patients who underwent phenotypic drug susceptibility test were retrospectively tested from January 2017 to October 2019 in the Department of Pathology, Beijing Chest Hospital, China. Phenotypic drug susceptibility test results were used as the reference standard. We identified 22 high-quality mutations from 178 FFPE tissue samples, including 15 high+moderate+minimal confidence-level mutations associated with drug resistance (rpoB D435V, S450F/L; KatG S315T; inhA-fabG promoter c-15t; embB G406S, M306V; rpsL K43R, K88R, rrs a1401g, a514c; gyrA D94G/Y/A, A90V), 6 mutations not associated with resistance (rpoB D435Y, H445S, L430P, L452P; embB G406A/D), and one mutation site embB M306I defined as indeterminate. Compared to the phenotypic method, sensitivities (95% CI) for rifampicin, isoniazid, and ethambutol were 96% (79.65-99.90%), 93.55% (78.58-99.21%), and 71.43% (35.24-92.44%), respectively; while for second-line drugs, it varied from 23.53% (9.05-47.77%) for capreomycin to 86.84% (72.20-94.72%) for streptomycin. Specificities for all drugs were satisfactory (>94.51%). Therefore, important pathological FFPE tissue samples, despite partially degraded DNA, can be used as essential specimens for molecular diagnosis of drug resistant TB by amplicon-based targeted NGS technology. IMPORTANCE Amplicon-based targeted NGS technology focuses on a set of gene mutations of known or suspected associations with drug susceptibility in Mycobacterium tuberculosis (MTB). This method offers many benefits, such as low sequencing cost, easy customization, high throughput, shorter testing time and not culture dependent. Formalin-fixed and paraffin-embedded (FFPE) tissues are important pathological specimen in diagnosing tuberculous disease because they are noninfectious and provide excellent preservation of tissue morphology with low storage cost. However, the performance of amplicon-based targeted NGS method on FFPE samples has not been reported yet. Therefore, we evaluated the performance of this method using FFPE samples collected from January 2017 to October 2019 in the Department of Pathology, Beijing Chest Hospital, China. We demonstrate that the amplicon-based targeted NGS method performs excellent on FFPE samples, and it can be applied to pathological diagnosis of drug resistant tuberculosis.
Assuntos
Antituberculosos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Idoso , Farmacorresistência Bacteriana Múltipla , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Isoniazida/farmacologia , Masculino , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Estudos Retrospectivos , Rifampina/farmacologia , Inclusão do Tecido , Tuberculose Resistente a Múltiplos Medicamentos/diagnósticoRESUMO
Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , China , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Federação Russa , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do GenomaRESUMO
A rapid and accurate diagnostic assay represents an important means to detect Mycobacterium tuberculosis, identify drug-resistant strains and ensure treatment success. Currently employed techniques to diagnose drug-resistant tuberculosis include slow phenotypic tests or more rapid molecular assays that evaluate a limited range of drugs. Whole-genome-sequencing-based approaches can detect known drug-resistance-conferring mutations and novel variations; however, the dependence on growing samples in culture, and the associated delays in achieving results, represents a significant limitation. As an alternative, targeted sequencing strategies can be directly performed on clinical samples at high throughput. This study proposes a targeted sequencing assay to rapidly detect drug-resistant strains of M. tuberculosis using the Nanopore MinION sequencing platform. We designed a single-tube assay that targets nine genes associated with drug resistance to seven drugs and two phylogenetic-determining regions to determine strain lineage and tested it in nine clinical isolates and six sputa. The study's main aim is to calibrate MinNION variant calling to detect drug-resistance-associated mutations with different frequencies to match the accuracy of Illumina (the current gold-standard sequencing technology) from both culture and sputum samples. After calibrating Nanopore MinION variant calling, we demonstrated 100% agreement between Illumina WGS and our MinION set up to detect known drug resistance and phylogenetic variants in our dataset. Importantly, other variants in the amplicons are also detected, decreasing the recall. We identify minority variants and insertions/deletions as crucial bioinformatics challenges to fully reproduce Illumina WGS results.