Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.188
Filtrar
1.
Genes (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927594

RESUMO

The increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as Mytilus chilensis, are unknown. Using RNA-seq, we investigated the transcriptomic profiles of the gills, digestive gland, and adductor muscle of M. chilensis under hypoxia (10 days at 2 mg L-1) and reoxygenation (10 days at 6 mg L-1). There were 15,056 differentially expressed transcripts identified in gills, 11,864 in the digestive gland, and 9862 in the adductor muscle. The response varied among tissues, showing chromosomal changes in Chr1, Chr9, and Chr10 during hypoxia. Hypoxia regulated signaling genes in the Toll-like, mTOR, citrate cycle, and apoptosis pathways in gills, indicating metabolic and immunological alterations. These changes suggest that hypoxia induced a metabolic shift in mussels, reducing reliance on aerobic respiration and increasing reliance on anaerobic metabolism. Furthermore, hypoxia appeared to suppress the immune response, potentially increasing disease susceptibility, with negative implications for the mussel culture industry and natural bed populations. This study provides pivotal insights into metabolic and immunological adaptations to hypoxia in M. chilensis, offering candidate genes for adaptive traits.


Assuntos
Estresse do Retículo Endoplasmático , Brânquias , Mytilus , Transcriptoma , Animais , Mytilus/genética , Brânquias/metabolismo , Estresse do Retículo Endoplasmático/genética , Hipóxia/genética , Hipóxia/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928005

RESUMO

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Assuntos
Toxinas Marinhas , Mytilus , Receptor de Pregnano X , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Mytilus/metabolismo , Mytilus/genética , Humanos , Microcistinas/metabolismo , Microalgas/metabolismo , Microalgas/genética , Xenobióticos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas de Cianobactérias
3.
Harmful Algae ; 135: 102632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830710

RESUMO

This article presents the first results on shellfish toxicity in the Slovenian sea (Gulf of Trieste, Adriatic Sea) since the analytical methods for the detection of biotoxins (PSP, ASP, DSP and other lipophilic toxins) in bivalve molluscs were included in the national monitoring program in 2013. In addition to toxins, the composition and abundance of toxic phytoplankton and general environmental characteristics of the seawater (surface temperature and salinity) were also monitored. During the 2014-2019 study period, only lipophilic toxins were detected (78 positive tests out of 446 runs), of which okadaic acid (OA) predominated in 97 % of cases, while dinophysistoxin-2 and yessotoxins only gave a positive result in one sampling event each. The number of samples that did not comply with the EC Regulation for the OA group was 17 or 3.8 % of all tests performed, all of which took place from September to November, while a few positive OA tests were also recorded in December, April, and May. This toxicity pattern was consistent with the occurrence pattern of the five most common DSP-producing dinoflagellates, which was supported by the development of warm and thermohaline stratified waters: Dinophysis caudata, D. fortii, D. sacculus, D. tripos and Phalacroma rotundatum. The strong correlation (r = 0.611, p < 0.001) between D. fortii, reaching abundances of up to 950 cells L-1, and OA suggests that D. fortii is the main cause of OA production in Slovenian waters. Strong interannual variations in OA and phytoplankton dynamics, exacerbated by the effects of anthropogenic impacts in this coastal ecosystem, reduce the predictability of toxicity events and require continuous and efficient monitoring. Our results also show that the introduction of the LC-MS/MS method for lipophilic toxins has improved the management of aquaculture activities, which was not as accurate based on mouse bioassays.


Assuntos
Toxinas Marinhas , Mytilus , Ácido Okadáico , Fitoplâncton , Ácido Okadáico/análise , Ácido Okadáico/toxicidade , Animais , Toxinas Marinhas/análise , Eslovênia , Alimentos Marinhos/análise , Água do Mar/química , Dinoflagellida
4.
Mar Pollut Bull ; 204: 116533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833949

RESUMO

Coastal waters face significant anthropogenic stress, particularly from tourism, exacerbating pollution, especially in areas like touristic islands. Ischia, the largest island in the Gulf of Naples and part of the Regno di Nettuno Marine Protected Area, suffers from pollution due to tourism and maritime traffic. During the initial SARS-CoV-2 lockdown from March to June 2020, Ischia was isolated, providing a unique opportunity to study pollutant release and its impact on coastal ecosystems. Adult Mytilus galloprovincialis mussels were transplanted to three sites on the island for active biomonitoring. Accumulation of chemicals in tissues and biomarkers related to metabolism, detoxification, and oxidative stress were measured. Results indicated that pollutants from daily activities entered the sea, affecting filter feeders. Translocated organisms showed modulated metabolic functions and biochemical changes, highlighting coastal vulnerability and calling for conservation efforts.


Assuntos
Monitoramento Biológico , Mytilus , Animais , Humanos , COVID-19 , Turismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ilhas , Atividades Humanas , Itália , SARS-CoV-2
5.
Sci Data ; 11(1): 644, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886364

RESUMO

The Mediterranean mussel, Mytilus galloprovincialis, is a significant marine bivalve species that has ecological and economic importance. This species is robustly resilient and highly invasive. Despite the scientific and commercial interest in studying its biology and aquaculture, there remains a need for a high-quality, chromosome-scale reference genome. In this study, we have assembled a high-quality chromosome-scale reference genome for M. galloprovincialis. The total length of our reference genome is 1.41 Gb, with a scaffold N50 sequence length of 96.9 Mb. BUSCO analysis revealed a 97.5% completeness based on complete BUSCOs. Compared to the four other available M. galloprovincialis assemblies, the assembly described here is dramatically improved in both contiguity and completeness. This new reference genome will greatly contribute to a deeper understanding of the resilience and invasiveness of M. galloprovincialis.


Assuntos
Cromossomos , Genoma , Mytilus , Mytilus/genética , Animais
6.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891928

RESUMO

Micro-sized particles of synthetic polymers (microplastics) are found in all parts of marine ecosystems. This fact requires intensive study of the degree of danger of such particles to the life activity of hydrobionts and needs additional research. It is evident that hydrobionts in the marine environment are exposed to microplastics modified by biotic and abiotic degradation. To assess the toxic potential of aging microplastic, comparative studies were conducted on the response of cytochemical and genotoxic markers in hemocytes of the mussel Mytilus trossulus (Gould, 1850) after exposure to pristine and photodegraded (UV irradiation) polystyrene microparticles (µPS). The results of cytochemical tests showed that UV-irradiated µPS strongly reduced metabolism and destabilized lysosome membranes compared to pristine µPS. Using a Comet assay, it was shown that the nuclear DNA of mussel hemocytes showed high sensitivity to exposure to both types of plastics. However, the level of DNA damage was significantly higher in mussels exposed to aging µPS. It is suggested that the mechanism of increased toxicity of photo-oxidized µPS is based on free-radical reactions induced by the UV irradiation of polymers. The risks of toxic effects will be determined by the level of physicochemical degradation of the polymer, which can significantly affect the mechanisms of toxicity.


Assuntos
Dano ao DNA , Hemócitos , Microplásticos , Mytilus , Poliestirenos , Raios Ultravioleta , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Mytilus/efeitos da radiação , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Hemócitos/efeitos da radiação , Poluentes Químicos da Água/toxicidade , Raios Ultravioleta/efeitos adversos , Ensaio Cometa
7.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865941

RESUMO

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Assuntos
Incrustação Biológica , Larva , Mytilus , Animais , Incrustação Biológica/prevenção & controle , Larva/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade , Chalcona/farmacologia , Chalcona/análogos & derivados , Chalcona/química , Desinfetantes/toxicidade , Desinfetantes/farmacologia
8.
NPJ Biofilms Microbiomes ; 10(1): 51, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902226

RESUMO

Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.


Assuntos
Biofilmes , GMP Cíclico , Larva , Metamorfose Biológica , Mytilus , Animais , Larva/microbiologia , Larva/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biofilmes/crescimento & desenvolvimento , Mytilus/microbiologia , Mytilus/crescimento & desenvolvimento , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
9.
J Hazard Mater ; 474: 134743, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852244

RESUMO

Phthalate esters (PAEs), as a major plasticizer with multi-biotoxicity, are frequently detected in marine environments, and potentially affecting the survival of aquatic organisms. In the study, three typical PAEs (dimethyl phthalate [DMP], dibutyl phthalate [DBP] and di(2-ethylhexyl) phthalate [DEHP]) were selected to investigate the accumulation patterns and ecotoxicological effects on Mytilus coruscus (M. coruscus). In M. coruscus, the accumulation was DEHP>DBP>DMP, and the bioaccumulation in tissues was digestive glands>gills>gonads>muscles. Meanwhile, the activities of superoxide dismutase (SOD) and catalase (CAT) showed an activation-decrease-activation trend of stress, with more pronounced concentration effects. Glutathione reductase (GSH) activity was significantly increased, and its expression was more sensitive to be induced at an early stage. The metabolic profiles of the gonads, digestive glands and muscle tissues were significantly altered, and DEHP had a greater effect on the metabolic profiles of M. coruscus, with the strongest interference. PAEs stress for 7 d significantly altered the volatile components of M. coruscus, with potential implications for their nutritional value. This study provides a biochemical, metabolomic, and nutritional analysis of DMP, DBP, and DEHP toxic effects on M. coruscus from a multidimensional perspective, which provides support for ecotoxicological studies of PAEs on marine organisms. ENVIRONMENTAL IMPLICATION: Phthalate esters (PAEs), synthetic compounds from phthalic acid, are widespread in the environment, household products, aquatic plants, animals, and crops, posing a significant threat to human health. However, the majority of toxicological studies examining the effects of PAEs on aquatic organisms primarily focus on non-economic model organisms like algae and zebrafish. Relatively fewer studies have been conducted on marine organisms, particularly economically important shellfish. So, this study is innovative and necessary. This study provides a biochemical, metabolomic, and nutritional analysis of DMP, DBP, and DEHP toxic effects on mussels, and supports the ecotoxicology of PAEs on marine organisms.


Assuntos
Mytilus , Ácidos Ftálicos , Plastificantes , Poluentes Químicos da Água , Animais , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Plastificantes/toxicidade , Plastificantes/metabolismo , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Catalase/metabolismo , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Glutationa Redutase/metabolismo , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Ésteres/metabolismo , Ésteres/toxicidade , Estresse Oxidativo/efeitos dos fármacos
10.
Sci Total Environ ; 943: 173668, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38839013

RESUMO

This study investigates the chronic impact of two of the most widely consumed antineoplastic drugs, Ifosfamide (IF) and Cisplatin (CDDP), on the bivalve species Mytilus galloprovincialis under current (17 °C) and predicted warming conditions (21 °C). Accompanying the expected increase in worldwide cancer incidence, antineoplastics detection in the aquatic environment is also expected to rise. Mussels were exposed to varying concentrations of IF (10, 100, 500 ng/L) and CDDP (10, 100, 1000 ng/L) for 28 days. Biochemical analyses focused on metabolic, antioxidant and biotransformation capacities, cellular damage, and neurotoxicity. Results showed temperature-dependent variations in biochemical responses. Metabolic capacity remained stable in mussels exposed to IF, while CDDP exposure increased it at 1000 ng/L for both temperatures. Antioxidant enzyme activities were unaffected by IF, but CDDP activated them, particularly at 21 °C. Biotransformation capacity was unchanged by IF but enhanced by CDDP. Nevertheless, cellular damage occurred at CDDP concentrations above 100 ng/L, regardless of temperature. Integrated biomarker responses highlighted CDDP's greater impact, emphasizing the critical role of temperature in shaping organismal responses and underscoring the complexity of environmental stressor interactions.


Assuntos
Antineoplásicos , Cisplatino , Ifosfamida , Mytilus , Temperatura , Poluentes Químicos da Água , Animais , Cisplatino/toxicidade , Mytilus/fisiologia , Mytilus/efeitos dos fármacos , Ifosfamida/toxicidade , Poluentes Químicos da Água/toxicidade , Antineoplásicos/toxicidade
11.
Dev Biol ; 512: 57-69, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750688

RESUMO

Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Larva , Metamorfose Biológica , Desenvolvimento Muscular , Mytilus , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mytilus/crescimento & desenvolvimento , Mytilus/metabolismo , Alcaloides de Veratrum/farmacologia , Músculos/metabolismo
12.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762985

RESUMO

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Ecotoxicologia , Dano ao DNA/efeitos dos fármacos
13.
Environ Pollut ; 352: 124133, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754690

RESUMO

Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 µm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.


Assuntos
Monitoramento Ambiental , Microplásticos , Mytilus , Alimentos Marinhos , Poluentes Químicos da Água , Animais , Portugal , Poluentes Químicos da Água/análise , Microplásticos/análise , Alimentos Marinhos/análise , Monitoramento Ambiental/métodos , Humanos , Mytilus/química , Contaminação de Alimentos/análise , Medição de Risco , Bivalves/química , Exposição Dietética/estatística & dados numéricos , Oceano Atlântico
14.
Sci Total Environ ; 935: 173483, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796022

RESUMO

The innate immunity of bivalves serves as the initial defense mechanism against environmental pollutants, ultimately impacting genetic regulatory networks through synergistic interactions. Previous research has demonstrated variations in the accumulation and tolerance capacities of bivalves; however, the specific mechanism underlying the low accumulation of PSTs in M. unguiculatus remains unclear. This study examined the alterations in feeding behavior and transcriptional regulation of M. unguiculatus following exposure to two Alexandrium strains with distinct toxin profiles, specifically gonyautoxin (AM) and N-sulfocarbamoyl toxin (AC). The total accumulation rate of PSTs in M. unguiculatus was 43.64 % (AC) and 27.80 % (AM), with highest PSTs content in the AM group (455.39 µg STXeq/kg). There were significant variations (P < 0.05) in physiological parameters, such as total hemocyte count, antioxidant superoxide activity and tissue damage in both groups. The absorption rate was identified as the key factor influencing toxin accumulation. Transcriptomic analyses demonstrated that PSTs triggered upregulation of endocytosis, lysosome, and immune-related signaling pathways. Furthermore, PSTs induced a nucleotide imbalance in the AC group, with total PSTs content serving as the most toxic indicator. These results suggested that protein-like substances had a crucial role in the stress response of M. unguiculatus to PSTs. This study provided novel perspectives on the impacts of intricate regulatory mechanisms and varying immune responses to PSTs in bivalves.


Assuntos
Dinoflagellida , Toxinas Marinhas , Mytilus , Animais , Dinoflagellida/fisiologia , Mytilus/fisiologia , Imunidade Inata
15.
Sci Total Environ ; 940: 173453, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38802017

RESUMO

In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 µg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 µg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 µg/L; however, at 10.0 µg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.


Assuntos
Cafeína , Mytilus , Temperatura , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Mytilus/fisiologia , Mytilus/efeitos dos fármacos , Monitoramento Ambiental , Mudança Climática
16.
Chemosphere ; 359: 142243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759810

RESUMO

The decommissioning and normal functioning of nuclear facilities can result in the production and release of airborne particles in the environment. Aquatic biota are expected to be exposed to these particles considering that nuclear facilities are often located near water bodies. Aerosols, such as cement dust, can interact with radionuclides as well as with heavy metals, and therefore elicit not only radiological impacts but also chemical toxicity. In the present study, we aimed to determine the effects of hydrogenated cement particles (HCPs) as a first step before evaluating any radiotoxicity of tritiated cement particles in the marine mussels, Mytilus galloprovincialis. Responses at different levels of biological organisation were assessed, including clearance rate (CR), tissue specific accumulation, DNA damage and transcriptional expression of key stress related genes. Acute (5 h) and medium-term, chronic (11 d) exposures to 1000 µg L-1 HCPs showed that bioaccumulation, assessed using Cu as a proxy and determined by inductively coupled plasma mass spectrometry, was time and tissue dependent. The highest levels of Cu were found in the digestive gland (DG) after 11 d. HCP exposure caused changes in the expression of oxidative and other stress-related genes, including mt20 in DG and gst and sod in the gill after 5 h exposure, while an overexpression of hsp70 in the gill was observed after 11 d. Genotoxic effects in haemocytes were observed after 11 d of HCP exposure. Multivariate analysis indicated that oxidative stress is the most probable factor contributing to overall physiological dysfunction. Our results provide a baseline to perform further studies employing tritiated cement particles. Specifically, future work should focus on the DG since only this tissue showed significant bioaccumulation when compared to the negative control.


Assuntos
Bioacumulação , Dano ao DNA , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Materiais de Construção , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Metais Pesados/toxicidade , Metais Pesados/metabolismo
17.
Mar Pollut Bull ; 203: 116441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703629

RESUMO

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.


Assuntos
Ecotoxicologia , Microplásticos , Mytilus , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Mytilus/efeitos dos fármacos , Monitoramento Ambiental , Glutationa Transferase/metabolismo , Polipropilenos/toxicidade , Polietilenotereftalatos , Estresse Oxidativo , Catalase/metabolismo
18.
Mar Pollut Bull ; 203: 116470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728956

RESUMO

We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.


Assuntos
Metabolismo Energético , Mytilus , Estresse Oxidativo , Animais , Concentração de Íons de Hidrogênio , Água do Mar/química , Mar Mediterrâneo , Metaboloma , Espécies Reativas de Oxigênio/metabolismo , Acidificação dos Oceanos
19.
Aquat Toxicol ; 272: 106959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768528

RESUMO

As one of the main components of marine pollution, microplastics (MPs) inevitably enter the mussel aquaculture environment. At the same time, pathogenic bacteria, especially pathogens such as Vibrio, can cause illness outbreaks, leading to large-scale death of mussels. The potential harm of MPs and pathogenic bacteria to bivalve remains unclear. This study designed two experiments (1) mussels (Mytilus galloprovincialis) were exposed to 100 particles/L or 1,000 particles/L polymethyl methacrylate (PMMA, 17.01 ± 6.74 µm) MPs and 1 × 107 CFU/mL Vibrio parahaemolyticus at the same time (14 days), and (2) mussels were exposed to 100 particles/L or 1,000 particles/L MPs for a long time (30 days) and then exposed to 1 × 107 CFU/mL V. parahaemolyticus to explore the effects of these two stresses on the mussel immune system. The results showed that after the combined exposure of V. parahaemolyticus and MPs, the lysosomal membrane stability of hemocytes decreased, lysozyme activity was inhibited, and hemocytes were induced to produce more lectins and defensins to fight pathogenic invasion. Long-term exposure to MPs caused a large amount of energy consumption in mussels, inhibited most of the functions of humoral immunity, increased the risk of mussel infection with pathogenic bacteria, and negatively affected mussel condition factor, the number of hemocytes, and the number of byssuses. Mussels may allocate more energy to deal with MPs and pathogenic bacterial infections rather than for growth. Above all, MPs exposure can affect mussel immune function or reduce its stress resistance, which in turn has an impact on mollusk farming.


Assuntos
Hemócitos , Microplásticos , Mytilus , Vibrio parahaemolyticus , Poluentes Químicos da Água , Animais , Mytilus/microbiologia , Mytilus/efeitos dos fármacos , Mytilus/imunologia , Microplásticos/toxicidade , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Muramidase/metabolismo , Sistema Imunitário/efeitos dos fármacos
20.
Sci Total Environ ; 936: 173505, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797408

RESUMO

Microplastic (MP) pollution is a pressing issue for both environmental health and the safety of human food sources. This study provides a comprehensive analysis of the effects of MPs on Mediterranean mussels (Mytilus galloprovincialis, Lamarck 1819), focusing on the food safety risks associated with MP and cadmium (Cd) exposure in these organisms intended for consumption. The retention of different polymer types of MPs in mussels was specifically evaluated, and the influence of Cd on MP retention across these polymers was investigated. Mussels were exposed to polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET) MPs individually and in combination with the toxic metal Cd for a duration of 7 days. Antioxidant enzymes, oxidative stress parameters, and digestive system enzyme activities, selected as biomarkers for Cd and MPs pollution, were assessed. Furthermore, human consumption risk evaluations and limits regarding mussel intake were analysed in terms of food safety. The results suggest that exposure to Cd, MPs, or their combination induces oxidative stress, tissue damage, and neurotoxicity. Alterations in digestive enzyme activities could impact the mussels' energy acquisition from food and their capacity to conserve energy reserves. The estimated daily intake (EDI), provisional tolerable weekly intake (PTWI), target hazard quotient (THQ), and target cancer risk (TCR) levels for all groups surpassed established limits, implying a significant health risk for humans consuming these products. These results underscore the potential health risks for humans associated with consuming mussels exposed to Cd and/or MPs and provide valuable data for monitoring pollution levels and ecological risks in aquatic organisms. Additionally, our findings reveal that the retention of Cd in mussel tissues varies significantly after exposure, with combinations of PET and Cd showing lower levels of Cd accumulation compared to other groups, suggesting a differential interaction that influences Cd retention.


Assuntos
Cádmio , Microplásticos , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...