Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
Transl Psychiatry ; 14(1): 293, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019862

RESUMO

Electronic cigarettes (e-cigs) use, especially among youngsters, has been on the rise in recent years. However, little is known about the long-term effects of the use of e-cigs on brain functional activity. We acquired the resting-state functional magnetic resonance imaging (rs-fMRI) data from 93 e-cigs users with nicotine dependence and 103 health controls (HC). The local synchronization was analyzed via the regional homogeneity (ReHo) method at voxel-wise level. The functional connectivity (FC) between the nucleus accumbens (NAcc), the ventral tegmental area (VTA), and the insula was calculated at ROI-wise level. The support vector machining classification model based on rs-fMRI measures was used to identify e-cigs users from HC. Compared with HC, nicotine-dependent e-cigs users showed increased ReHo in the right rolandic operculum and the right insula (p < 0.05, FDR corrected). At the ROI-wise level, abnormal FCs between the NAcc, the VTA, and the insula were found in e-cigs users compared to HC (p < 0.05, FDR corrected). Correlation analysis found a significant negative correlation between ReHo in the left NAcc and duration of e-cigs use (r = -0.273, p = 0.008, FDR corrected). The following support vector machine model based on significant results of rs-fMRI successfully differentiates chronic e-cigs users from HC with an accuracy of 73.47%, an AUC of 0.781, a sensitivity of 67.74%, and a specificity of 78.64%. Dysregulated spontaneous activity and FC of addiction-related regions were found in e-cigs users with nicotine dependence, which provides crucial insights into the prevention of its initial use and intervention for quitting e-cigs.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Imageamento por Ressonância Magnética , Núcleo Accumbens , Tabagismo , Humanos , Tabagismo/fisiopatologia , Tabagismo/diagnóstico por imagem , Masculino , Feminino , Adulto , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Adulto Jovem , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiopatologia , Máquina de Vetores de Suporte , Estudos de Casos e Controles , Vaping/fisiopatologia
2.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858350

RESUMO

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Assuntos
Ácido Glutâmico , Hiperalgesia , Neurônios , Núcleo Accumbens , Área Tegmentar Ventral , Animais , Masculino , Hiperalgesia/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Camundongos , Ácido Glutâmico/metabolismo , Núcleo Accumbens/fisiopatologia , Neurônios/metabolismo , Mesencéfalo , Camundongos Endogâmicos C57BL , Resiliência Psicológica , Habenula , Modelos Animais de Doenças
3.
Neurosci Lett ; 836: 137884, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38914277

RESUMO

The nucleus accumbens (NAc) and the anterior limb of internal capsule (ALIC) are effective targets for treating addiction using deep brain stimulation (DBS). However, there have been no reports on the electrophysiological characteristics of addiction nuclei at the single-cell level in humans. This study aimed to investigate the electrical activity characteristics of neurons in the NAc and ALIC using microelectrode recording (MER) during DBS surgery in patients with addiction, and six patients with addiction were included (five with heroin addiction and one with alcohol addiction). The microelectrode recording trajectories were reconstructed and recording sites at different depths were determined by merging the pre- and post-operative images in the FrameLink system. The results showed that among the 256 neurons, 204 (80 %) were burst neurons. NAc neurons accounted for the majority (57 %), and the mean firing rate (MFR) was the highest (1.94 Hz). ALIC neurons accounted for the least (14 %), and MFR was the lowest (0.44 Hz). MFR increased after entering the NAc and decreased after entering the ALIC. In the patients with addiction treated using DBS, the single-cell level electrophysiological characteristics of the different nuclei were found to be distinct along the surgical trajectory.


Assuntos
Estimulação Encefálica Profunda , Cápsula Interna , Microeletrodos , Neurônios , Núcleo Accumbens , Núcleo Accumbens/fisiologia , Núcleo Accumbens/fisiopatologia , Humanos , Masculino , Estimulação Encefálica Profunda/métodos , Adulto , Cápsula Interna/fisiologia , Cápsula Interna/fisiopatologia , Neurônios/fisiologia , Pessoa de Meia-Idade , Feminino , Potenciais de Ação/fisiologia , Alcoolismo/fisiopatologia , Dependência de Heroína/fisiopatologia
4.
Soc Cogn Affect Neurosci ; 19(1)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874967

RESUMO

The Coronavirus disease (COVID-19) pandemic led to heightened anxiety in adolescents. The basolateral amygdala (BLA) and the nucleus accumbens (NAcc) are implicated in response to stress and may contribute to anxiety. The role of threat- and reward-related circuitry in adolescent anxiety during the COVID-19 pandemic, however, is not clear. Ninety-nine adolescents underwent resting-state fMRI ∼1 year before the pandemic. Following shelter-in-place orders, adolescents reported their perceived stress and, 1 month later, their anxiety. Generalized multivariate analyses identified BLA and NAcc seed-based whole-brain functional connectivity maps with perceived stress. In the resulting significant clusters, we examined the association between seed-based connectivityand subsequent anxiety. Perceived stress was associated with bilateral BLA and NAcc connectivity across distributed clusters that included prefrontal, limbic, temporal, and cerebellar regions. Several NAcc connectivity clusters located in ventromedial prefrontal, parahippocampal, and temporal cortices were positively associated with anxiety; NAcc connectivity with the inferior frontal gyrus was negatively associated. BLA connectivity was not associated with anxiety. These results underscore the integrative role of the NAcc in responding to acute stressors and its relation to anxiety in adolescents. Elucidating the involvement of subcortical-cortical circuitry in adolescents' capacity to respond adaptively to environmental challenges can inform treatment for anxiety-related disorders.


Assuntos
Ansiedade , COVID-19 , Imageamento por Ressonância Magnética , Recompensa , Estresse Psicológico , Humanos , COVID-19/psicologia , Adolescente , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Estresse Psicológico/fisiopatologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , SARS-CoV-2 , Mapeamento Encefálico
5.
Brain Behav ; 14(6): e3511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894648

RESUMO

INTRODUCTION: Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS: MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS: Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION: Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.


Assuntos
Transtorno Depressivo Maior , Habenula , Ketamina , Imageamento por Ressonância Magnética , Núcleo Accumbens , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Masculino , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Adulto , Feminino , Habenula/efeitos dos fármacos , Habenula/fisiopatologia , Habenula/diagnóstico por imagem , Pessoa de Meia-Idade , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Anedonia/efeitos dos fármacos , Anedonia/fisiologia
6.
Brain Res ; 1839: 149044, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821332

RESUMO

Central robust network functional rearrangement is a characteristic of several neurological conditions, including chronic pain. Preclinical and clinical studies have shown the importance of pain-induced dysfunction in both orbitofrontal cortex (OFC) and nucleus accumbens (NAc) brain regions for the emergence of cognitive deficits. Outcome information processing recruits the orbitostriatal circuitry, a pivotal pathway regarding context-dependent reward value encoding. The current literature reveals the existence of structural and functional changes in the orbitostriatal crosstalk in chronic pain conditions, which have emerged as a possible underlying cause for reward and time discrimination impairments observed in individuals affected by such disturbances. However, more comprehensive investigations are needed to elucidate the underlying disturbances that underpin disease development. In this review article, we aim to provide a comprehensive view of the orbitostriatal mechanisms underlying time-reward dependent behaviors, and integrate previous findings on local and network malplasticity under the framework of the chronic pain sphere.


Assuntos
Dor Crônica , Comportamento Impulsivo , Núcleo Accumbens , Córtex Pré-Frontal , Recompensa , Humanos , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Comportamento Impulsivo/fisiologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desvalorização pelo Atraso/fisiologia , Animais , Vias Neurais/fisiopatologia , Corpo Estriado/fisiopatologia
7.
J Behav Addict ; 13(2): 610-621, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38598290

RESUMO

Background and aims: Impaired inhibitory control accompanied by enhanced craving is hallmark of addiction. This study investigated the effects of transcranial direct current stimulation (tDCS) on response inhibition and craving in Internet gaming disorder (IGD). We examined the brain changes after tDCS and their correlation with clinical variables. Methods: Twenty-four males with IGD were allocated randomly to an active or sham tDCS group, and data from 22 participants were included for analysis. Participants self-administered bilateral tDCS over the dorsolateral prefrontal cortex (DLPFC) for 10 sessions. Stop-signal tasks were conducted to measure response inhibition and participants were asked about their cravings for Internet gaming at baseline and post-tDCS. Functional magnetic resonance imaging data were collected at pre- and post-tDCS, and group differences in resting-state functional connectivity (rsFC) changes from the bilateral DLPFC and nucleus accumbens were examined. We explored the relationship between changes in the rsFC and behavioral variables in the active tDCS group. Results: A significant group-by-time interaction was observed in response inhibition. After tDCS, only the active group showed a decrease in the stop-signal reaction time (SSRT). Although craving decreased, there were no significant group-by-time interactions or group main effects. The anterior cingulate cortex (ACC) showed group differences in post- versus pre-tDCS rsFC from the right DLPFC. The rsFC between the ACC and left middle frontal gyrus was negatively correlated with the SSRT. Discussion and conclusion: Our study provides preliminary evidence that bilateral tDCS over the DLPFC improves inhibitory control and could serve as a therapeutic approach for IGD.


Assuntos
Fissura , Córtex Pré-Frontal Dorsolateral , Inibição Psicológica , Transtorno de Adição à Internet , Imageamento por Ressonância Magnética , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Transtorno de Adição à Internet/terapia , Transtorno de Adição à Internet/fisiopatologia , Transtorno de Adição à Internet/diagnóstico por imagem , Fissura/fisiologia , Método Duplo-Cego , Adulto Jovem , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Conectoma , Jogos de Vídeo
8.
Brain Connect ; 14(4): 226-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526373

RESUMO

Background: Youths with thought problems (TP) are at risk to develop psychosis and obsessive-compulsive disorder (OCD). Yet, the pathophysiological mechanisms underpinning TP are still unclear. Functional magnetic resonance imaging (fMRI) studies have shown that striatal and limbic alterations are associated with psychosis-like and obsessive-like symptoms in individuals at clinical risk for psychosis, schizophrenia, and OCD. More specifically, nucleus accumbens (NAcc) and amygdala are mainly involved in these associations. The current study aims to investigate the neural correlates of TP in youth populations using a dimensional approach and explore potential cognitive functions and neurotransmitters associated with it. Methods: Seed-to-voxels functional connectivity analyses using NAcc and amygdala as regions-of-interest were conducted with resting-state fMRI data obtained from 1360 young individuals, and potential confounders related to TP such as anxiety and cognitive functions were included as covariates in multiple regression analyses. Replicability was tested in using an adult cohort. In addition, functional decoding and neurochemical correlation analyses were performed to identify the associated cognitive functions and neurotransmitters. Results: The altered functional connectivities between the right NAcc and posterior parahippocampal gyrus, between the right amygdala and lateral prefrontal cortex, and between the left amygdala and the secondary visual area were the best predictors of TP in multiple regression model. These functional connections are mainly involved in social cognition and reward processing. Conclusions: The results show that alterations in the functional connectivity of the NAcc and the amygdala in neural pathways involved in social cognition and reward processing are associated with severity of TP in youths.


Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Núcleo Accumbens , Humanos , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Adolescente , Imageamento por Ressonância Magnética/métodos , Feminino , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem , Mapeamento Encefálico/métodos , Adulto , Criança , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Conectoma/métodos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem
10.
Glia ; 71(8): 1906-1920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017183

RESUMO

Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1ß, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.


Assuntos
Dor Crônica , Microglia , Doenças Neuroinflamatórias , Córtex Pré-Frontal , Receptores Opioides mu , Área Tegmentar Ventral , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Microglia/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Animais , Ratos , Modelos Animais de Doenças , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Feminino , Ratos Sprague-Dawley
11.
Drug Alcohol Depend ; 246: 109852, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003108

RESUMO

Research suggests that disproportionate exposure to risk factors places American Indian (AI) peoples at higher risk for substance use disorders (SUD). Although SUD is linked to striatal prioritization of drug rewards over other appetitive stimuli, there are gaps in the literature related to the investigation of aversive valuation processing, and inclusion of AI samples. To address these gaps, this study compared striatal anticipatory gain and loss processing between AI-identified with SUD (SUD+; n = 52) and without SUD (SUD-; n = 35) groups from the Tulsa 1000 study who completed a monetary incentive delay (MID) task during functional magnetic resonance imaging. Results indicated that striatal activations in the nucleus accumbens (NAcc), caudate, and putamen were greatest for anticipating gains (ps < 0.001) but showed no group differences. In contrast to gains, the SUD+ exhibited lower NAcc (p = .01, d =0.53) and putamen (p = .04, d =0.40) activation to anticipating large losses than the comparison group. Within SUD+ , lower striatal responses during loss anticipations were associated with slower MID reaction times (NAcc: r = -0.43; putamen: r = -0.35) during loss trials. This is among the first imaging studies to examine underlying neural mechanisms associated with SUD within AIs. Attenuated loss processing provides initial evidence of a potential mechanism wherein blunted prediction of aversive consequences may be a defining feature of SUD that can inform future prevention and intervention targets.


Assuntos
Indígena Americano ou Nativo do Alasca , Antecipação Psicológica , Corpo Estriado , Fatores Econômicos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Indígena Americano ou Nativo do Alasca/psicologia , Antecipação Psicológica/fisiologia , Imageamento por Ressonância Magnética , Motivação/fisiologia , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Recompensa , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/economia , Transtornos Relacionados ao Uso de Substâncias/etnologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , População Urbana , Fatores de Risco , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Renda
12.
PLoS One ; 17(2): e0263527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143525

RESUMO

Chronic pain is associated with anhedonia and decreased motivation. These behavioral alterations have been linked to alterations in the limbic brain and could explain the increased risk for obesity in pain patients. The mechanism of these behavioral changes and how they set in in relation to the development of chronic pain remain however poorly understood. Here we asked how eating behavior was affected in low-back pain patients before and after they transitioned to chronic pain, compared to patients whose pain subsided. Additionally, we assessed how the hedonic perception of fat-rich food, which is altered in chronic pain patients, related to the properties of the nucleus accumbens in this patients' population. We hypothesized that the accumbens would be directly implicated in the hedonic processing of fat-rich food in pain patients because of its well-established role in hedonic feeding and fat ingestion, and its emerging role in chronic pain. Accordingly, we used behavioral assays and structural brain imaging to test sub-acute back pain patients (SBP) and healthy control subjects at baseline and at approximately one-year follow-up. We also studied a sample of chronic low-back pain patients (CLBP) at one time point only. We found that SBP patients who recovered at follow-up (SBPr) and CLBP patients showed disrupted eating behaviors. In contrast, SBP patients who persisted in having pain at follow-up (SBPp) showed intact eating behavior. From a neurological standpoint, only SBPp and CLBP patients showed a strong and direct relationship between hedonic perception of fat-rich food and nucleus accumbens volume. This suggests that accumbens alterations observed in SBPp patients in previous works might protect them from hedonic eating disruptions during the early course of the illness. We conclude that disrupted eating behavior specifically sets in after pain chronification and is accompanied by structural changes in the nucleus accumbens.


Assuntos
Comportamento Alimentar , Dor Lombar/fisiopatologia , Núcleo Accumbens , Adulto , Apetite , Dor Crônica , Gorduras na Dieta , Feminino , Seguimentos , Preferências Alimentares , Humanos , Dor Lombar/psicologia , Imageamento por Ressonância Magnética , Masculino , Núcleo Accumbens/fisiopatologia , Prazer
13.
Nat Commun ; 13(1): 577, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102141

RESUMO

Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Angústia Psicológica , Derrota Social , Área Tegmentar Ventral/fisiopatologia , Animais , Dependovirus/fisiologia , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-34517055

RESUMO

The use of deep brain stimulation (DBS) in treatment resistant patients with schizophrenia is of considerable current interest, but where to site the electrodes is challenging. This article reviews rationales for electrode placement in schizophrenia based on evidence for localized brain abnormality in the disorder and the targets that have been proposed and employed to date. The nucleus accumbens and the subgenual anterior cingulate cortex are of interest on the grounds that they are sites of potential pathologically increased brain activity in schizophrenia and so susceptible to the local inhibitory effects of DBS; both sites have been employed in trials of DBS in schizophrenia. Based on other lines of reasoning, the ventral tegmental area, the substantia nigra pars reticulata and the habenula have also been proposed and in some cases employed. The dorsolateral prefrontal cortex has not been suggested, probably reflecting evidence that it is underactive rather than overactive in schizophrenia. The hippocampus is also of theoretical interest but there is no clear functional imaging evidence that it shows overactivity in schizophrenia. On current evidence, the nucleus accumbens may represent the strongest candidate for DBS electrode placement in schizophrenia, with the substantia nigra pars reticulata also showing promise in a single case report; the ventral tegmental area is also of potential interest, though it remains untried.


Assuntos
Estimulação Encefálica Profunda , Giro do Cíngulo/fisiopatologia , Núcleo Accumbens/fisiopatologia , Esquizofrenia Resistente ao Tratamento , Substância Negra/fisiopatologia , Encéfalo/fisiopatologia , Humanos , Esquizofrenia Resistente ao Tratamento/fisiopatologia , Esquizofrenia Resistente ao Tratamento/terapia
15.
J Am Acad Child Adolesc Psychiatry ; 61(2): 136-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34216777

RESUMO

Depression and anxiety disorders together account for the majority of mental health disorders in childhood and adolescence, and are often comorbid.1 The frequent co-occurrence of these disorders has motivated clinicians and researchers to consider dimensional taxonomy models that focus on neurobiological substrates that explain transdiagnostic constructs of functioning (eg, reward processing abnormalities). Such an approach would redefine not only depression and anxiety disorders but could also revolutionize clinical care, as such biobehavioral targets, rather than a traditional primary diagnosis, could serve as the basis for treatment planning. In this issue of the Journal, Auerbach et al.2 examined whether and how a key structure involved in reward processing, the nucleus accumbens (NAcc), is altered in adolescents aged 14 to 17 years with depression and/or anxiety (including generalized anxiety, separation anxiety, social anxiety, specific phobia, agoraphobia, and panic) disorders, and whether NAcc morphometry and function would improve prediction of 6-month symptomatology. As part of the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) initiative,3 the researchers compared 129 adolescents with primary diagnoses of depression and/or anxiety and 64 psychiatrically healthy controls on gray matter volumes of the NAcc and on functional activation of the NAcc during a monetary incentive delay task using magnetic resonance imaging (MRI) protocols harmonized with the Human Connectome project (http://www.humanconnectomeproject.com/). Compared to healthy adolescents, depressed/anxious adolescents exhibited significantly smaller volumes of the NAcc and blunted NAcc responses to reward receipt. Among the 88 depressed/anxious adolescents and 57 healthy controls who provided symptom data 6 months later, the researchers also found that inclusion of NAcc volumes, but not reward-related responses of the NAcc on the task, significantly improved statistical prediction of subsequent depression symptoms.


Assuntos
Conectoma , Núcleo Accumbens , Adolescente , Ansiedade/terapia , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/terapia , Conectoma/métodos , Depressão , Humanos , Imageamento por Ressonância Magnética/métodos , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Recompensa
16.
Artigo em Inglês | MEDLINE | ID: mdl-34509531

RESUMO

Opioid withdrawal can be associated to environmental cues through classical conditioning. Exposure to these cues can precipitate a state of conditioned withdrawal in abstinent subjects, and there are suggestions that conditioned withdrawal can perpetuate the addiction cycle in part by promoting the storage of memories. This review discusses evidence supporting the hypothesis that conditioned withdrawal facilitates memory consolidation by activating a neurocircuitry that involves the extended amygdala. Specifically, the central amygdala, the bed nucleus of the stria terminalis, and the nucleus accumbens shell interact functionally during withdrawal, mediate expression of conditioned responses, and are implicated in memory consolidation. From this perspective, the extended amygdala could be a neural pathway by which drug-seeking behaviour performed during a state of conditioned withdrawal is more likely to become habitual and persistent.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Consolidação da Memória/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento de Procura de Droga , Humanos , Vias Neurais , Núcleo Accumbens/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Ratos
17.
Cell Transplant ; 30: 9636897211052300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34743572

RESUMO

Amphetamine-type stimulants have become important and popular abused drugs worldwide. Methamphetamine (Meth) sensitization, characterized by a progressive increase in behavioral responses after repeated administration, has been reported in rodents and patients. This behavioral effect has been used as a laboratory model to study drug addiction and schizophrenia. The mesolimbic dopaminergic pathway plays a significant role in the development of Meth behavioral sensitization. Previous studies have reported that the ablation of nucleus accumbens (NAc) by electrolytic or thermal lesioning attenuates addictive behavior to opioids in animals. However, these studies were only conducted in opioid addictive rodents. Furthermore, these ablation procedures also damaged the non-dopaminergic neurons and fibers passing through the NAc. The purpose of this study was to examine the therapeutic effect of NAc lesioning by a selective dopaminergic toxin in Meth-sensitized animals. Adult mice received repeated administration of Meth for 7 days. Open-field locomotor activity and stereotype behavior were significantly increased after Meth treatment, suggesting behavior sensitization. A partial lesion of dopaminergic terminals was made through stereotaxic administration of dopaminergic toxin 6-hydroxydopamine (6-OHDA) to the NAc in the Meth -sensitized mice. Meth behavioral sensitization was significantly antagonized after the lesioning. Brain tissue was collected for qRT-PCR analysis. Repeated administration of Meth increased the expression of tyrosine hydroxylase (TH), BDNF, and Shati, a marker for Meth sensitization, in the NAc. Treatment with 6-OHDA significantly antagonized the upregulation of TH and Shati. Taken together, these data suggest that local administration of 6-OHDA mitigated Meth sensitization in chronic Meth-treated animals. Our data support a new surgical treatment strategy for Meth abuse.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Dopamina/metabolismo , Metanfetamina/administração & dosagem , Núcleo Accumbens/fisiopatologia , Oxidopamina/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Oxidopamina/farmacologia
18.
Cell Rep ; 37(5): 109913, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731618

RESUMO

Opiates produce a strong rewarding effect, but abstinence from opiate use emerges with severe negative emotions. Depression is one of the most frequent emotion disorders associated with opiate abstinence, which is thought to be a main cause for relapse. However, neurobiological bases of such an aversive emotion processing are poorly understood. Here, we find that morphine abstinence activates κ-opioid receptors (KORs) by increasing endogenous KOR ligand dynorphin expression in the amygdala, which in turn facilitates glutamate transporter 1 (GLT1) expression by activation of p38 mitogen-activated protein kinase (MAPK). Upregulation of GLT1 expression contributes to opiate-abstinence-elicited depressive-like behaviors through modulating amygdalar glutamatergic inputs to the nucleus accumbens (NAc). Intra-amygdala injection of GLT1 inhibitor DHK or knockdown of GLT1 expression in the amygdala significantly suppresses morphine-abstinence-induced depressive-like behaviors. Pharmacological and pharmacogenetic activation of amygdala-NAc projections prevents morphine-abstinence-induced behaviors. Overall, our study provides key molecular and circuit insights into the mechanisms of depression associated with opiate abstinence.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal , Depressão/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Morfina , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Depressão/induzido quimicamente , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Dinorfinas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Transportador de Glucose Tipo 1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/genética , Transdução de Sinais , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Psychiatry Neurosci ; 46(5): E559-E567, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625488

RESUMO

BACKGROUND: Adolescents with bipolar disorder have high rates of cannabis use, and cannabis use is associated with increased symptom severity and treatment resistance in bipolar disorder. Studies have identified anomalous resting-state functional connectivity among reward networks in bipolar disorder and cannabis use independently, but have yet to examine their convergence. METHODS: Participants included 134 adolescents, aged 13 to 20 years: 40 with bipolar disorder and lifetime cannabis use, 31 with bipolar disorder and no history of cannabis use, and 63 healthy controls without lifetime cannabis use. We used a seed-to-voxel analysis to assess the restingstate functional connectivity of the amygdala, the nucleus accumbens and the orbitofrontal cortex, regions implicated in bipolar disorder and cannabis use. We used a generalized linear model to explore bivariate correlations for each seed, controlling for age and sex. RESULTS: We found 3 significant clusters. Resting-state functional connectivity between the left nucleus accumbens seed and the left superior parietal lobe was negative in adolescents with bipolar disorder and no history of cannabis use, and positive in healthy controls. Resting-state functional connectivity between the right orbitofrontal cortex seed and the right lateral occipital cortex was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in healthy controls and adolescents with bipolar disorder and no history of cannabis use. Resting-state functional connectivity between the right orbitofrontal cortex seed and right occipital pole was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in adolescents with bipolar disorder and no history of cannabis use. LIMITATIONS: The study did not include a cannabis-using control group. CONCLUSION: This study provides preliminary evidence of cannabis-related differences in functional reward circuits in adolescents with bipolar disorder. Further studies are necessary to evaluate whether the present findings reflect consequences of or predisposition to cannabis use.


Assuntos
Transtorno Bipolar/fisiopatologia , Cannabis , Uso da Maconha , Vias Neurais , Descanso , Recompensa , Adolescente , Tonsila do Cerebelo/fisiopatologia , Feminino , Humanos , Masculino , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia
20.
Sci Rep ; 11(1): 17079, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429478

RESUMO

Primary nocturnal enuresis (PNE) affects children's physical and mental health with a high rate. However, its neural mechanism is still unclear. Studies have found that the paraventricular thalamus (PVT) is among the key brain regions implicated with awakening regulation and its control of the transition between sleep and wakening is dependent on signaling through the PVT-nucleus accumbens (NAc) pathway. So this study analyzed the function of brain regions and their connectivity of PVT and NAc. A total of twenty-six PNE and typically developing (TD) children were involved in the study and the methods of amplitude of low frequency fluctuation (ALFF), degree centrality (DC) and functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) were used to analyze the brain functions. Results showed that there was no statistical significant difference in ALFF and DC between PNE and TD children in bilateral PVT and NAc. And there was statistical significant difference of the comparison of the FC of left PVT (lPVT) and left NAc (lNAc) between PNE and TD children. Meanwhile, there was negative correlation between awakening score and the FC of rPVT and lNAc, and no obvious correlation between awakening score and the FC of lPVT and lNAc in PNE children. Meanwhile, there was both negative correlation between awakening score and the FC of lPVT, rPTV and lNAc in TD children. Therefore, the FC between rPVT and lNAc was more reliable in assessing the degree of awakening ability in PNE children. This finding could help establish the evaluation index of PNE.


Assuntos
Conectoma , Enurese Noturna/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Transtornos do Sono-Vigília/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Enurese Noturna/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Transtornos do Sono-Vigília/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...