Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.099
Filtrar
1.
Pharmacol Res ; 208: 107376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216837

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor ß (ERß) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERß activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERß and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERß agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERß. DPN treatment augmented the nuclear accumulation of ERß and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERß-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERß during myogenesis.


Assuntos
Receptor beta de Estrogênio , Proteína Forkhead Box O3 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteína MyoD , Nitrilas , Propionatos , Regeneração , Animais , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Proteína MyoD/genética , Proteína MyoD/metabolismo , Regeneração/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nitrilas/farmacologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Camundongos , Propionatos/farmacologia , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos
2.
Steroids ; 211: 109488, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151767

RESUMO

Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of ß-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of ß-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of ß-catenin, thereby offering a promising target for cancer therapeutics.


Assuntos
Núcleo Celular , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Receptores de Calcitriol , Vitamina D , beta Catenina , Feminino , beta Catenina/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Animais , Camundongos , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
3.
J Transl Med ; 22(1): 757, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135106

RESUMO

BACKGROUND: Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS: Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS: Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3ß, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS: These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.


Assuntos
Doxorrubicina , Glioblastoma , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Estresse Fisiológico/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Proteômica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Reprogramação Metabólica
4.
Behav Brain Res ; 475: 115219, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39209120

RESUMO

Our previous in vitro studies showed that excitotoxicity evoked by glutamate analogue kainate (KA) significantly decreased the number of rat spinal neurons and triggered high release of glutamate leading to locomotor network block. Our current objective was to assess the role of CREB as a predictive marker of damage following chemically-induced spinal cord injury by using in vivo and in vitro models. Thus, in vivo excitotoxicity in Balb/c adult mice was induced by KA intraspinal injection, while in vitro spinal cord excitotoxicity was produced by bath-applied KA. KA application evoked significant neuronal loss, deterioration in hindlimb motor coordination and thermal allodynia. In addition, immunohistochemical analysis showed that KA application resulted in decreased number of CREB positive nuclei in the ventral horn and in dorsal layers III-IV. Our data suggests that excitotoxic-induced neuronal loss may be potentially predicted by altered CREB nuclear translocation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Ácido Caínico , Camundongos Endogâmicos BALB C , Nociceptividade , Medula Espinal , Animais , Ácido Caínico/farmacologia , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nociceptividade/efeitos dos fármacos , Masculino , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/induzido quimicamente , Locomoção/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
5.
Nat Cardiovasc Res ; 3(7): 869-882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39196175

RESUMO

Differentiation of cardiac fibroblasts to myofibroblasts is necessary for matrix remodeling and fibrosis in heart failure. We previously reported that mitochondrial calcium signaling drives α-ketoglutarate-dependent histone demethylation, promoting myofibroblast formation. Here we investigate the role of ATP-citrate lyase (ACLY), a key enzyme for acetyl-CoA biosynthesis, in histone acetylation regulating myofibroblast fate and persistence in cardiac fibrosis. We show that inactivation of ACLY prevents myofibroblast differentiation and reverses myofibroblasts towards quiescence. Genetic deletion of Acly in post-activated myofibroblasts prevents fibrosis and preserves cardiac function in pressure-overload heart failure. TGFß stimulation enhances ACLY nuclear localization and ACLY-SMAD2/3 interaction, and increases H3K27ac at fibrotic gene loci. Pharmacological inhibition of ACLY or forced nuclear expression of a dominant-negative ACLY mutant prevents myofibroblast formation and H3K27ac. Our data indicate that nuclear ACLY activity is necessary for myofibroblast differentiation and persistence by maintaining histone acetylation at TGFß-induced myofibroblast genes. These findings provide targets to prevent and reverse pathological fibrosis.


Assuntos
ATP Citrato (pro-S)-Liase , Diferenciação Celular , Fibrose , Histonas , Miofibroblastos , Proteína Smad2 , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Animais , Fibrose/metabolismo , Diferenciação Celular/efeitos dos fármacos , Histonas/metabolismo , Proteína Smad2/metabolismo , Proteína Smad2/genética , Acetilação/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Proteína Smad3/metabolismo , Proteína Smad3/genética , Células Cultivadas , Cromatina/metabolismo , Camundongos Knockout , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Camundongos Endogâmicos C57BL , Masculino , Camundongos , Regulação da Expressão Gênica/efeitos dos fármacos
6.
Nano Lett ; 24(34): 10605-10613, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145462

RESUMO

A metal-organic frameworks (MOFs)-in-MOF nanovehicle (160 nm), which was constructed with newly prepared ultrasmall Cu(I)Cu(II)-BTC MOFs (UCMs, 2.95 nm) loaded with doxorubicin (DOX) and a nuclear localization signal (NLS) peptide as multicores (UCMDNs) and ZIF-8 as the shell MOF, was proposed to cross layers of biological barriers with adaptive size evolution capacity for achieving efficient nucleus-targeted drug delivery. It first enhanced tumor tissue penetration through its larger nanosize effect. Then the acidic tumor environment made the ZIF-8 shell degrade, releasing small-sized UCMDNs to enter into the cell and into the nucleus under the guidance of NLS. Furthermore, due to the distinct surface structural characteristics of UCMs, UCMDNs remained stable in the cytoplasm and collapsed in the nucleus due to the DOX-DNA interaction to deliver DOX precisely. It showed superior performance in the nucleus-directed delivery of DOX (delivery efficiency up to 56.7%) and a high tumor growth inhibition rate (96.4%), offering promising prospects in tumor chemotherapy.


Assuntos
Núcleo Celular , Doxorrubicina , Estruturas Metalorgânicas , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Estruturas Metalorgânicas/química , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Animais , Camundongos , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Sinais de Localização Nuclear/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Tamanho da Partícula , Nanopartículas/química , Cobre/química
7.
Mol Pharmacol ; 106(3): 145-154, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39079718

RESUMO

Ovarian cancer, the fifth leading cause of cancer-related mortality in women, is the most lethal gynecological malignancy globally. Within various ovarian cancer subtypes, high-grade serous ovarian cancer is the most prevalent and there is frequent emergence of chemoresistance. Aulosirazole, an isothiazolonaphthoquinone alkaloid, isolated from the cyanobacterium Nostoc sp. UIC 10771, demonstrated cytotoxic activity against OVCAR3 cells (IC50 = 301 ± 80 nM). Using immunocytochemistry, OVCAR3 cells treated with aulosirazole demonstrated increased concentrations of phosphorylated protein kinase B and phosphorylated c-Jun N-terminal kinase with subsequent accumulation of forkhead box O3a (FOXO3a) in the nucleus. The combination of aulosirazole with protein kinase B inhibitors resulted in the most nuclear accumulation of FOXO3a aulosirazole-induced apoptosis based on cleavage of poly(ADP-ribose) polymerase, annexin V staining, and induction of caspase 3/7 activity in OVCAR3, OVCAR5, and OVCAR8. The expression of downstream targets of FOXO3a, including B-cell lymphoma 2 (BCL2) and p53-upregulator modulator of apoptosis, increased following aulosirazole treatment. Aulosirazole upregulated the FOXO3a target, cyclin-dependent kinase inhibitor 1, and increased cell-cycle arrest in the G0/G1 phase. The downregulation of FOXO3a by short hairpin RNA (shRNA) reduced the cytotoxicity after aulosirazole treatment by 3-fold IC50 (949 ± 16 nM) and eliminated its ability to regulate downstream targets of FOXO3a. These findings underscore FOXO3a as a critical mediator of aulosirazole-induced cytotoxicity. Additionally, aulosirazole was able to decrease migration and invasion while increasing cell death in 3D tumor spheroids. However, in vivo OVCAR8 tumor burden was not reduced by aulosirazole using an intraperitoneal tumor model. Given the mechanism of action of aulosirazole, this class of alkaloids represents promising lead compounds to develop treatments against FOXO3a-downregulated cancers. SIGNIFICANCE STATEMENT: Aulosirazole, an isothiazolonaphthoquinone alkaloid, exhibits potent cytotoxic effects against high-grade serous ovarian cancer by promoting forkhead box O3a (FOXO3a) nuclear accumulation and modulating downstream targets. These findings highlight the potential of aulosirazole as a promising therapeutic intervention for cancers characterized by FOXO3a downregulation.


Assuntos
Apoptose , Proteína Forkhead Box O3 , Neoplasias Ovarianas , Proteína Forkhead Box O3/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124623, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002470

RESUMO

Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.


Assuntos
Aorta , Células Endoteliais , Mitose , Análise Espectral Raman , Humanos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Aorta/efeitos dos fármacos , Aorta/citologia , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Antimitóticos/farmacologia , Células Cultivadas , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo
9.
Methods Mol Biol ; 2825: 309-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913318

RESUMO

Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Microscopia/métodos , Testes de Mutagenicidade/métodos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Mutagênicos/toxicidade , Testes para Micronúcleos/métodos
10.
Biomed Pharmacother ; 177: 116934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889639

RESUMO

There is an urgent need to provide immediate and effective options for the treatment of prostate cancer (PCa) to prevent progression to lethal castration-resistant PCa (CRPC). The mevalonate (MVA) pathway is dysregulated in PCa, and statin drugs commonly prescribed for hypercholesterolemia, effectively target this pathway. Statins exhibit anti-PCa activity, however the resulting intracellular depletion of cholesterol triggers a feedback loop that restores MVA pathway activity, thus diminishing statin efficacy and contributing to resistance. To identify drugs that block this feedback response and enhance the pro-apoptotic activity of statins, we performed a high-content image-based screen of a 1508 drug library, enriched for FDA-approved compounds. Two of the validated hits, Galeterone (GAL) and Quinestrol, share the cholesterol-related tetracyclic structure, which is also evident in the FDA-approved CRPC drug Abiraterone (ABI). Molecular modeling revealed that GAL, Quinestrol and ABI not only share structural similarity with 25-hydroxy-cholesterol (25HC) but were also predicted to bind similarly to a known protein-binding site of 25HC. This suggested GAL, Quinestrol and ABI are sterol-mimetics and thereby inhibit the statin-induced feedback response. Cell-based assays demonstrated that these agents inhibit nuclear translocation of sterol-regulatory element binding protein 2 (SREBP2) and the transcription of MVA genes. Sensitivity was independent of androgen status and the Fluva-GAL combination significantly impeded CRPC tumor xenograft growth. By identifying cholesterol-mimetic drugs that inhibit SREBP2 activation upon statin treatment, we provide a potent "one-two punch" against CRPC progression and pave the way for innovative therapeutic strategies to combat additional diseases whose etiology is associated with SREBP2 dysregulation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias da Próstata , Proteína de Ligação a Elemento Regulador de Esterol 2 , Masculino , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Esteróis/farmacologia , Sinergismo Farmacológico , Camundongos Nus , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Morte Celular/efeitos dos fármacos
11.
Sci Rep ; 14(1): 14146, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898119

RESUMO

Eribulin (ERI), clinically utilized for locally advanced or metastatic breast tumors, has shown potential links to the immune system. Notably, the cGAS-STING pathway, a key component of innate immunity, has gained prominence. Yet, limited reports explore ERI's effects on the cGAS-STING pathway. Additionally, the nuclear presence of cGAS remains poorly understood. This study uniquely delves into ERI's impact on both the cytosolic cGAS-STING pathway and nuclear cGAS. ERI enhances nuclear localization of cGAS, resulting in hyper-activation of the cGAS-STING pathway in triple-negative breast cancer cells. Reduction of cGAS heightened both cell proliferation and ERI sensitivity. In clinical data using ERI in a neo-adjuvant setting, patients with low cGAS cases exhibited reduced likelihood of achieving pathological complete response after ERI treatment. These findings illuminate the potential of cGAS and IFNß as predictive biomarkers for ERI sensitivity, providing valuable insights for personalized breast cancer treatment strategies.


Assuntos
Núcleo Celular , Furanos , Cetonas , Nucleotidiltransferases , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Nucleotidiltransferases/metabolismo , Feminino , Cetonas/farmacologia , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Furanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais/efeitos dos fármacos , Policetídeos de Poliéter
12.
J Toxicol Environ Health A ; 87(17): 675-686, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828979

RESUMO

The aviation sector is believed to be responsible for considerable environmental damage attributed to emission of a large number and amount of pollutants. Airports are often surrounded by forest fragments and humid areas that attract birds of prey and hence may potentially serve as useful bioindicators. The aim of the present study was to examine genotoxic potential in raptors exposed to airport pollution using the micronucleus (MN) test and morphological changes as evidenced by bilateral symmetry. This investigation was conducted at Salgado Filho International Airport of Porto Alegre - RS as well as in private and zoological breeding grounds. The presence of metals was measured in the blood cells of the collected birds. Seventeen birds (Caracara (Polyborus) plancus) were used in this study 11 from exposed and 6 from non-exposed group. The nuclear alterations clearly indicate that organisms exposed to airport pollution exhibited a significantly higher frequency of genetic damage compared to non-exposed birds. Further, manganese and chromium were detected exclusively in the blood of the exposed group. In contrast, the analysis of bilateral symmetry did not detect any significant morphologic differences between the two groups. Therefore, data indicate that blood genotoxic stress occurs in birds of prey living in civil aviation areas as evidenced by MN frequency increase and presence of manganese and chromium.


Assuntos
Aeroportos , Testes para Micronúcleos , Animais , Brasil , Monitoramento Ambiental , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dano ao DNA , Núcleo Celular/efeitos dos fármacos , Aves Predatórias , Masculino
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723872

RESUMO

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apoptose , Músculo Liso Vascular , Quercetina , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Angiotensina II/farmacologia , Camundongos , Quercetina/análogos & derivados , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38821667

RESUMO

Hairdressers are constantly occupationally exposed to many chemicals have the potential to cause allergies and carcinogenic effects, act as skin and eye irritants and induce oxidative stress and DNA damage. This study aimed to evaluate occupation-induced genotoxicity based on the presence of micronucleus (MN) and other nuclear anomalies in urothelial cells and measure oxidative DNA damage based on the 8-hydroxy-2'-deoxyguanosine level in the urine of Turkish hairdressers. Originality of this study comes from that there was no study on MN and other nuclear anomalies frequencies and oxidative DNA damage in urine samples of hairdressers in the literature. The mean±standard deviation frequency (‰) of micronucleated (MNed) cells was higher in the hairdresser group (n=56) (4.81±7.87, p<0.001) than in the control group (n=56) (0.93±1.85). Nuclear buds were not observed in either group. While the frequency of basal cells was higher in the control group (446.6±106.21) than in the hairdresser group (367.78±101.51, p<0.001), the frequency of binuclear, karyolytic, pycnotic and karyorrhectic cells were higher in the hairdresser group (0.41±0.80, p<0.001; 438.02±118.27, p<0.001; 0.43±0.76, p<0.001; and 47.27±28.40, p<0.001) than in the control group (0.04±0.27, 358.57±95.71, 0.05±0.23 and 24.41±14.50). Condensed chromatins were observed only in the hairdresser group. Specific gravity adjusted 8-hydroxy-2'-deoxyguanosine level was statistically lower in the hairdresser group (908.21±403.25 ng/mL-SG) compared to the control group (1003.09±327.09 ng/mL-SG) (p=0.024). No significant correlation was found between the 8-hydroxy-2'-deoxyguanosine level and the frequency MN. The amount of formaldehyde released during Brazilian keratin treatment was higher than the American Conference of Governmental Industrial Hygienists -Threshold Limit Value (ACGIH-TLV; 0.1 ppm). Similarly, the amount of ethyl acetate released in three salons was above the recommended limit (400 ppm). These findings suggest that hairdressers have an increased risk of genotoxicity and cytotoxicity owing to occupational exposure, regardless of age, working hours, smoking and alcohol consumption.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Dano ao DNA , Desoxiguanosina , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Exposição Ocupacional , Urotélio , Humanos , 8-Hidroxi-2'-Desoxiguanosina/urina , Exposição Ocupacional/efeitos adversos , Adulto , Turquia , Urotélio/efeitos dos fármacos , Urotélio/patologia , Urotélio/metabolismo , Urotélio/citologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pessoa de Meia-Idade , Feminino , Adulto Jovem , Estudos de Casos e Controles , Núcleo Celular/efeitos dos fármacos
15.
Tissue Cell ; 88: 102408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772273

RESUMO

Hypoxia has profound effects on cell physiology, both in normal or pathological settings like cancer. In this study, we asked whether a variant of coverslip-induced hypoxia that recapitulates the conditions found in the tumor microenvironment would elicit similar cellular responses compared to the well established model of cobalt chloride-induced hypoxia. Comparable levels of nuclear HIF-1α were observed after 24 h of coverslip-induced hypoxia or cobalt chloride treatment in CAL-27 oral squamous carcinoma cells. However, cellular stress levels assessed by reactive oxygen species production and lipid droplet accumulation were markedly increased in coverslip-induced hypoxia compared to cobalt chloride treatment. Conversely, mitochondrial ATP production sharply decreased after coverslip-induced hypoxia but was preserved in the presence of cobalt chloride. Coverslip-induced hypoxia also had profound effects in nuclear organization, assessed by changes in nuclear dry mass distribution, whereas these effects were much less marked after cobalt chloride treatment. Taken together, our results show that coverslip-induced hypoxia effects on cell physiology and structure are more pronounced than mimetic hypoxia induced by cobalt chloride treatment. Considering also the simplicity of coverslip-induced hypoxia, our results therefore underscore the usefulness of this method to recapitulate in vitro the effects of hypoxic microenvironments encountered by cells in vivo.


Assuntos
Hipóxia Celular , Núcleo Celular , Cobalto , Cobalto/farmacologia , Humanos , Hipóxia Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821601

RESUMO

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Assuntos
Liases de Carbono-Enxofre , Sobrevivência Celular , Dioxóis , Sinergismo Farmacológico , Fibroblastos , Fibrossarcoma , Tetra-Hidroisoquinolinas , Trabectedina , Humanos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Fibrossarcoma/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Trabectedina/farmacologia , Liases de Carbono-Enxofre/farmacologia , Liases de Carbono-Enxofre/administração & dosagem , Tetra-Hidroisoquinolinas/farmacologia , Dioxóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
17.
J Control Release ; 369: 517-530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569942

RESUMO

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.


Assuntos
Antineoplásicos , Reparo do DNA , Glicólise , Camundongos Nus , Platina , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Glicólise/efeitos dos fármacos , Animais , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/metabolismo , Reparo do DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Platina/química , Platina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Transl Res ; 271: 1-12, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38670453

RESUMO

The reactivation of TERT is associated with poor outcome in papillary thyroid cancer (PTC). Extra-telomeric functions of TERT were reported, with a protective role against oxidative stress (OS). The aim of the present study was to explore the extra-nuclear TERT localization in PTC and its role in cancer progression. TERT nuclear export under OS were analyzed in K1 PTC cell line. We investigated the role of different TERT localizations using specific TERT constructs that limit its localization to the nucleus or to the mitochondria. The effect of SRC kinase inhibitor PP2, which reduces TERT nuclear export, was investigated as well. Moreover, TERT localization was analyzed in 39 PTC tissues and correlated with the genetic profile and the level of OS, DNA damage and apoptosis in the tumors and with the clinical characteristics of the patients. We demonstrated that TERT is exported from the nucleus in response to OS induced either from H2O2 or the BRAF inhibitor PLX4720. We proved that extra-nuclear TERT reduces mitochondrial OS and induces mitochondrial fragmentation. Moreover, limiting mitochondrial TERT localization reduced proliferation, migration, AKT phosphorylation and glycolysis and increased DNA damage and p21 expression. Finally, in PTC tissues the fraction of mitochondrial/nuclear TERT resulted inversely correlated with OS and p21 expression and associated with tumor persistence. In conclusion, our data indicate that extra-nuclear TERT is involved in reducing the effect of excessive OS, thus promoting cancer cell survival. Extra-nuclear TERT may thus represent a marker of cancer progression and a possible therapeutic target in PTC.


Assuntos
Progressão da Doença , Estresse Oxidativo , Telomerase , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Telomerase/metabolismo , Telomerase/genética , Estresse Oxidativo/efeitos dos fármacos , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Dano ao DNA , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
19.
Tohoku J Exp Med ; 263(2): 151-160, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569887

RESUMO

Activated microglia contribute to many neuroinflammatory diseases in the central nervous system. In this study, we attempted to identify an anti-inflammatory compound that could suppress microglial activation. We performed high-throughput screening with a chemical library developed at our institute. We performed a luciferase assay of nuclear factor-kappa B (NF-κB) reporter stable HT22 cells and identified a compound that was confirmed to inhibit the anti-inflammatory response in BV2 microglial cells. The selected dihydropyridine derivative can suppress the expression response of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor (TNF), as well as NF-κB phosphorylation and nuclear translocation, and reduce the intracellular calcium level. Thus, our identified compound has a potential role in suppressing microglial activation and may contribute to the development of a new therapeutic molecule against neuroinflammatory diseases.


Assuntos
Cálcio , Di-Hidropiridinas , Microglia , NF-kappa B , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , NF-kappa B/metabolismo , Cálcio/metabolismo , Linhagem Celular , Di-Hidropiridinas/farmacologia , Fosforilação/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
20.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574838

RESUMO

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Assuntos
Benzamidas , Ferroptose , Microglia , Fator 2 Relacionado a NF-E2 , Pirróis , Traumatismo por Reperfusão , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Linhagem Celular , Transporte Ativo do Núcleo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...