Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.282
Filtrar
1.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791320

RESUMO

Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.


Assuntos
Núcleo Celular , Hepatócitos , Lagartos , Animais , Feminino , Lagartos/anatomia & histologia , Lagartos/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/citologia , Viviparidade não Mamífera/fisiologia , Oviductos/metabolismo , Oviductos/ultraestrutura , Oviductos/citologia
3.
Tissue Cell ; 88: 102344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513553

RESUMO

Telomerase is present in cells with numerous or even un-limited replicative cycles, and some studies suggest it is a stemness marker. In order to determine whether this is the case for the human hair bulbs, an immunohistochemical and ultrastructural study has been carried out using antibodies against telomerase and PCNA (a cell proliferation marker). The observed labeling is similar for the two antibodies here utilized and is mainly nuclear. More frequent telomerase-positive cells are seen in the matrix epithelium of anagen hair bulbs but sparse labeled cells are also seen in the outer root sheath. In late catagen and also in telogen hair follicles only sparse labeled cells are present in the outer root sheath and few cells also in the secondary germinal epithelium formed at the base of the hair bulb in telogen. Electron microscopic immunogold shows a prevalent nuclear distribution and a lower cytoplasmic distribution in sparse cells of anagen bulb matrix that contain few keratin bundles. The nuclear localization is generally seen over the euchromatin or in areas occupied by more compact chromatin that may indicate an activity of telomerase in chromatin assemblage or dis-assemblage. The study concludes that the localization of telomerase is present in cells undergoing proliferation, namely transit amplifying cells of the outer root sheath that are sparsely detected in the lowermost secondary germinal hair bulb also in telogen.


Assuntos
Proliferação de Células , Folículo Piloso , Telomerase , Humanos , Telomerase/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/ultraestrutura , Folículo Piloso/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Imuno-Histoquímica , Cabelo/metabolismo , Cabelo/ultraestrutura , Cabelo/citologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura
4.
Science ; 382(6672): 780, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972182
5.
Sci Rep ; 13(1): 10802, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407674

RESUMO

Genome compaction and activity in the nucleus depend on spatiotemporal changes in the organization of chromatins in chromosomes. However, the direct imaging of the chromosome structures in the nuclei has been difficult and challenging. Herein, we directly visualized the structure of chromosomes in frozen-hydrated nuclei of budding yeast in the interphase using X-ray laser diffraction. The reconstructed projection electron density maps revealed inhomogeneous distributions of chromosomes, such as a 300 nm assembly and fibrous substructures in the elliptic-circular shaped nuclei of approximately 800 nm. In addition, from the diffraction patterns, we confirmed the absence of regular arrangements of chromosomes and chromatins with 400-20 nm spacing, and demonstrated that chromosomes were composed of self-similarly assembled substructural domains with an average radius of gyration of 58 nm and smooth surfaces. Based on these analyses, we constructed putative models to discuss the organization of 16 chromosomes, carrying DNA of 4.1 mm in 800 nm ellipsoid of the nucleus at the interphase. We anticipate the structural parameters on the fractal property of chromosomes and the experimental images to be a starting point for constructing more sophisticated 3D structural models of the nucleus.


Assuntos
Fractais , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Raios X , Cromossomos , Núcleo Celular/ultraestrutura , Cromatina , Interfase , Difração de Raios X
6.
Methods Mol Biol ; 2635: 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074658

RESUMO

Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer bias and improve data collection. However, this method has limitations, such as insufficient visibility of multiple nuclei in the cells attached to the substrate at low magnification.Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are discussed.


Assuntos
Núcleo Celular , Citocinese , Citometria de Fluxo/métodos , Divisão Celular , Núcleo Celular/ultraestrutura , Microscopia
7.
Mol Cell ; 82(12): 2350-2350.e1, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714589

RESUMO

Chromosomes in higher eukaryotes are folded at different length scales into loop extrusion domains, spatial compartments, and chromosome territories and exhibit interactions with nuclear structures such as the lamina. Microscopic methods can probe this structure by measuring positions of chromosomes in the nuclear space in individual cells, while sequencing-based contact capture approaches can report the frequency of contacts of different regions within these structural layers. To view this SnapShot, open or download the PDF.


Assuntos
Cromatina , Cromossomos , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromossomos/genética , Eucariotos/genética
8.
Micron ; 160: 103318, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759902

RESUMO

The ovaries of Sander lucioperca (Actinopterygii, Perciformes) are made up of the germinal epithelium and ovarian follicles, in which primary oocytes grow. Each follicle is composed of an oocyte surrounded by flattened follicular cells, the basal lamina, and thecal cells. The early stages of oocyte development (primary growth = previtellogenesis) are not fully explained in this species. The results of research with the use of stereoscopic, light, fluorescence, and transmission electron microscopes on ovarian follicles containing developing primary oocytes of S. lucioperca are presented. The polarization and ultrastructure of oocytes are described and discussed. The deposition of egg envelopes during the primary growth and the ultrastructure of the eggshell in maturing follicles of S. lucioperca are also presented. Nuclei in primary oocytes comprise lampbrush chromosomes, nuclear bodies, and nucleoli. Numerous additional nucleoli arise in the nucleoplasm during primary growth and locate close to the nuclear envelope. The Balbiani body in the cytoplasm of oocytes (ooplasm) is composed of nuage aggregations of nuclear origin and mitochondria, endoplasmic reticulum (ER), and Golgi apparatus. The presence of the Balbiani body was reported in oocytes of numerous species of Actinopterygii; however, its ultrastructure was investigated in a limited number of species. In primary oocytes of S. lucioperca, the Balbiani body is initially located in the perinuclear ooplasm on one side of the nucleus. Next, it surrounds the nucleus, expands toward the plasma membrane of oocytes (oolemma), and becomes fragmented. Within the Balbiani body, the granular nuage condenses in the form of threads, locates near the oolemma, at the vegetal oocyte pole, and then dissolves. Mitochondria and cisternae of the rough endoplasmic reticulum (RER) are present between the threads. During primary growth micropylar cells differentiate in the follicular epithelium. They contain cisternae and vesicles of the RER and Golgi apparatus as well as numerous dense vesicles suggesting high synthetic and secretory activity. During the final step of primary growth several follicular cells delaminate from the follicular epithelium, migrate toward the oocyte and submerge in the most external egg envelope. In the ooplasm, three regions are distinguished: perinuclear, endoplasm, and periplasm. Cortical alveoli arise in the perinuclear ooplasm and in the endoplasm as a result of the fusion of RER vesicles with Golgi ones. They are evenly distributed. Lamellar bodies in the periplasm store the plasma membrane and release it into a space between the follicular cells and the oocyte. The developing eggshell in this space is made up of two egg envelopes (the internal one and the external) that are pierced by canals formed around the microvilli of oocytes and the processes of follicular cells. In the deposition of egg envelopes the oocyte itself and follicular cells are engaged. In maturing ovarian follicles the eggshell is solid and the internal egg envelope is covered with protuberances.


Assuntos
Percas , Perciformes , Animais , Núcleo Celular/ultraestrutura , Feminino , Oócitos/ultraestrutura , Folículo Ovariano/ultraestrutura
9.
Methods Mol Biol ; 2502: 461-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412256

RESUMO

Field emission scanning electron microscopy (FESEM) is a well-established technique for acquiring three-dimensional surface images of nuclear pore complexes (NPCs). We present an optimized protocol for the exposure of mammalian cell nuclei and direct surface imaging of nuclear envelopes by FESEM, allowing for a detailed morphological comparison of individual NPCs, without the need for averaging techniques. This provides a unique high resolution tool for studying the effects of cellular stress, specific genetic manipulations and inherited diseases on the ultrastructure of human NPCs.


Assuntos
Membrana Nuclear , Poro Nuclear , Animais , Núcleo Celular/ultraestrutura , Humanos , Imageamento Tridimensional , Mamíferos , Microscopia Eletrônica de Varredura , Membrana Nuclear/ultraestrutura , Poro Nuclear/metabolismo
10.
Protoplasma ; 259(6): 1409-1415, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35103866

RESUMO

The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 µm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30-40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.


Assuntos
Archamoebae , Nucléolo Celular , Núcleo Celular/ultraestrutura , Organelas
11.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053389

RESUMO

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.


Assuntos
Núcleo Celular/efeitos da radiação , Núcleo Celular/ultraestrutura , Senescência Celular/efeitos da radiação , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica , Radiação Ionizante , Linhagem Celular , Núcleo Celular/patologia , Forma Celular/efeitos da radiação , Montagem e Desmontagem da Cromatina , Fibroblastos/patologia , Humanos , Nanotubos/ultraestrutura , Proteômica
12.
Biochem Biophys Res Commun ; 587: 42-48, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864394

RESUMO

Optical diffraction tomography (ODT), an emerging imaging technique that does not require fluorescent staining, can measure the three-dimensional distribution of the refractive index (RI) of organelles. In this study, we used ODT to characterize the pathological characteristics of human eosinophils derived from asthma patients presenting with eosinophilia. In addition to morphological information about organelles appearing in eosinophils, including the cytoplasm, nucleus, and vacuole, we succeeded in imaging specific granules and quantifying the RI values of the granules. Interestingly, ODT analysis showed that the RI (i.e., molecular density) of granules was significantly different between eosinophils from asthma patients and healthy individuals without eosinophilia, and that vacuoles were frequently found in the cells of asthma patients. Our results suggest that the physicochemical properties of eosinophils derived from patients with asthma can be quantitatively distinguished from those of healthy individuals. The method will provide insight into efficient evaluation of the characteristics of eosinophils at the organelle level for various diseases with eosinophilia.


Assuntos
Asma/diagnóstico por imagem , Eosinófilos/ultraestrutura , Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Eosinofilia Pulmonar/diagnóstico por imagem , Tomografia Óptica/métodos , Asma/patologia , Estudos de Casos e Controles , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Grânulos Citoplasmáticos/ultraestrutura , Humanos , Imageamento Tridimensional/instrumentação , Pulmão/patologia , Eosinofilia Pulmonar/patologia , Análise de Célula Única , Vacúolos/ultraestrutura
13.
RNA ; 28(1): 58-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772788

RESUMO

Nuage are RNA-rich condensates that assemble around the nuclei of developing germ cells. Many proteins required for the biogenesis and function of silencing small RNAs (sRNAs) enrich in nuage, and it is often assumed that nuage is the cellular site where sRNAs are synthesized and encounter target transcripts for silencing. Using C. elegans as a model, we examine the complex multicondensate architecture of nuage and review evidence for compartmentalization of silencing pathways. We consider the possibility that nuage condensates balance the activity of competing sRNA pathways and serve to limit, rather than enhance, sRNA amplification to protect transcripts from dangerous runaway silencing.


Assuntos
Condensados Biomoleculares/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Interferência de RNA , RNA de Helmintos/química , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Embrião não Mamífero , Grânulos de Ribonucleoproteínas de Células Germinativas/metabolismo , Grânulos de Ribonucleoproteínas de Células Germinativas/ultraestrutura , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo
15.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831444

RESUMO

Zn2+- and Ca2+-dependent nucleases exhibit activity toward dsDNA in the four classes of cation-dependent nucleases in plants. Programmed cell death (PCD) is involved in the degradation of cells during schizolysigenous secretory cavity formation in Citrus fruits. Recently, the Ca2+-dependent DNase CgCAN was proven to play a key role in nuclear DNA degradation during the PCD of secretory cavity formation in Citrus grandis 'Tomentosa' fruits. However, whether Zn2+-dependent nuclease plays a role in the PCD of secretory cells remains poorly understood. Here, we identified a Zn2+-dependent nuclease gene, CgENDO1, from Citrus grandis 'Tomentosa', the function of which was studied using Zn2+ ions cytochemical localization, DNase activity assays, in situ hybridization, and protein immunolocalization. The full-length cDNA of CgENDO1 contains an open reading frame of 906 bp that encodes a protein 301 amino acids in length with a S1/P1-like functional domain. CgENDO1 degrades linear double-stranded DNA at acidic and neutral pH. CgENDO1 is mainly expressed in the late stage of nuclear degradation of secretory cells. Further spatiotemporal expression patterns of CgENDO1 showed that CgENDO1 is initially located on the endoplasmic reticulum and then moves into intracellular vesicles and nuclei. During the late stage of nuclear degradation, it was concentrated in the area of nuclear degradation involved in nuclear DNA degradation. Our results suggest that the Zn2+-dependent nuclease CgENDO1 plays a direct role in the late degradation stage of the nuclear DNA in the PCD of secretory cavity cells of Citrus grandis 'Tomentosa' fruits.


Assuntos
Apoptose , Núcleo Celular/metabolismo , Citrus/citologia , Endonucleases/metabolismo , Frutas/citologia , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Núcleo Celular/ultraestrutura , Citrus/genética , Citrus/ultraestrutura , Fragmentação do DNA , Desoxirribonucleases/metabolismo , Frutas/ultraestrutura , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Frações Subcelulares/metabolismo
16.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830250

RESUMO

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Assuntos
Arabidopsis/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Técnicas de Cultura de Células , Fracionamento Celular/instrumentação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Centrifugação/métodos , Citometria de Fluxo , Homeostase/fisiologia , Indóis/farmacologia , Espectrometria de Massas , Células Vegetais/efeitos dos fármacos , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/química , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
17.
BMC Cancer ; 21(1): 1087, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625031

RESUMO

BACKGROUND: Cancer remains one of the leading causes of death worldwide, despite the possibilities to detect early onset of the most common cancer types. The search for the optimal therapy is complicated by the cancer diversity within tumors and the unsynchronized development of cancerous cells. Therefore, it is necessary to characterize cancer cell populations after treatment has been applied, because cancer recurrence is not rare. In our research, we concentrated on small cancer cell subpopulation (microcells) that has a potential to be cancer resistance source. Previously made experiments has shown that these cells in small numbers form in specific circumstances after anticancer treatment. METHODS: In experiments described in this research, the anticancer agents' paclitaxel and doxorubicin were used to stimulate the induction of microcells in fibroblast, cervix adenocarcinoma, and melanoma cell lines. Mainly for the formation of microcells in melanoma cells. The drug-stimulated cells were then characterized in terms of their formation efficiency, morphology, and metabolic activity. RESULTS: We observed the development of cancer microcells and green fluorescent protein (GFP) transfection efficiency after stress. In the time-lapse experiment, we observed microcell formation through a renewal process and GFP expression in the microcells. Additionally, the microcells were viable after anticancer treatment, as indicated by the nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) enzyme activity assay results. Taken together, these findings indicate that cancer microcells are viable and capable of resisting the stress induced by anticancer drugs, and these cells are prone to chemical substance uptake from the environment. CONCLUSION: Microcells are not only common to a specific cancer type, but can be found in any tumor type. This study could help to understand cancer emergence and recurrence. The appearance of microcells in the studied cancer cell population could be an indicator of the individual anticancer therapy effectiveness and patient survival.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Contagem de Células , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Autorrenovação Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Indicadores e Reagentes/farmacocinética , Melanoma/metabolismo , Melanoma/patologia , Microscopia Eletrônica , NADP/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias/metabolismo , Neoplasias/ultraestrutura , Vermelho Neutro/farmacocinética , Paclitaxel/farmacologia , Estresse Fisiológico , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo , Transfecção , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
18.
Nat Commun ; 12(1): 6241, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716321

RESUMO

Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.


Assuntos
Cromatina/química , Leucemia Eritroblástica Aguda/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/fisiologia , Células Eritroides/patologia , Leucemia Eritroblástica Aguda/metabolismo , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Coesinas
19.
Open Biol ; 11(10): 210132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637654

RESUMO

The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.


Assuntos
DNA de Cinetoplasto/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Trypanosoma brucei brucei/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...