Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.048
Filtrar
1.
Nat Commun ; 15(1): 5597, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961064

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/ß, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Associado à Microftalmia , N-Acetilglucosaminiltransferases , Piperazinas , Piridinas , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Linhagem Celular Tumoral , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892474

RESUMO

Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetilglucosamina , Diabetes Mellitus Experimental , Retinopatia Diabética , N-Acetilglucosaminiltransferases , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Animais , Camundongos , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Metformina/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Retina/metabolismo , Retina/patologia , Retina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular
3.
Biochem Biophys Res Commun ; 724: 150198, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852504

RESUMO

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Assuntos
Autofagia , Regulação para Baixo , Endossomos , Lisossomos , N-Acetilglucosaminiltransferases , Nutrientes , proteínas de unión al GTP Rab7 , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Endossomos/metabolismo , Lisossomos/metabolismo , Nutrientes/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Colo/metabolismo , Colo/patologia , Células HCT116 , Autofagossomos/metabolismo
4.
JCI Insight ; 9(12)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912584

RESUMO

The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of ß1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.


Assuntos
Carcinoma Ductal Pancreático , N-Acetilglucosaminiltransferases , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicosilação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos Knockout , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
ACS Chem Biol ; 19(7): 1570-1582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38934647

RESUMO

N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.


Assuntos
Acetilglucosamina , Campylobacter jejuni , Sistema Livre de Células , Glicoproteínas , Hexosiltransferases , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/química , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética
6.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886669

RESUMO

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Assuntos
Colite Ulcerativa , Modelos Animais de Doenças , Mucinas , Animais , Humanos , Masculino , Camundongos , Colite Ulcerativa/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Regulação para Baixo , Glicosilação , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Mucinas/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética
7.
Toxicol Lett ; 397: 67-78, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734222

RESUMO

Impairment of the insulin signaling pathway is a key contributor to insulin resistance under arsenic exposure. Specifically, O-GlcNAcylation, an important post-translational modification, plays a crucial role in insulin resistance. Nevertheless, the concrete effect and mechanism of O-GlcNAcylation in arsenic-induced impairment of the insulin signaling pathway remain elusive. Herein, C57BL/6 mice were continuously fed arsenic-containing food, with a total arsenic concentration of 30 mg/kg. We observed that the IRS/Akt/GSK-3ß insulin signaling pathway was impaired, and autophagy was activated in mouse livers and HepG2 cells exposed to arsenic. Additionally, O-GlcNAcylation expression in mouse livers and HepG2 cells was elevated, and the key O-GlcNAcylation homeostasis enzyme, O-GlcNAc transferase (OGT), was upregulated. In vitro, non-targeted metabolomic analysis showed that metabolic disorder was induced, and inhibition of O-GlcNAcylation restored the metabolic profile of HepG2 cells exposed to arsenic. In addition, we found that the compromised insulin signaling pathway was dependent on AMPK activation. Inhibition of AMPK mitigated autophagy activation and impairment of insulin signaling pathway under arsenic exposure. Furthermore, down-regulation of O-GlcNAcylation inhibited AMPK activation, thereby suppressing autophagy activation, and improving the impaired insulin signaling pathway. Collectively, our findings indicate that arsenic can impair the insulin signaling pathway by regulating O-GlcNAcylation homeostasis. Importantly, O-GlcNAcylation inhibition alleviated the impaired insulin signaling pathway by suppressing the AMPK/mTOR-autophagy pathway. This indicates that regulating O-GlcNAcylation may be a potential intervention for the impaired insulin signaling pathway induced by arsenic.


Assuntos
Proteínas Quinases Ativadas por AMP , Arsênio , Autofagia , Regulação para Baixo , Insulina , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Serina-Treonina Quinases TOR/metabolismo , Insulina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação para Baixo/efeitos dos fármacos , Arsênio/toxicidade , Masculino , Resistência à Insulina , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732103

RESUMO

Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , N-Acetilglucosaminiltransferases , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Glicosilação , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Camundongos Nus , Ácido Graxo Sintase Tipo I
9.
Proc Natl Acad Sci U S A ; 121(22): e2401729121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768345

RESUMO

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.


Assuntos
N-Acetilglucosaminiltransferases , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Humanos , Repetições de Tetratricopeptídeos , Glicosilação , Fator C1 de Célula Hospedeira/metabolismo , Fator C1 de Célula Hospedeira/genética , Células HEK293 , Domínios Proteicos , Proliferação de Células , Sobrevivência Celular , Animais , Ligação Proteica
10.
Virus Genes ; 60(4): 347-356, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739247

RESUMO

O-Glycan synthesis enzyme glucosaminyl (N-acetyl) transferase 3 (GCNT3) is closely related to the occurrence and development of various cancers. However, the regulatory mechanism and function of GCNT3 in nasopharyngeal carcinoma (NPC) are still poorly understood. This study aims to explore the regulatory mechanism of EBV-encoded latent membrane protein 2A (LMP2A) on GCNT3 and the biological role of GCNT3 in NPC. The results show that LMP2A can activate GCNT3 through the mTORC1 pathway, and there is a positive feedback between the mTORC1 and GCNT3. GCNT3 regulates EMT progression by forming a complex with ZEB1 to promote cell migration. GCNT3 can also promote cell proliferation. These findings indicate that targeting the LMP2A-mTORC1-GCNT3 axis may represent a novel therapeutic target in NPC.


Assuntos
Movimento Celular , Proliferação de Células , N-Acetilglucosaminiltransferases , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas da Matriz Viral , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transição Epitelial-Mesenquimal/genética
11.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786029

RESUMO

O-linked-ß-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.


Assuntos
Acetilglucosamina , Hepatopatias , N-Acetilglucosaminiltransferases , Humanos , Hepatopatias/metabolismo , Hepatopatias/patologia , Glicosilação , Animais , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Fígado/metabolismo , Fígado/patologia , Estresse Fisiológico , Processamento de Proteína Pós-Traducional , Transdução de Sinais
12.
Biochemistry ; 63(12): 1513-1533, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38788673

RESUMO

Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3ß isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3ß kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3ß kinase activity only on primed tau, thereby selectively inactivating GSK3ß toward unprimed tau protein. Additionally, we have shown that GSK3ß is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3ß kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3ß, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3ß kinase activity.


Assuntos
Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Fosforilação , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Processamento de Proteína Pós-Traducional , Quinase 3 da Glicogênio Sintase/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/química , Glicosilação , Animais
13.
Mol Genet Metab ; 142(2): 108492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759397

RESUMO

Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , N-Acetilglucosaminiltransferases , Placa Neural , Fenótipo , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Placa Neural/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Sistemas CRISPR-Cas , Glicosilação , Edição de Genes , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia
14.
Cell Commun Signal ; 22(1): 279, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773637

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) protein modification (O-GlcNAcylation) is a critical post-translational modification (PTM) of cytoplasmic and nuclear proteins. O-GlcNAcylation levels are regulated by the activity of two enzymes, O-GlcNAc transferase (OGT) and O­GlcNAcase (OGA). While OGT attaches O-GlcNAc to proteins, OGA removes O-GlcNAc from proteins. Since its discovery, researchers have demonstrated O-GlcNAcylation on thousands of proteins implicated in numerous different biological processes. Moreover, dysregulation of O-GlcNAcylation has been associated with several pathologies, including cancers, ischemia-reperfusion injury, and neurodegenerative diseases. In this review, we focus on progress in our understanding of the role of O-GlcNAcylation in bone pathophysiology, and we discuss the potential molecular mechanisms of O-GlcNAcylation modulation of bone-related diseases. In addition, we explore significant advances in the identification of O-GlcNAcylation-related regulators as potential therapeutic targets, providing novel therapeutic strategies for the treatment of bone-related disorders.


Assuntos
Acetilglucosamina , N-Acetilglucosaminiltransferases , Humanos , Animais , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Osso e Ossos/metabolismo , Processamento de Proteína Pós-Traducional , Doenças Ósseas/metabolismo
15.
Sci Rep ; 14(1): 10669, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724577

RESUMO

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Assuntos
Isoflurano , Ketamina , Ratos Wistar , Xilazina , Animais , Masculino , Ratos , Isoflurano/farmacologia , Ketamina/farmacologia , Xilazina/farmacologia , Anestesia , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Encéfalo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Pulmão/metabolismo , Anestésicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hemodinâmica
16.
Cell Rep ; 43(5): 114163, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678556

RESUMO

Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.


Assuntos
Estabilidade Proteica , Proteínas de Ligação a RNA , Humanos , Acetilglucosamina/metabolismo , Antígenos de Neoplasias , beta-N-Acetil-Hexosaminidases/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Histona Acetiltransferases , Hialuronoglucosaminidase , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Glycoconj J ; 41(2): 151-162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557922

RESUMO

Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.


Assuntos
Crassostrea , N-Acetilglucosaminiltransferases , Animais , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Crassostrea/enzimologia , Crassostrea/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Clonagem Molecular , Especificidade por Substrato , Filogenia , Spodoptera
18.
Cell Death Dis ; 15(4): 287, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654003

RESUMO

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.


Assuntos
Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Oxidopamina , Doença de Parkinson , Animais , Oxidopamina/farmacologia , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Masculino , Glucosamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo , Modelos Animais de Doenças
19.
Leukemia ; 38(5): 1032-1045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609495

RESUMO

TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.


Assuntos
Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Animais , Camundongos , Fator 6 Associado a Receptor de TNF/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Glicólise , Linhagem Celular Tumoral , Reprogramação Metabólica
20.
Front Immunol ; 15: 1387197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665916

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods: We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-ß) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results: We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-ß1 induced collagen expression/deposition. Conclusion: OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.


Assuntos
Colágeno , Fibrose Pulmonar Idiopática , N-Acetilglucosaminiltransferases , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Colágeno/metabolismo , Animais , Camundongos , Proteína Smad3/metabolismo , Fibroblastos/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Masculino , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...