Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.999
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1413103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113822

RESUMO

Background: Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods: We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results: The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion: MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.


Assuntos
DNA Mitocondrial , Curva ROC , Sepse , Humanos , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Pré-Escolar , Feminino , Masculino , DNA Mitocondrial/genética , Estudos Prospectivos , Prognóstico , Criança , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Células Sanguíneas/metabolismo , Genes Mitocondriais , Expressão Gênica , Pneumonia/diagnóstico , Pneumonia/sangue , Valor Preditivo dos Testes
2.
Folia Parasitol (Praha) ; 712024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-39022895

RESUMO

The present study aims at clarifying the poorly known phylogenetic relationships and systematics of cestodes of the family Davaineidae Braun, 1900 (Cyclophyllidea), primarily the genus Raillietina Fuhrmann, 1920 and of the subfamily Inermicapsiferinae (Anoplocephalidae) from mammals (mostly rodents, 31 new isolates) and birds (eight new isolates). Phylogenetic analyses are based on sequences of the large subunit ribosomal RNA gene (28S) and mitochondrial NADH dehydrogenase subunit 1 gene (nad1). The main phylogenetic pattern emerging from the present analysis is the presence of three independent lineages within the main clade of the subfamily Davaineinae, one of which is almost entirely confined to species from rodents and the other two show a mixture of species from birds and mammals. It is suggested that the major diversification of the main clade took place in birds, possibly in galliforms. The subsequent diversification included repeated host shifts from birds to mammals and to other birds, and from rodents to other mammals, showing that colonisation of new host lineages has been the main driver in the diversification of davaineine cestodes. It is also shown that all isolates of Inermicapsifer Janicki, 1910, mainly from rodents, form a monophyletic group positioned among Raillietina spp. in the "rodent lineage", indicating that the genus Inermicapsifer is a member of the family Davaineidae. This means that the subfamily Inermicapsiferinae and the family Inermicapsiferidae should be treated as synonyms of the Davaineidae, specifically the subfamily Davaineinae. Three additional genera generally included in the Inermicapsiferinae, i.e. Metacapsifer Spasskii, 1951, Pericapsifer Spasskii, 1951 and Thysanotaenia Beddard, 1911, are also assigned here to the Davaineidae (subfamily Davaineinae). Raillietina spp. were present in all three main lineages and appeared as multiple independent sublineages from bird and mammalian hosts, verifying the non-monophyly of the genus Raillietina and suggesting a presence of multiple new species and genera.


Assuntos
Cestoides , Infecções por Cestoides , Filogenia , Roedores , Animais , Cestoides/classificação , Cestoides/genética , Roedores/parasitologia , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologia , Aves , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/análise , NADH Desidrogenase/genética
3.
Curr Biol ; 34(12): 2728-2738.e6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38810637

RESUMO

The mitochondrial proteome is comprised of approximately 1,100 proteins,1 all but 12 of which are encoded by the nuclear genome in C. elegans. The expression of nuclear-encoded mitochondrial proteins varies widely across cell lineages and metabolic states,2,3,4 but the factors that specify these programs are not known. Here, we identify mutations in two nuclear-localized mRNA processing proteins, CMTR1/CMTR-1 and SRRT/ARS2/SRRT-1, which we show act via the same mechanism to rescue the mitochondrial complex I mutant NDUFS2/gas-1(fc21). CMTR-1 is an FtsJ-family RNA methyltransferase that, in mammals, 2'-O-methylates the first nucleotide 3' to the mRNA CAP to promote RNA stability and translation5,6,7,8. The mutations isolated in cmtr-1 are dominant and lie exclusively in the regulatory G-patch domain. SRRT-1 is an RNA binding partner of the nuclear cap-binding complex and determines mRNA transcript fate.9 We show that cmtr-1 and srrt-1 mutations activate embryonic expression of NDUFS2/nduf-2.2, a paralog of NDUFS2/gas-1 normally expressed only in dopaminergic neurons, and that nduf-2.2 is necessary for the complex I rescue by the cmtr-1 G-patch mutant. Additionally, we find that loss of the cmtr-1 G-patch domain cause ectopic localization of CMTR-1 protein to processing bodies (P bodies), phase-separated organelles involved in mRNA storage and decay.10 P-body localization of the G-patch mutant CMTR-1 contributes to the rescue of the hyperoxia sensitivity of the NDUFS2/gas-1 mutant. This study suggests that mRNA methylation at P bodies may control nduf-2.2 gene expression, with broader implications for how the mitochondrial proteome is translationally remodeled in the face of tissue-specific metabolic requirements and stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios Dopaminérgicos , Complexo I de Transporte de Elétrons , Metiltransferases , Mutação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Neurônios Dopaminérgicos/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética
4.
Free Radic Biol Med ; 221: 283-295, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38705496

RESUMO

Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via mitochondrial complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced by phloretin. The exogenous application of antioxidants butylated hydroxyanisole and N-acetylcysteine abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.


Assuntos
Antioxidantes , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complexo I de Transporte de Elétrons , Longevidade , Mitocôndrias , Floretina , Espécies Reativas de Oxigênio , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Longevidade/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Espécies Reativas de Oxigênio/metabolismo , Floretina/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição Forkhead
5.
Parasitol Res ; 123(5): 210, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743097

RESUMO

Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Fasciola , Fasciolíase , Variação Genética , Cabras , Haplótipos , NADH Desidrogenase , Filogenia , Dinâmica Populacional , Animais , Sudão/epidemiologia , Fasciola/genética , Fasciola/classificação , Fasciola/isolamento & purificação , Fasciolíase/veterinária , Fasciolíase/parasitologia , Fasciolíase/epidemiologia , Ovinos/parasitologia , Cabras/parasitologia , Bovinos , NADH Desidrogenase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças das Cabras/parasitologia , Doenças das Cabras/epidemiologia , Ruminantes/parasitologia , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Análise de Sequência de DNA
6.
Int J Parasitol ; 54(10): 497-506, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641032

RESUMO

Infection by the zoonotic fish-borne trematode, Opisthorchis viverrini, remains a crucial health issue in Thailand and neighboring countries. Recently, molecular analysis revealed two populations of putative O. viverrini: one found primarily in human hosts ("human-specific" population) and the other primarily in cats ("cat-specific" population). It is unclear how the infective stages (metacercariae) of these different populations circulate among definitive and reservoir hosts in nature. To gain an insight into this, mitochondrial cox1 and nad1 gene sequences of metacercariae from fish intermediate hosts were examined. None of 192 metacercariae from cyprinid fish in Lao PDR and Thailand had sequences typical of "cat-specific" O. viverrini, suggesting that cyprinid fish are not the main second intermediate hosts of this population. Interestingly, all 20 O. viverrini-like metacercariae from snakehead fish (Channa striata) shared 99.51-100% sequence identity with eggs from cats naturally infected in a previous study. Hence, we propose a modification of the known transmission dynamics of O. viverrini: consumption of metacercariae within snakehead fish provides another pathway for cats and (occasionally) humans to acquire infection. We also performed morphological comparisons of eggs, metacercariae, and adult flukes (raised in hamsters) of both Opisthorchis populations. The "cat-specific" population has eggs that are narrower and adults that are shorter and wider than in the human-specific population. The metacercaria of the "cat-specific" population is elliptical, while that of the "human-specific" population is oval, occasionally rounded. Our results confirmed that O. viverrini-like metacercariae from snakehead fish are the infective stages of the "cat-specific" fluke. This provides a new insight into the dissemination and transmission of each population in the second intermediate host. The identity of the cat-specific population is discussed.


Assuntos
Doenças dos Peixes , Opistorquíase , Opisthorchis , Animais , Opisthorchis/genética , Opisthorchis/classificação , Opisthorchis/fisiologia , Opisthorchis/anatomia & histologia , Opisthorchis/isolamento & purificação , Gatos , Humanos , Tailândia , Opistorquíase/parasitologia , Opistorquíase/veterinária , Opistorquíase/transmissão , Doenças dos Peixes/parasitologia , Doenças dos Peixes/transmissão , Filogenia , Metacercárias/genética , Metacercárias/anatomia & histologia , Metacercárias/isolamento & purificação , Laos , Doenças do Gato/parasitologia , Doenças do Gato/transmissão , Cyprinidae/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Análise de Sequência de DNA , Dados de Sequência Molecular , DNA de Helmintos/genética , NADH Desidrogenase/genética
7.
Acta Parasitol ; 69(2): 1157-1171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38592372

RESUMO

PURPOSE: Mosquitoes are important vectors of pathogens that can affect humans and animals. Culex tritaeniorhynchus is an important vector of arboviruses such as Japanese encephalitis virus, West Nile virus among various human and animal communities. These diseases are of major public health concern and can have huge economic and health burdens in prevalent countries. Although populations of this important mosquito species have been detected in the Mediterranean and Aegean regions of Türkiye; little is known about its population structure. Our study is to examine the population genetics and genetic composition of Cx. tritaeniorhynchus mosquitoes collected from several localities using cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 5 genes (ND5). This is the first extensive study of Cx. tritaeniorhynchus in the mainland Türkiye with sampling spanning many of provinces. METHODS: In this study, DNA extraction, amplification of mitochondrial COI and ND5 genes and population genetic analyses were performed on ten geographic populations of Culex tritaeniorhynchus in the Aegean and Mediterranean region of Türkiye. RESULTS: Between 2019 and 2020, 96 samples were collected from 10 geographic populations in the Aegean and Mediterranean regions; they were molecularly analyzed and 139 sequences (50 sequence for COI and 89 sequence for ND5) were used to determine the population structure and genetic diversity. For ND5 gene region, the samples produced 24 haplotypes derived from 15 variable sites and for COI gene region, 43 haplotypes were derived from 17 variable sites. The haplotype for both gene regions was higher than nucleotide diversity. Haplotype phylogeny revealed two groups present in all populations. AMOVA test results show that the geographical populations were the same for all gene regions. Results suggest that Cx. tritaeniorhynchus is a native population in Türkiye, the species is progressing towards speciation and there is no genetic differentiation between provinces and regions. CONCLUSION: This study provides useful information on the molecular identifcation and genetic diversity of Cx. tritaeniorhynchus; these results are important to improve mosquito control programs.


Assuntos
Culex , Complexo IV da Cadeia de Transporte de Elétrons , Mosquitos Vetores , Animais , Culex/genética , Culex/virologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mosquitos Vetores/genética , Turquia , Genética Populacional , Variação Genética , NADH Desidrogenase/genética , Filogenia , Haplótipos
8.
Pediatr Neurol ; 155: 91-103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626668

RESUMO

BACKGROUND: Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS: We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS: Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS: MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.


Assuntos
Complexo I de Transporte de Elétrons , Doenças Mitocondriais , NADH Desidrogenase , Humanos , Estudos Retrospectivos , Masculino , Complexo I de Transporte de Elétrons/genética , Feminino , Pré-Escolar , Lactente , Criança , NADH Desidrogenase/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doença de Leigh/genética , Doença de Leigh/diagnóstico por imagem , Adolescente
9.
Adv Sci (Weinh) ; 11(21): e2306871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569495

RESUMO

RNA splicing dysregulation and the involvement of specific splicing factors are emerging as common factors in both obesity and metabolic disorders. The study provides compelling evidence that the absence of the splicing factor SRSF1 in mature adipocytes results in whitening of brown adipocyte tissue (BAT) and impaired thermogenesis, along with the inhibition of white adipose tissue browning in mice. Combining single-nucleus RNA sequencing with transmission electron microscopy, it is observed that the transformation of BAT cell types is associated with dysfunctional mitochondria, and SRSF1 deficiency leads to degenerated and fragmented mitochondria within BAT. The results demonstrate that SRSF1 effectively binds to constitutive exon 6 of Ndufs3 pre-mRNA and promotes its inclusion. Conversely, the deficiency of SRSF1 results in impaired splicing of Ndufs3, leading to reduced levels of functional proteins that are essential for mitochondrial complex I assembly and activity. Consequently, this deficiency disrupts mitochondrial integrity, ultimately compromising the thermogenic capacity of BAT. These findings illuminate a novel role for SRSF1 in influencing mitochondrial function and BAT thermogenesis through its regulation of Ndufs3 splicing within BAT.


Assuntos
Adipócitos Marrons , Homeostase , Mitocôndrias , Fatores de Processamento de Serina-Arginina , Termogênese , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Homeostase/genética , Homeostase/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Splicing de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Termogênese/genética , Termogênese/fisiologia
10.
Appl Environ Microbiol ; 90(5): e0041424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563750

RESUMO

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , NADH Desidrogenase , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimologia , Transporte de Elétrons , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Fermentação
11.
Mol Biol Rep ; 51(1): 575, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664260

RESUMO

BACKGROUND: Selection on or reticulate evolution of mtDNA is documented in various mammalian taxa and could lead to misleading phylogenetic conclusions if not recognized. We sequenced the MT-ND6 gene of four sympatric Mustelid species of the genus Mustela from some central European populations. We hypothesised positive selection on MT-ND6, given its functional importance and the different body sizes and life histories of the species, even though climatic differences may be unimportant for adaptation in sympatry. METHODS AND RESULTS: MT-ND6 genes were sequenced in 187 sympatric specimens of weasels, Mustela nivalis, stoats, M. erminea, polecats, M. putorius, and steppe polecats, M. eversmannii, from eastern Austria and of fourteen allopatric polecats from eastern-central Germany. Median joining networks, neighbour joining and maximum likelihood analyses as well as Bayesian inference grouped all species according to earlier published phylogenetic models. However, polecats and steppe polecats, two very closely related species, shared the same two haplotypes. We found only negative selection within the Mustela sequences, including 131 downloaded ones covering thirteen species. Positive selection was observed on three MT-ND6 codons of other mustelid genera retrieved from GenBank. CONCLUSIONS: Negative selection for MT-ND6 within the genus Mustela suggests absence of both environmental and species-specific effects of cellular energy metabolism despite large species-specific differences in body size. The presently found shared polymorphism in European polecats and steppe polecats may result from ancestral polymorphism before speciation and historical or recent introgressive hybridization; it may indicate mtDNA capture of steppe polecats by M. putorius in Europe.


Assuntos
Evolução Molecular , Mustelidae , NADH Desidrogenase , Filogenia , Simpatria , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Europa (Continente) , Genética Populacional , Haplótipos/genética , Mustelidae/genética , NADH Desidrogenase/genética , Seleção Genética , Simpatria/genética
12.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594244

RESUMO

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Assuntos
Angiogênese , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/farmacologia , Lipídeos/farmacologia , Trifosfato de Adenosina/farmacologia , Proliferação de Células/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
13.
Genet Med ; 26(6): 101117, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38459834

RESUMO

PURPOSE: We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS: The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS: All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION: We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.


Assuntos
Processamento Alternativo , Doença de Charcot-Marie-Tooth , Doenças Mitocondriais , Humanos , Processamento Alternativo/genética , Masculino , Feminino , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Criança , NADH Desidrogenase/genética , Linhagem , Mutação/genética , Fenótipo , Sequenciamento do Exoma , Doença de Leigh/genética , Doença de Leigh/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Complexo I de Transporte de Elétrons/genética , Adulto , Pré-Escolar , Adolescente
14.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478578

RESUMO

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Humanos , Doença de Leigh/genética , Atrofia Óptica Hereditária de Leber/genética , Masculino , Feminino , Adulto , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Criança , Adolescente , NADH Desidrogenase/genética , Mutação , Adulto Jovem , Sequenciamento do Exoma , Pré-Escolar
15.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324953

RESUMO

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Assuntos
Oryza , Tolerância ao Sal , Transporte de Elétrons , Tolerância ao Sal/genética , Clorofila A/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Oryza/genética , Oryza/metabolismo
16.
Free Radic Biol Med ; 213: 79-89, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242247

RESUMO

Abnormal mitochondrial function has been implicated in the progression of systemic lupus erythematosus (SLE), the prototypical autoimmune disease, yet the underlying cause remains unclear. In this study, mitochondrial-encoded NADH dehydrogenase 6 gene (MT-ND6) was identified as having increased m6A methylation and decreased expression in peripheral blood mononuclear cells of SLE patients by MeRIP-seq analysis. MT-ND6 expression was negatively correlated with SLE disease activity index score and 24-h urine protein level, and lower in patients with positive anti-Sm or anti-dsDNA antibodies. With the reduction of MT-ND6 levels, CD4+ T cells in SLE patients exhibited mitochondrial dysfunction, as evidenced by increased levels of reactive oxygen species (ROS) and mitochondrial ROS and insufficient ATP production. Accordingly, in vitro MT-ND6 silencing induced abnormalities in the above mitochondrial indicators in CD4+ T cells, and promoted the development of both transcription and inflammatory factors in these cells. In contrast, treatment with targeted mitochondrial antioxidants largely counteracted the silencing effect of MT-MD6. Thus, reduced MT-ND6 in SLE patients may lead to mitochondrial dysfunction through ROS overproduction, thereby promoting inflammatory CD4+ T cells.


Assuntos
Lúpus Eritematoso Sistêmico , Doenças Mitocondriais , Humanos , Expressão Gênica , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/genética , NADH Desidrogenase/genética , Espécies Reativas de Oxigênio , Linfócitos T
17.
Acta Trop ; 252: 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262573

RESUMO

Cystic echinococcosis (CE) is a common zoonotic disease caused by the larval form of Echinococcus granulosus sensu lato. This study determined the genotype and haplotype differences using the NADH dehydrogenase subunit 5 gene in hydatid cyst samples. Human (n = 12), cattle (n = 28), and sheep (n = 31) hydatid cyst isolates were included. Seventy-one genomic DNA samples were successfully extracted, and a 759 bp mitochondrial NADH dehydrogenase subunit 5 gene fragment was amplified by PCR. Following the sequence analysis, E. granulosus sensu stricto isolates were identified as G1 (n = 61) and G3 (n = 10). A total of 23 haplotypes were obtained from the 71 E. granulosus s.s. G1 and G3 samples. The main haplotype was Hap01 (60.56 %), which consisted of the G1 genotype. The second largest haplotype was Hap04, which consisted entirely of the G3 genotype. Hap14 acted as a bridge between the G1 and G3 genotypes. This study identifies G1 as the dominant genotype in humans and farm animals in Turkey. High haplotype and nucleotide diversity in genotypes were observed. Additionally, this is the first report on the phylogeography and gene flow models of the E. granulosus s.s. population in Turkey using the NADH dehydrogenase subunit 5 gene, the best marker distinguishing between G1 and G3 genotypes.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Humanos , Animais , Bovinos , Ovinos , Echinococcus granulosus/genética , NADH Desidrogenase/genética , Equinococose/veterinária , Equinococose/epidemiologia , Echinococcus/genética , Genótipo
18.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
19.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177503

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Animais , Camundongos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
20.
J Cancer Res Clin Oncol ; 150(1): 8, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195952

RESUMO

BACKGROUND: NUDT21 (Nudix Hydrolase 21) has been shown to play an essential role in multiple biological processes. Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world. However, the biological function of NUDT21 in PAAD remains rarely understood. The aim of this research was to identify the prediction value of NUDT21 in diagnosis, prognosis, immune infiltration, and signal pathway in PAAD. METHODS: Combined with the data in online databases, we analyzed the expression, immune infiltration, function enrichment, signal pathway, diagnosis, and prognosis of NUDT21 in PAAD. Then, the biological function of NUDT21 and its interacted protein in PAAD was identified through plasmid transduction system and protein mass spectrometry. Expression of NUDT21 was further verified in clinical specimens by immunofluorescence. RESULTS: We found that NUDT21 was upregulated in PAAD tissues and was significantly associated with the diagnosis and prognosis of pancreatic cancer through bioinformatic data analysis. We also found that overexpression of NUDT21 enhanced PAAD cells proliferation and migration, whereas knockdown NUDT21 restored the effects through in vitro experiment. Moreover, NDUFS2 was recognized as a potential target of NUDT21.We further verified that the expression of NDUFS2 was positively correlated with NUDT21 in PAAD clinical specimens. Mechanically, we found that NUDT21 stabilizes NDUFS2 and activates the PI3K-AKT signaling pathway. CONCLUSION: Our investigation reveals that NUDT21 is a previously unrecognized oncogenic factor in the diagnosis, prognosis, and treatment target of PAAD, and we suggest that NUDT21 might be a novel therapeutic target in PAAD.


Assuntos
Adenocarcinoma , Fator de Especificidade de Clivagem e Poliadenilação , NADH Desidrogenase , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Proliferação de Células , NADH Desidrogenase/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Especificidade de Clivagem e Poliadenilação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...