Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.717
Filtrar
1.
Biol Open ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39052046

RESUMO

During programmed cell death (PCD), it is commonly accepted that macrophages are recruited by apoptotic cells to complete cell degradation. Interdigital cell death, a classical model of PCD, contributes to digit individualization in limbs of mammals and other vertebrates. Here, we show that macrophages are present in interdigits before significant cell death occurs and remain after apoptosis inhibition. The typical interdigital phagocytic activity was not observed after a partial depletion of macrophages and was markedly reduced by engulfment/phagosome maturation inhibition, as detected by its association with high lysosomal activity. ß-galactosidase activity in this region was also coupled with phagocytosis, against its relationship with cellular senescence. Interdigital phagocytosis correlated with high levels of reactive oxygen species (ROS), common in embryo regions carrying abundant cell death, suggesting that macrophages are the major source of ROS. ROS generation was dependent on NADPH oxidases and blood vessel integrity, but not directly associated with lysosomal activity. Therefore, macrophages prepattern regions where abundant cell death is going to occur, and high lysosomal activity and the generation of ROS by an oxidative burst-like phenomenon are activities of phagocytosis.


Assuntos
Apoptose , Lisossomos , Macrófagos , Fagocitose , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Animais , Lisossomos/metabolismo , Camundongos , NADPH Oxidases/metabolismo
2.
Plast Reconstr Surg ; 154(1): 100e-111e, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985983

RESUMO

BACKGROUND: Despite the increasing popularity of various materials for ischemia-reperfusion (I/R) injury mitigation, research on botulinum toxin type A (BoNTA) remains limited. This study assesses BoNTA's efficacy in protecting flaps from I/R injury by inhibiting the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and reducing reactive oxygen species (ROS) production. METHODS: Seventy-six Sprague-Dawley rats were studied. We examined the effects of BoNTA on superoxide production in four rats using a lucigenin-enhanced chemiluminescence assay (LECL). Another group of 60 rats had their superficial inferior epigastric artery (SIEA) flaps treated with either BoNTA or saline and clamped for 0, 1, and 4 hours before reperfusion. Flap survival and histological outcomes were assessed five days post-operation. ROS production in SIEA flaps and femoral vessels was analyzed in 12 additional rats, post-I/R injury. RESULTS: The LECL results showed that the BoNTA group had significantly lower superoxide production compared to controls, with notable reductions at 4 hours. While no significant differences were noted at the 0 and 1-hour marks, the 4-hour mark showed significant protective effects in BoNTA-treated groups. The survival rate was 90% for BoNTA-treated rats versus 60% for controls ( P = 0.028). Significant reductions in ROS were also observed in the 4-hour I/R group. CONCLUSIONS: BoNTA effectively protects against I/R injury by inhibiting the NADPH oxidase system and reducing ROS levels. These results support further investigation into the specific mechanisms of NADPH oxidase inhibition by BoNTA and its potential clinical applications, given its safety profile. CLINICAL RELEVANCE STATEMENT: The findings from the present study are expected to provide a basis for clinical studies regarding this use of BoNTA.


Assuntos
Toxinas Botulínicas Tipo A , NADPH Oxidases , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/administração & dosagem , NADPH Oxidases/metabolismo , NADPH Oxidases/antagonistas & inibidores , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Retalhos Cirúrgicos/irrigação sanguínea , Superóxidos/metabolismo , Modelos Animais de Doenças
3.
Nature ; 631(8021): 654-662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987590

RESUMO

Large-scale cell death is commonly observed during organismal development and in human pathologies1-5. These cell death events extend over great distances to eliminate large populations of cells, raising the question of how cell death can be coordinated in space and time. One mechanism that enables long-range signal transmission is trigger waves6, but how this mechanism might be used for death events in cell populations remains unclear. Here we demonstrate that ferroptosis, an iron- and lipid-peroxidation-dependent form of cell death, can propagate across human cells over long distances (≥5 mm) at constant speeds (around 5.5 µm min-1) through trigger waves of reactive oxygen species (ROS). Chemical and genetic perturbations indicate a primary role of ROS feedback loops (Fenton reaction, NADPH oxidase signalling and glutathione synthesis) in controlling the progression of ferroptotic trigger waves. We show that introducing ferroptotic stress through suppression of cystine uptake activates these ROS feedback loops, converting cellular redox systems from being monostable to being bistable and thereby priming cell populations to become bistable media over which ROS propagate. Furthermore, we demonstrate that ferroptosis and its propagation accompany the massive, yet spatially restricted, cell death events during muscle remodelling of the embryonic avian limb, substantiating its use as a tissue-sculpting strategy during embryogenesis. Our findings highlight the role of ferroptosis in coordinating global cell death events, providing a paradigm for investigating large-scale cell death in embryonic development and human pathologies.


Assuntos
Retroalimentação Fisiológica , Ferroptose , Espécies Reativas de Oxigênio , Animais , Embrião de Galinha , Humanos , Cistina/metabolismo , Retroalimentação Fisiológica/fisiologia , Ferroptose/fisiologia , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , NADPH Oxidases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Desenvolvimento Embrionário , Extremidades/embriologia
5.
J Clin Immunol ; 44(7): 149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896305

RESUMO

Chronic granulomatous disease (CGD) primarily results from inherited defects in components of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex. These include gene defects in cytochrome B-245/558 subunit α/ß and neutrophil cytosolic factors 1, 2, and 4. Recently, homozygous loss-of-function variants in cytochrome B-245 chaperone 1 gene (CYBC1) have been discovered to cause CGD (CYBC1-CGD). Data on variant-proven CGD from low-income countries, the most underprivileged regions of the world, remain sparse due to numerous constraints. Herein, we report the first cohort of patients with CGD from Nepal, a low-income country in the Himalayas' challenging terrain. Our report includes a description of a new case of CYBC1 deficiency who was first diagnosed with CGD at our center. Only a dozen cases of CYBC1-CGD have been described in the literature thus far which have been reviewed comprehensively herein. Most of these patients have had significant infections and autoimmune/inflammatory manifestations. Pulmonary and invasive/disseminated bacterial/fungal infections were the most common followed by skin and soft-tissue infections. Inflammatory bowel disease (IBD) was the most common inflammatory manifestation (median age at diagnosis: 9 years) followed by episodes of recurrent/prolonged fever. Other autoimmune/inflammatory manifestations reported in CYBC1-CGD include acute pancreatitis, hemophagocytic lymphohistiocytosis, systemic granulomatosis, interstitial lung disease, arthritis, autoimmune hemolytic anemia, uveitis, nephritis, and eczema. Our analysis shows that patients with CYBC1-CGD are at a significantly higher risk of IBD-like illness as compared to other forms of CGD which merits further confirmatory studies in the future.


Assuntos
Doença Granulomatosa Crônica , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/diagnóstico , Nepal/epidemiologia , Masculino , Feminino , Criança , NADPH Oxidases/genética , NADPH Oxidases/deficiência , Pré-Escolar , Adolescente , Mutação/genética
6.
Trop Biomed ; 41(1): 14-19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852129

RESUMO

Infectious diseases with complications of sepsis are still public health concern in both developed and developing countries. Sepsis is a potentially life-threatening systemic immune response to infection that can lead to end- stage organ failure and death. Sepsis involves multiple mechanisms such as neuroendocrine, complement activation, blood coagulation, and fibrinolytic system. Reactive oxygen species (ROS) is an inflammatory mediator produced by NADPH oxidase activation. This study aimed to investigate the effects of ethanol extract of E. elatior fruits on NADPH oxidase activity. Forty Mus musculus mice were randomized divided into five groups (n=8), with the intervention group receiving an intraperitoneal injection of 0.3 mg/kg BW lipopolysaccharide (LPS). There was a normal group without LPS injection (N-1), LPS injection only (N-2), and those that received LPS injection and ethanol extracts of E. elatior fruits containing 2.1 mg/20 g (N-3), 4.2 mg/20 g (N-4), and 8.4 mg/20 g (N-5). NADPH oxidase activity were measured using ELISA. The oneway ANOVA was used to investigate the differences between the groups. After administration of the extract at a varied dose, N-5 group the lowest NADPH oxidase activity (p=0.001). The ethanol extract of E. elatior fruit has antioxidant effects. In this study, a dose of 8.4 mg/20 g of extract significantly reduced NADPH oxidase activity. The ethanol extract of E. elatior might be considered a treatment in sepsis.


Assuntos
Modelos Animais de Doenças , Frutas , NADPH Oxidases , Extratos Vegetais , Sepse , Animais , Extratos Vegetais/farmacologia , Sepse/tratamento farmacológico , Camundongos , NADPH Oxidases/antagonistas & inibidores , Frutas/química , Masculino , Lipopolissacarídeos
7.
Brain Res Bull ; 214: 111006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852654

RESUMO

BACKGROUND: Limb remote ischemic postconditioning (LRIP) and paeoniflorin (PF) both can ameliorate cerebral ischemia reperfusion (I/R) injury. At present, whether LRIP combined with PF can achieve better therapeutic effect is unknown. PURPOSE: This study explored the alleviating effect and mechanism of LRIP in combination with PF on cerebral I/R injury in rats. METHODS: Middle cerebral artery occlusion (MCAO) surgery was performed on rats except Sham group. Then PF (2.5 mg/kg, 5 mg/kg, 10 mg/kg) was administrated by intraperitoneal injection 10 min before the start of reperfusion. LRIP was operated on the left femoral artery at 0 h of reperfusion. Behavioral testing was used to assess neurological impairment, while TTC staining was used to examine infarct volume. Protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox in neutrophils from rat peripheral blood were tested by Western blot. Rat bone marrow neutrophils were extracted and incubated for 24 h with serum from rats after LRIP combined with PF. p38 MAPK inhibitor group was administrated SB203580 while the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor group was administrated Apocynin. Neutrophils were stimulated by fMLP (10 µM). Reactive oxygen species (ROS) production and protein expression of MyD88, TRAF6, p38 MAPK, and p47phox (ser 304 and ser 345) were detected. RESULTS: LRIP combined with PF (5 mg/kg) reduced cerebral infarct volume, ameliorated neurological deficit score (NDS), decreased fMLP-stimulated ROS release and downregulated the protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox (ser 304 and ser 345) in neutrophils. CONCLUSION: The protective effect of LRIP combined with PF on cerebral I/R injury was better than either alone. Taken together, we provided solid evidence to demonstrate that the combination of LRIP and PF had potential to alleviate cerebral I/R injury, which was regulated by MyD88-TRAF6-p38 MAPK pathway and neutrophil NADPH oxidase pathway.


Assuntos
Isquemia Encefálica , Glucosídeos , Pós-Condicionamento Isquêmico , Monoterpenos , Neutrófilos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Masculino , Pós-Condicionamento Isquêmico/métodos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Glucosídeos/farmacologia , Ratos , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , NADPH Oxidases/metabolismo , Infarto da Artéria Cerebral Média , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , NADP/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
J Am Heart Assoc ; 13(13): e033558, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904226

RESUMO

BACKGROUND: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. We examined whether irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared with long-term administration. METHODS AND RESULTS: C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy X-ray head-and-neck irradiation. Pravastatin was then administered either for an additional 24 hours or for 1 year. Carotid arteries were tested for vascular reactivity, altered gene expression, and collagen deposition 1 year after irradiation. Treatment with pravastatin for 24 hours after irradiation reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction. Expression of markers associated with inflammation (NFκB p65 [phospho-nuclear factor kappa B p65] and TNF-α [tumor necrosis factor alpha]) and with oxidative stress (NADPH oxidases 2 and 4) were lowered and subunits of the voltage and Ca2+ activated K+ BK channel (potassium calcium-activated channel subfamily M alpha 1 and potassium calcium-activated channel subfamily M regulatory beta subunit 1) in the carotid artery were modulated. Treatment with pravastatin for 1 year after irradiation completely reversed irradiation-induced changes. CONCLUSIONS: Short-term administration of pravastatin is sufficient to reduce chronic vascular injury at 1 year after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pravastatina , Animais , Pravastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/efeitos da radiação , Vasodilatação/efeitos dos fármacos , Vasodilatação/efeitos da radiação , Masculino , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição RelA/metabolismo , NADPH Oxidases/metabolismo , Camundongos , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Esquema de Medicação , Artérias Carótidas/efeitos da radiação , Artérias Carótidas/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , NADPH Oxidase 4
10.
Nat Commun ; 15(1): 5170, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886341

RESUMO

The spatiotemporal regulation of inflammasome activation remains unclear. To examine the mechanism underlying the assembly and regulation of the inflammasome response, here we perform an immunoprecipitation-mass spectrometry analysis of apoptosis-associated speck-like protein containing a CARD (ASC) and identify NCF4/1/2 as ASC-binding proteins. Reduced NCF4 expression is associated with colorectal cancer development and decreased five-year survival rate in patients with colorectal cancer. NCF4 cooperates with NCF1 and NCF2 to promote NLRP3 and AIM2 inflammasome activation. Mechanistically, NCF4 phosphorylation and puncta distribution switches from the NADPH complex to the perinuclear region, mediating ASC oligomerization, speck formation and inflammasome activation. NCF4 functions as a sensor of ROS levels, to establish a balance between ROS production and inflammasome activation. NCF4 deficiency causes severe colorectal cancer in mice, increases transit-amplifying and precancerous cells, reduces the frequency and activation of CD8+ T and NK cells, and impairs the inflammasome-IL-18-IFN-γ axis during the early phase of colorectal tumorigenesis. Our study implicates NCF4 in determining the spatial positioning of inflammasome assembly and contributing to inflammasome-mediated anti-tumor responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Neoplasias Colorretais , Vigilância Imunológica , Inflamassomos , Espécies Reativas de Oxigênio , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Espécies Reativas de Oxigênio/metabolismo , Progressão da Doença , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Camundongos Knockout , Interleucina-18/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Fosforilação , Linhagem Celular Tumoral
11.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892326

RESUMO

The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Ovário , Espécies Reativas de Oxigênio , Superóxido Dismutase , Animais , Drosophila melanogaster/genética , Feminino , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ovário/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Reprodução , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/genética , Oviposição , Córion/metabolismo
12.
Redox Biol ; 74: 103231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861835

RESUMO

Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.


Assuntos
Catepsina C , Armadilhas Extracelulares , Histonas , Macrófagos Alveolares , Neutrófilos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Macrófagos Alveolares/metabolismo , Armadilhas Extracelulares/metabolismo , Animais , Histonas/metabolismo , Neutrófilos/metabolismo , Catepsina C/metabolismo , Catepsina C/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Masculino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Disfunção Primária do Enxerto/metabolismo , Disfunção Primária do Enxerto/patologia
13.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891968

RESUMO

Respiratory burst oxidase homologs (RBOHs), also known as NADPH oxidases, contribute significantly to the production of ROS in plants, alongside other major sources such as photosynthesis and electron transport in chloroplasts. It has been shown that plant RBOHs play an active role in plant adversity response and electron transport. However, the phylogenetic analysis and characterization of the SlRBOH gene family in tomatoes have not been systematically studied. This study identified 11 SlRBOH genes in the tomato genome using a genome-wide search approach. The physicochemical properties, chromosomal localization, subcellular localization, secondary structure, conserved motifs, gene structure, phylogenetics, collinear relationships, cis-acting elements, evolutionary selection pressures, tissue expressions, and expression patterns under exogenous phytohormones (ABA and MeJA) and different abiotic stresses were also analyzed. We found that the SlRBOHs are distributed across seven chromosomes, collinearity reflecting their evolutionary relationships with corresponding genes in Arabidopsis thaliana and rice. Additionally, all the SlRBOH members have five conserved domains and 10 conserved motifs and have similar gene structures. In addition, the results of an evolutionary selection pressure analysis showed that SlRBOH family members evolved mainly by purifying selection, making them more structurally stable. Cis-acting element analyses showed that SlRBOHs were responsive to light, hormone, and abiotic stresses. Tissue expression analysis showed that SlRBOH family members were expressed in all tissues of tomato to varying degrees, and most of the SlRBOHs with the strongest expression were found in the roots. In addition, the expressions of tomato SlRBOH genes were changed by ABA, MeJA, dark period extension, NaCl, PEG, UV, cold, heat, and H2O2 treatments. Specifically, SlRBOH4 was highly expressed under NaCl, PEG, heat, and UV treatments, while SlRBOH2 was highly expressed under cold stress. These results provide a basis for further studies on the function of SlRBOHs in tomato.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo
14.
Int Immunopharmacol ; 137: 112425, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851160

RESUMO

The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , NADPH Oxidases , Peptidilprolil Isomerase de Interação com NIMA , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia , Inflamação/imunologia , Células Cultivadas , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico
15.
Chin J Nat Med ; 22(6): 486-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906597

RESUMO

Neuroinflammation, mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, is a significant contributor to the pathogenesis of neurodegenerative diseases (NDDs). Reynosin, a natural sesquiterpene lactone (SL), exhibits a broad spectrum of pharmacological effects, suggesting its potential therapeutic value. However, the effects and mechanism of reynosin on neuroinflammation remain elusive. The current study explores the effects and mechanisms of reynosin on neuroinflammation using mice and BV-2 microglial cells treated with lipopolysaccharide (LPS). Our findings reveal that reynosin effectively reduces microglial inflammation in vitro, as demonstrated by decreased CD11b expression and lowered interleukin-1 beta (IL-1ß) and interleukin-18 (IL-18) mRNA and protein levels. Correspondingly, in vivo, results showed a reduction in the number of Iba-1 positive cells and alleviation of morphological alterations, alongside decreased expressions of IL-1ß and IL-18. Further analysis indicates that reynosin inhibits NLRP3 inflammasome activation, evidenced by reduced transcription of NLRP3 and caspase-1, diminished NLRP3 protein expression, inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization, and decreased caspase-1 self-cleavage. Additionally, reynosin curtailed the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, demonstrated by reduced NADP+ and NADPH levels, downregulation of gp91phox mRNA, protein expression, suppression of p47phox expression and translocation to the membrane. Moreover, reynosin exhibited a neuroprotective effect against microglial inflammation in vivo and in vitro. These collective findings underscore reynosin's capacity to mitigate microglial inflammation by inhibiting the NLRP3 inflammasome, thus highlighting its potential as a therapeutic agent for managing neuroinflammation.


Assuntos
Inflamassomos , Microglia , NADPH Oxidases , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Sesquiterpenos/farmacologia , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/tratamento farmacológico , Masculino , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos , Interleucina-18/metabolismo , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo
16.
Methods Mol Biol ; 2832: 213-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869798

RESUMO

Reactive oxygen species (ROS) production is a key early defense mechanism in plants when exposed to biotic stress. Upon recognition of conserved microbe-associated molecular patterns (MAMPs) from pathogens by plant receptors, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in the plasma membrane are activated to produce hydrogen peroxide (H2O2). This, in turn, regulates multiple signaling pathways to trigger immunity and suppress pathogen infection. Monitoring the ROS burst in plant leaves can be done within minutes of MAMPs treatment. However, there is limited research on the quantification of ROS production in plant root tissues during the activation of plant immunity. In this study, we introduce a rapid, accessible, and straightforward technique for measuring MAMPs-triggered ROS bursts in the roots of the model legume Medicago truncatula. This method will facilitate the investigation of plant root responses to biotic and abiotic stresses.


Assuntos
Medicago truncatula , Imunidade Vegetal , Raízes de Plantas , Espécies Reativas de Oxigênio , Raízes de Plantas/metabolismo , Raízes de Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Estresse Fisiológico , Transdução de Sinais
17.
Biomed Pharmacother ; 177: 116957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908198

RESUMO

Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.


Assuntos
Acetofenonas , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Animais , Acetofenonas/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Modelos Animais de Doenças , Compostos de Bifenilo/farmacologia , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Contração Muscular/efeitos dos fármacos , Fibrose , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
18.
Biochem Pharmacol ; 225: 116328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815628

RESUMO

Early stages of diabetes are characterized by elevations of insulin and glucose concentrations. Both factors stimulate reactive oxygen species (ROS) production, leading to impairments in podocyte function and disruption of the glomerular filtration barrier. Podocytes were recently shown to be an important source of αKlotho (αKL) expression. Low blood Klotho concentrations are also associated with an increase in albuminuria, especially in patients with diabetes. We investigated whether ADAM10, which is known to cleave αKL, is activated in glomeruli and podocytes under diabetic conditions and the potential mechanisms by which ADAM10 mediates ROS production and disturbances of the glomerular filtration barrier. In cultured human podocytes, high glucose increased ADAM10 expression, shedding, and activity, NADPH oxidase activity, ROS production, and albumin permeability. These effects of glucose were inhibited when cells were pretreated with an ADAM10 inhibitor or transfected with short-hairpin ADAM10 (shADAM10) or after the addition soluble Klotho. We also observed increases in ADAM10 activity, NOX4 expression, NADPH oxidase activity, and ROS production in αKL-depleted podocytes. This was accompanied by an increase in albumin permeability in shKL-expressing podocytes. The protein expression and activity of ADAM10 also increased in isolated glomeruli and urine samples from diabetic rats. Altogether, these results reveal a new mechanism by which hyperglycemia in diabetes increases albumin permeability through ADAM10 activation and an increase in oxidative stress via NOX4 enzyme activation. Moreover, αKlotho downregulates ADAM10 activity and supports redox balance, consequently protecting the slit diaphragm of podocyteσ under hyperglycemic conditions.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Diabetes Mellitus Experimental , Glucuronidase , Proteínas Klotho , Proteínas de Membrana , Podócitos , Espécies Reativas de Oxigênio , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Proteínas Klotho/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Glucuronidase/metabolismo , Glucuronidase/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ratos , Masculino , Diabetes Mellitus Experimental/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidases/metabolismo , Células Cultivadas , Glucose/metabolismo , Ratos Sprague-Dawley
19.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805284

RESUMO

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Assuntos
Microscopia Crioeletrônica , NADPH Oxidase 2 , NADPH Oxidases , Fagócitos , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/química , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/química , Ligação Proteica , Sítios de Ligação , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismo
20.
New Phytol ; 243(1): 381-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741469

RESUMO

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Assuntos
Proteínas Fúngicas , Laccaria , Micorrizas , NADPH Oxidases , Espécies Reativas de Oxigênio , Simbiose , Laccaria/fisiologia , Laccaria/genética , Laccaria/metabolismo , Micorrizas/fisiologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Fosforilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...