Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.677
Filtrar
1.
Talanta ; 281: 126889, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39288583

RESUMO

Although porphyrin modification can improve the peroxidase-like activity of some inorganic nanozymes, it is hardly studied that metal porphyrin self-assembled nanoaggregates as sacrificial templates to turn on the peroxidase-like activity of inorganic nanozymes under light illumination. In this work, cobalt (II) 5,10,15,20-Tetrakis (4-carboxylpheyl)porphyrin (CoTCPP) self-assembled nanoaggregates are firstly used as soft templates to prepare TiO2-based nanozymes with the enhanced peroxidase-like activity. Interestingly, CoTCPP nanoaggregates can be changed into Co oxide nanoparticles dispersed into the nanosphere composites. Furthermore, the peroxidase-like activity of CoTCPP-TiO2 nanospheres can be controlled by light illumination. Comparatively, CoTCPP-TiO2 nanoshperes exhibit the highest peroxidase-like activity of three nanospheres (CoTCPP-TiO2, H2TCPP-TiO2 and TiO2) with similar morphology under the light illumination. Other than the existence of oxygen vacancy, the formation of heterostructure between TiO2 and a small amount of Co3O4 are ascribed to increase the catalytic activity of CoTCPP-TiO2 composites. Thus, a facile and convenient colorimetric sensing platform has been constructed and tuned by light illumination for determining H2O2 and amikacin in a good linear range of 20-100 and 50-100 µM with a limit of detection (LOD) of 3.04 µM and 1.88 µM, respectively. The CoTCPP-TiO2 based colorimetric sensing platform has been validated by measuring the amikacin residue in lake water.


Assuntos
Amicacina , Cobalto , Colorimetria , Luz , Titânio , Colorimetria/métodos , Cobalto/química , Titânio/química , Amicacina/análise , Amicacina/química , Peroxidase/química , Peroxidase/metabolismo , Porfirinas/química , Catálise , Limite de Detecção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Nanosferas/química
2.
J Colloid Interface Sci ; 677(Pt B): 1075-1083, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39180842

RESUMO

Pancreatic and colon cancer are malignant tumors of the digestive system that currently lack effective treatments. In cancer cells, a high level of glutathione (GSH) is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. GSH depletion has been proved to improve the therapeutic efficacy of photodynamic therapy. Here, we reported that naked mesoporous rhodium nanospheres (Rh MNs), prepared by soft template redox method, can act as GSH depletion agent and photothermal conversion agent to achieve synergistic therapy respectively. Different from conventional nanoagents, Rh MNs with the characteristics of easy synthesis, simple structure and multiple functions can decrease the GSH level in tumor and depict excellent photothermal ability with a high photothermal conversion efficiency (PTCE) up to 39%. Notably, multiple anti-tumor mechanisms in CT26 and BxPC-3 tumor models, include inhibited anti-apoptosis, DNA replication repair, and GSH synthesis are revealed, and the pancreatic tumor cure rate of the cooperative treatment group is 80%. Collectively, we developed Rh MNs to combine GSH depletion with photothermal therapy for cancer treatment.


Assuntos
Antineoplásicos , Glutationa , Ródio , Glutationa/química , Glutationa/metabolismo , Humanos , Animais , Ródio/química , Ródio/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Porosidade , Nanosferas/química , Terapia Fototérmica , Apoptose/efeitos dos fármacos , Propriedades de Superfície , Tamanho da Partícula , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
3.
Environ Sci Technol ; 58(41): 18435-18445, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39351698

RESUMO

The detrimental environmental effects of surfactant-like contaminants (SLCs) with distinctive amphiphilic structures have garnered significant attention, particularly since perfluorooctanesulfonate was classified as a persistent organic pollutant. Despite the numerous absorbents developed for SLCs removal, the underlying interaction mechanisms remain speculative and lack experimental validation. To address this research gap, we elucidate the mechanistic insights into the selective removal of SLCs using mesoporous polydopamine nanospheres (MPDA) fabricated via a novel soft-template method. We employed low-field nuclear magnetic resonance to quantitatively characterize the hydrophilicity of the absorbents using water molecules as probes. The results demonstrated that MPDA with uniform mesopores exhibited a remarkable threefold enhancement in SLCs' adsorption capacity compared to conventional polydopamine particles via intraparticle diffusion. We further demonstrated the dominant effects of electrostatic and hydrophobic interactions on the selective removal of SLCs with MPDA by regulating the isoelectric pH value and performing a comparative analysis. The mechanism-inspired SLC-removal strategy achieved an average removal rate of 76.3% from highly contaminated wastewater. Our findings offer new avenues for applying MPDA as an efficient adsorbent and provide innovative and mechanistic insights for targeted SLC removal in complex wastewater matrices.


Assuntos
Nanosferas , Tensoativos , Águas Residuárias , Poluentes Químicos da Água , Nanosferas/química , Tensoativos/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Polímeros/química , Indóis/química , Interações Hidrofóbicas e Hidrofílicas , Porosidade
4.
Front Immunol ; 15: 1475280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39416787

RESUMO

Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.


Assuntos
Quitosana , Nanosferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas de Protozoários , Vacinas Protozoárias , Proteínas Ribossômicas , Toxoplasma , Animais , Nanosferas/química , Quitosana/química , Quitosana/administração & dosagem , Toxoplasma/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Proteínas Ribossômicas/imunologia , Proteínas Ribossômicas/administração & dosagem , Vacinas Protozoárias/imunologia , Proteínas de Protozoários/imunologia , Toxoplasmose/imunologia , Toxoplasmose/prevenção & controle , Anticorpos Antiprotozoários/imunologia , Feminino , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/prevenção & controle , Camundongos Endogâmicos ICR , Citocinas/metabolismo
5.
Int J Nanomedicine ; 19: 10145-10163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386058

RESUMO

Purpose: Osteoporosis, characterized by reduced bone mass and structural deterioration, poses a significant healthcare challenge. Traditional treatments, while effective in reducing fracture risks, are often limited by side effects. This study introduces a novel nanocomplex, europium (Eu) ions-doped superparamagnetic iron oxide (SPIO) nanocrystals encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanospheres, abbreviated as SPIO:Eu@PLGA nanospheres, as a potential therapeutic agent for osteoporosis by modulating macrophage polarization, enhancing osteoblast differentiation and inhibiting osteoclastogenesis. Methods: SPIO and SPIO:Eu nanocrystals were synthesized through pyrolysis and encapsulated in PLGA using an emulsification method. To evaluate the impact of SPIO:Eu@PLGA nanospheres on macrophage reprogramming and reactive oxygen species (ROS) production, flow cytometry analysis was conducted. Furthermore, an ovariectomized (OVX) rat model was employed to assess the therapeutic efficacy of SPIO:Eu@PLGA nanospheres in preventing the deterioration of osteoporosis. Results: In vitro, SPIO:Eu@PLGA nanospheres significantly attenuated M1 macrophage activation induced by lipopolysaccharides, promoting a shift towards the M2 phenotype. This action is linked to the modulation of ROS and the NF-κB pathway. Unlike free Eu ions, which do not achieve similar results when not incorporated into the SPIO nanocrystals. SPIO:Eu@PLGA nanospheres enhanced osteoblast differentiation and matrix mineralization while inhibiting RANKL-induced osteoclastogenesis. In vivo studies demonstrated that SPIO:Eu@PLGA nanospheres effectively targeted trabecular bone surfaces in OVX rats under magnetic guidance, preserving their structure and repairing trabecular bone loss by modulating macrophage polarization, thus restoring bone remodeling homeostasis. The study underscores the critical role of Eu doping in boosting the anti-osteoporotic effects of SPIO:Eu@PLGA nanospheres, evident at both cellular and tissue levels in vitro and in vivo. Conclusion: The inclusion of Eu into SPIO matrix suggests a novel approach for developing more effective osteoporosis treatments, particularly for conditions induced by OVX. This research provides essential insights into SPIO:Eu@PLGA nanospheres as an innovative osteoporosis treatment, addressing the limitations of conventional therapies through targeted delivery and macrophage polarization modulation.


Assuntos
Európio , Macrófagos , Nanosferas , Osteoporose , Ovariectomia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Európio/química , Európio/farmacologia , Feminino , Osteoporose/tratamento farmacológico , Nanosferas/química , Macrófagos/efeitos dos fármacos , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química
6.
Anal Chim Acta ; 1329: 343236, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396300

RESUMO

BACKGROUND: Designing a fast and sensitive electrochemical sensing platform to achieve selective quantitative detection of dopamine (DA) is a great challenge. Combining transition metal selenides (TMSs) with a variety of conductive carbonaceous materials is one of the effective strategies to improve the electrocatalytic activity of TMSs. However, most of the reported preparation methods of TMSs/carbon-based composite nanomaterials need to be annealed at a high temperature for a long time, which does not meet the requirements of sustainable development. Therefore, it is of great significance to explore an energy-efficient and fast method to prepare these compounds. RESULTS: In this work, CoSe nanosphere@nitrogen-doped polymeric carbon dots are rapid prepared using ZIF precursor by simple dielectric barrier discharge (DBD) microplasma-induced on carbon cloth (CoSe NSs@N-PCDs/CC) for the first time. Owing to the fact that CoSe can promote rapid proton transfer, N-CDs has a high specific surface area, rich functional groups and electrical conductivity, this electrode exhibits highly sensitive non-enzymatic electrochemical sensing performance for DA detection. The linear range and detection limit are 0.1 µM-50 µM and 40.2 nM, respectively, and it have been successfully applied to the determination of DA levels in real human serum samples. Theoretical DFT calculations show that the most efficient interaction with DA on the surface of CoSe (101) can promote electrochemical reactions and catalyze DA oxidation. SIGNIFICANCE: Using ZIF as precursor, CoSe NSs@N-PCDs/CC electrochemical electrode was synthesized in situ by simple and energy-saving DBD microplasma. CoSe NSs can effectively prevent the aggregation of function-rich N-PCDs and significantly improve the electrocatalytic activity of the composite. The mechanism of high selectivity of CoSe NSs@N-PCDs/CC electrode to DA was studied by DFT calculation. This work provides a new idea for the fast and green synthesis of transition metal and carbon-based nanomaterials by microplasma.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanosferas , Polímeros , Dopamina/sangue , Dopamina/análise , Dopamina/química , Carbono/química , Técnicas Eletroquímicas/métodos , Polímeros/química , Polímeros/síntese química , Humanos , Nanosferas/química , Pontos Quânticos/química , Limite de Detecção , Nitrogênio/química , Eletrodos , Compostos de Selênio/química , Imidazóis , Zeolitas
7.
Molecules ; 29(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39407565

RESUMO

Oriented antibody immobilization has been widely employed in immunoassays and immunodiagnoses due to its efficacy in identifying target antigens. Herein, a heptapeptide ligand, HWRGWVC (HC7), was coupled to poly(glycidyl methacrylate) (PGMA) nanospheres (PGMA-HC7). The antibody immobilization behavior and antigen recognition performance were investigated and compared with those on PGMA nanospheres by nonspecific adsorption and covalent coupling via carbodiimide chemistry. The antibodies tested included bovine, rabbit, and human immunoglobulin G (IgG), while the antigens included horseradish peroxidase (HRP) and ß-2-Microglobulin (ß2-MG). The nanospheres were characterized using zeta potential and particle size analyzers, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and reversed-phase chromatography, proving each synthesis step was succeeded. Isothermal titration calorimetry assay demonstrated the strong affinity interaction between IgG and PGMA-HC7. Notably, PGMA-HC7 achieved rapid and extremely high IgG adsorption capacity (~3 mg/mg) within 5 min via a specific recognition via HC7 without nonspecific interactions. Moreover, the activities of immobilized anti-HRP and anti-ß2-MG antibodies obtained via affinity binding were 1.5-fold and 2-fold higher than those of their covalent coupling counterparts. Further, the oriented-immobilized anti-ß2-MG antibody on PGMA-HC7 exhibited excellent performance in antigen recognition with a linear detection range of 0-5.3 µg/mL, proving its great potential in immunoassay applications.


Assuntos
Anticorpos Imobilizados , Nanosferas , Nanosferas/química , Imunoensaio/métodos , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Humanos , Animais , Imunoglobulina G/química , Imunoglobulina G/imunologia , Coelhos , Ácidos Polimetacrílicos/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Bovinos , Adsorção , Oligopeptídeos/química
8.
Chemosphere ; 364: 143232, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236914

RESUMO

We introduce a highly efficient method for the catalytic breakdown of organic compounds using nanorods embedded within hollow nanospheres structured magnetoelectric nanocatalyst (MENC). MENCs were fabricated through a single-step process utilizing the ultrasonic spray pyrolysis technique. The dynamic electric dipole generation capability due to synergistic interaction between nanorods at the core and the hollow nanosphere shell creates a nanoscale magnetoelectric device capable of electrocatalysis-assisted water purification through advanced oxidation processes under remotely applied magnetic field excitation. Our study examines the electrocatalytic degradation of organic pollutants by MENCs under magnetic field excitation, achieving an unprecedented 90% removal efficiency for synthetic dyes. This remarkable efficiency is a result of surface redox reactions facilitated by electron and hole transfer, resulting in the production of Reactive oxygen species (ROS) such as O2•- and •OH. Additionally, antioxidant experiments were performed to confirm the ROS generation capability of MENCs under magnetic field excitation. Furthermore, trapping experiments performed employing specific scavengers for individual reactive species reveal the mechanism responsible for the magnetic field-driven catalytic breakdown of organic contaminants by MENCs. Interestingly, the MENCs exhibit >95% reduction in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, respectively, within 90 min of exposure to a (20 mT& 1.9 kHz) AC magnetic field.


Assuntos
Recuperação e Remediação Ambiental , Escherichia coli , Nanosferas , Nanotubos , Staphylococcus aureus , Catálise , Nanotubos/química , Recuperação e Remediação Ambiental/métodos , Nanosferas/química , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química , Oxirredução , Purificação da Água/métodos , Técnicas Eletroquímicas/métodos , Corantes/química
9.
Talanta ; 280: 126779, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217713

RESUMO

Sensitive monitoring of human 8-oxyguanine DNA glycosylase (hOGG1) activity in living cells is helpful to understand its function in damage repair and evaluate its role in disease diagnosis. Herein, a functional DNA-Zn2+ coordination nanospheres was proposed for sensitive imaging of hOGG1 in living cells. The nanospheres were constructed through the coordination-driven self-assembly of the entropy driven reaction (EDR) -deoxyribozyme (DNAzyme) system with Zn2+, where DNAzyme was designed to split structure and assembled into the EDR system. When the nanospheres entered the cell, the competitive coordination between phosphate in the cell and Zn2+ leaded to the disintegration of the nanospheres, releasing DNA and some Zn2+. The released Zn2+ acted as a cofactor of DNAzyme. In the presence of hOGG1, the EDR was completed, accompanied by fluorescence recovery and the generation of a complete DNAzyme. With the assistance of Zn2+, DNAzyme continuously cleaved substrates to produce plenty of fluorescence signals, thus achieving sensitive imaging of hOGG1 activity. The nanospheres successfully achieved sensitive imaging of hOGG1 in human cervical cancer cells (HeLa), human non-small cell lung cancer cells and human normal colonic epithelial cells, and assayed changes in hOGG1 activity in HeLa cells. This nanospheres may provide a new tool for intracellular hOGG1 imaging and related biomedical studies.


Assuntos
DNA Glicosilases , DNA Catalítico , Nanosferas , Zinco , Humanos , Nanosferas/química , Zinco/química , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA Glicosilases/metabolismo , DNA Glicosilases/química , Células HeLa , Imagem Óptica , DNA/química , DNA/metabolismo
10.
Nanotechnology ; 35(50)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39321818

RESUMO

A simple and rapid system based on Raman nanosphere (R-Sphere) immunochromatography was developed in this study for the simultaneous detection of Influenza A, B virus antigens on a single test line (T-line). Two types of R-Sphere with different characteristic Raman spectrum were used as the signal source, which were labeled with monoclonal antibodies against FluA, FluB (tracer antibodies), respectively. A mixture of antibodies containing anti-FluA monoclonal antibody and anti-FluB monoclonal antibody (capture antibody) was sprayed on a single T-line and goat anti-chicken IgY antibody was coated as a C-line, and the antigen solution with known concentration was detected by the strip of lateral flow immunochromatography based on surface-enhanced Raman spectroscopy (SERS). The T-line was scanned with a Raman spectrometer and SERS signals were collected. Simultaneous specific recognition and detection of FluA and FluB were achieved on a single T-line by analyzing the SERS signals. The findings indicated that the test system could identify FluA and FluB in a qualitative manner in just 15 minutes, with a minimum detection threshold of 0.25 ng ml-1, excellent consistency, and specificity. There was no interference with the other four respiratory pathogens, and it exhibited 8 times greater sensitivity compared to the colloidal gold test strip method. The assay system is rapid, sensitive, and does not require repetitive sample pretreatment steps and two viruses can be detected simultaneously on a single T-line by titrating one sample, which improves detection efficiency, and provide a reference for developing multiplexed detection techniques for other respiratory viruses.


Assuntos
Antígenos Virais , Vírus da Influenza A , Vírus da Influenza B , Nanosferas , Análise Espectral Raman , Análise Espectral Raman/métodos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Nanosferas/química , Vírus da Influenza B/imunologia , Vírus da Influenza B/isolamento & purificação , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Animais , Humanos
11.
Mol Pharm ; 21(10): 5053-5070, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39302161

RESUMO

Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-ß, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Glucose , Haloperidol , Lipídeos , Nanosferas , Animais , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Camundongos , Haloperidol/farmacologia , Haloperidol/administração & dosagem , Glucose/metabolismo , Nanosferas/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lipídeos/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Humanos , Masculino
12.
Biomater Sci ; 12(20): 5337-5348, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39248307

RESUMO

The eradication of established biofilms is a highly challenging task, due to the protective barrier effect of extracellular polymeric substances (EPS) and the presence of persister cells. Both increased drug permeability and elimination of persister cells are essential for the eradication of biofilms. Here, magnetic silk fibroin nanospheres loaded with antibiotics and host defense peptide (HDP) mimics (MPSN/S@P) were developed to demonstrate a new strategy for biofilm eradication. As an HDP mimic, an amphiphilic polypeptide containing 90% L-lysine and 10% L-valine (Lys90Val10) was selected for loading onto magnetic silk fibroin nanospheres via electrostatic interactions. Lys90Val10 exhibited excellent antibacterial activities against both planktonic and persister cells of Staphylococcus aureus (S. aureus). As a representative of the hydrophobic drug, spiramycin (SPM) was conveniently embedded into the ß-sheet domain during the self-assembly process of silk fibroin. The sustained release of SPM during biofilm eradication enhanced the antibacterial efficacy of MPSN/S@P. The antibacterial test demonstrated that the extract from the MPSN/S@P suspension can kill both planktonic and persister cells of S. aureus, as well as inhibiting biofilm formation. Importantly, with the assistance of magnetic guidance and photothermal effects derived from Fe3O4 nanoparticles (Fe3O4 NPs), over 92% of bacteria in the biofilm were killed by MPSN/S@P, indicating the successful eradication of mature biofilms. The simple preparation method, integration of photothermal and magnetic responsiveness, and persister cell killing functions of MPSN/S@P provide an accessible strategy and illustrative paradigm for efficient biofilm eradication.


Assuntos
Antibacterianos , Biofilmes , Fibroínas , Nanosferas , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Nanosferas/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Testes de Sensibilidade Microbiana , Portadores de Fármacos/química , Nanopartículas de Magnetita/química
13.
Environ Sci Pollut Res Int ; 31(49): 58844-58857, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320600

RESUMO

N-doped carbon nanospheres and porous carbon were produced by a hydrothermal template and the activation of hexamethylenetetramine (HMTA as a nitrogen source and activator) and ZnCl2 (only as an activator) from a poly(Ri-S-ε-CL-PDMS) multiblock/graft copolymer produced using a renewable resource and eco-friendly autoxidation. N-doped carbon nanospheres (PPiSiHMTA) exhibited excellent CO2 adsorption (2.73 mmol/g at 0 °C and 0.15 atm, 1.72 mmol/g at 25 °C and 0.15 atm) and CO2/N2 selectivity (344-512). Despite the higher BET surface area and pore volume, porous carbon (PPiSi) showed low CO2 adsorption (1.21 and 0.71 mmol/g, 0.15 atm) and CO2/N2 selectivity (57 and 112). PPiSiHMTA and PPiSi have low isosteric heats of adsorption (Qst, 18-33 kJ/mol) and stability in humid environments. In addition, PPiSiHMTA exhibited an excellent CO2 recycling performance. The experimental data on CO2 adsorption was evaluated using various isotherm models, including Freundlich, Langmuir, Sips, and Temkin. The results demonstrated a nearly perfect fit between the Freundlich isotherm and the experimental data, indicating the heterogeneous nature of the adsorbent surfaces. Our study is promising for industrial applications, offering excellent CO2 adsorption, CO2/N2 selectivity, moisture stability, and porous material fabrication strategies.


Assuntos
Dióxido de Carbono , Carbono , Nanosferas , Polímeros , Dióxido de Carbono/química , Nanosferas/química , Adsorção , Carbono/química , Polímeros/química , Nitrogênio/química , Porosidade
14.
Int J Nanomedicine ; 19: 9597-9612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296938

RESUMO

Purpose: The chemotherapeutic agent doxorubicin (DOX) is limited by its cardiotoxicity, posing challenges in its application for non-small cell lung cancer (NSCLC). This study aims to explore the efficacy of polydopamine/Au nanoparticles loaded with DOX for chemotherapy and photothermal therapy in NSCLC to achieve enhanced efficacy and reduced toxicity. Methods: Hollow polydopamine (HPDA)/Au@DOX was synthesized via polydopamine chemical binding sacrificial template method. Morphology was characterized using transmission electron microscopy, particle size and potential were determined using dynamic light scattering, and photothermal conversion efficiency was assessed using near-infrared (NIR) thermal imaging. Drug loading rate and in vitro drug release were investigated. In vitro, anti-tumor experiments were conducted using CCK-8 assay, flow cytometry, and live/dead cell staining to evaluate the cytotoxicity of HPDA/Au@DOX on A549 cells. Uptake of HPDA/Au@DOX by A549 cells was detected using the intrinsic fluorescence of DOX. The in vivo anti-metastasis and anti-tumor effects of HPDA/Au@DOX were explored in mouse lung metastasis and subcutaneous tumor models, respectively. Results: HPDA/Au@DOX with a particle size of (164.26±3.25) nm, a drug loading rate of 36.31%, and an encapsulation efficiency of 90.78% was successfully prepared. Under 808 nm laser irradiation, HPDA/Au@DOX accelerated DOX release and enhanced uptake by A549 cells. In vitro photothermal performance assessment showed excellent photothermal conversion capability and stability of HPDA/Au@DOX under NIR laser irradiation. Both in vitro and in vivo experiments demonstrated that the photothermal-chemotherapy combination group (HPDA/Au@DOX+NIR) exhibited stronger anti-metastatic and anti-tumor activities compared to the monotherapy group (DOX). Conclusion: HPDA/Au@DOX nanosystem demonstrated excellent photothermal effect, inhibiting the growth and metastasis of A549 cells. This nanosystem achieves the combined effect of chemotherapy and photothermal, making it promising for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Ouro , Indóis , Neoplasias Pulmonares , Nanosferas , Terapia Fototérmica , Polímeros , Indóis/química , Indóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Polímeros/química , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Ouro/química , Terapia Fototérmica/métodos , Camundongos , Nanosferas/química , Liberação Controlada de Fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Combinada/métodos , Sobrevivência Celular/efeitos dos fármacos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem
15.
ACS Biomater Sci Eng ; 10(10): 6634-6647, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39348292

RESUMO

Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.


Assuntos
Peróxido de Hidrogênio , Nanosferas , Titânio , Clareamento Dental , Titânio/química , Titânio/farmacologia , Peróxido de Hidrogênio/metabolismo , Nanosferas/química , Clareamento Dental/métodos , Oxigênio/metabolismo , Saúde Bucal , Animais , Humanos , Porosidade , Catálise , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Clareadores Dentários/farmacologia , Clareadores Dentários/química , Clareadores Dentários/uso terapêutico
16.
Nat Commun ; 15(1): 7499, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209877

RESUMO

Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like Cu2-xSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of Cu2-xSe HNSs, featuring rich copper vacancies (VCu), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of Cu2-xSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.


Assuntos
Apoptose , Cobre , Espécies Reativas de Oxigênio , Cobre/química , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Feminino , Catálise , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Neoplasias/patologia , Nanosferas/química , Nanoestruturas/química , Terapia Fototérmica/métodos , Camundongos Nus
17.
Int J Biol Macromol ; 278(Pt 1): 134602, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127282

RESUMO

This study evaluates the feasibility of using enzymatic technology to produce novel nanostructures of cellulose nanomaterials, specifically cellulose nanospheres (CNS), through enzymatic hydrolysis with endoglucanase and xylanase of pre-treated cellulose fibers. A statistical experimental design facilitated a comprehensive understanding of the process parameters, which enabled high yields of up to 82.7 %, while maintaining a uniform diameter of 54 nm and slightly improved crystallinity and thermal stability. Atomic force microscopy analyses revealed a distinct CNS formation mechanism, where initial fragmentation of rod-like nanoparticles and subsequent self-assembly of shorter rod-shaped nanoparticles led to CNS formation. Additionally, adjustments in process parameters allowed precise control over the CNS diameter, ranging from 20 to 100 nm, highlighting the potential for customization in high-performance applications. Furthermore, this study demonstrates how the process framework, originally developed for cellulose nanocrystals (CNC) production, was successfully adapted and optimized for CNS production, ensuring scalability and efficiency. In conclusion, this study emphasizes the versatility and efficiency of the enzyme-based platform for producing high-quality CNS, providing valuable insights into energy consumption for large-scale economic and environmental assessments.


Assuntos
Celulase , Celulose , Nanosferas , Celulose/química , Hidrólise , Nanosferas/química , Celulase/química , Celulase/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo
18.
ACS Biomater Sci Eng ; 10(9): 5856-5868, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39164198

RESUMO

Acute kidney injury (AKI), predominantly associated with the excess production of endogenous ROS, is a serious renal dysfunction syndrome. Ferroptosis characterized by iron-dependent regulated cell death has significant involvement in AKI pathogenesis. As symptomatic treatment of AKI remains clinically limited, a new class of effective therapies has emerged, which is referred to as nanozyme. In our research, a natural mesoporous poly(tannic acid) nanosphere (referred to as PTA) was developed that can successfully mimic the activity of superoxide dismutase (SOD) by Mussel-inspired interface deposition strategy, for effective ROS scavenging and thus inhibition of ferroptosis to attenuate AKI. As anticipated, PTA mitigated oxidative stress and inhibited ferroptosis, as opposed to other modes of cell death such as pyroptosis or necrosis. Furthermore, PTA exhibited favorable biocompatibility and safeguarded the kidney against ferroptosis by enhancing the expression of SLC7a11/glutathione peroxidase 4(GPX4) and Nrf2/HO-1, while reducing the levels of ACSL4 protein in the ischemia and reperfusion injury (IRI)-induced AKI model. Moreover, PTA effectively suppressed aberrant expression of inflammatory factors. Overall, this study introduced antioxidative nanozymes in the form of mesoporous polyphenol nanospheres, showcasing exceptional therapeutic efficacy in addressing ROS-related diseases. This novel approach holds promise for clinical AKI treatment and broadens the scope of biomedical applications for nanozymes.


Assuntos
Injúria Renal Aguda , Ferroptose , Nanosferas , Espécies Reativas de Oxigênio , Taninos , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Nanosferas/química , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Taninos/farmacologia , Taninos/química , Taninos/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Porosidade , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Polifenóis
19.
Food Chem ; 461: 140762, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153370

RESUMO

In the present paper, carbon cloth (CC) as a flexible substrate was modified by molybdenum carbide nanospheres (Mo2C NSs @CC) by the drop-coating method to develop a sensitive electrochemical platform for detecting caffeic acid. The uniform Mo2C NSs were prepared via an easy route followed by pyrolyzing the precursor of the Mo-polydopamine (Mo-PDA) NSs. The Mo2C NSs were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), Raman spectroscopy (RS), and electrochemical methods. CC not only gave a flexible feature to the sensor but also provided a larger surface area for Mo2C NSs. Meanwhile, the excellent conductivity and large electroactive specific surface area of Mo2C NSs exhibited excellent electrocatalytic performance for caffeic acid determination. The developed sensor showed high sensitivity and selectivity, good reproducibility, and long-term stability with a limit of detection (LOD) and a wide linear range of 0.001 µM (S/N = 3) and 0.01-50 µM, respectively. In addition, the Mo2C NSs @CC sensor showed a promising application prospect for the detection of caffeic acid in green and black tea samples, indicating its importance in food safety and the food industry.


Assuntos
Ácidos Cafeicos , Carbono , Técnicas Eletroquímicas , Molibdênio , Nanosferas , Chá , Ácidos Cafeicos/análise , Ácidos Cafeicos/química , Chá/química , Técnicas Eletroquímicas/instrumentação , Nanosferas/química , Carbono/química , Molibdênio/química , Limite de Detecção , Contaminação de Alimentos/análise , Camellia sinensis/química
20.
Talanta ; 280: 126735, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39173244

RESUMO

While the intracellular imaging of miRNA biomarkers is of significant importance for the diagnosis and treatment of human cancers, DNA assembled nanoprobe has recently attracted considerable attention for imaging intracellular biomolecules. However, the complex construction process, intrinsic vulnerability to nuclease degradation and the limited signal transduction efficiency hamper its widespread application. In this contribution, based on persistent autonomous molecular motion of DNAzyme walker along a nano-substrate track, a DNA nanosphere probe (PNLD) is developed for the sensitive intracellular miR-21 imaging. Specifically, DNA nanosphere (called PN, single-molecule nano-track) is assembled from only one palindromic substrate, into which the locking strand-silenced DNAzymes (LD) are installed in a controlled manner. PNLD (made of PN and LD) can protect all DNA components against nuclease attack and maintain its structural integrity in serum solution over 24 h. Upon the activation by target miRNA, DNAzyme walker can move on the substrate scattered within PNLD (or on the surface) and between different PNLD objects and cleave many DNA substrates, generating an amplified signal. As a result, miR-21 can be detected down to 6.83 pM without the detectable interference from co-existing nontarget miRNAs. Moreover, PNLD system can accurately screen the different expression levels of miR-21 within the same type of cells and different types of cells, which is consistent with gold standard polymerase chain reaction (PCR) assay. Via changing the target recognition sequence, the PNLD system can be suitable for the intracellular imaging of miR-155, exhibiting the desirable universality. In addition, the DNAzyme walker-based PNLD system can be used to distinguish cancer cells from healthy cells, implying the potential application in cancer diagnosis and prognosis.


Assuntos
DNA Catalítico , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Nanosferas/química , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...