RESUMO
Self-powered biosensors with high sensitivity have garnered significant interest for their potential applications in the realm of portable sensing. Herein, a self-powered biosensor with a novel signal amplification strategy was developed by integrating target-controlled release of mediator with an enzyme biofuel cell for the ultrasensitive detection of acetamiprid (ACE). Zeolitic imidazolate framework-67 was utilized as both a nanocontainer for capturing the electron mediator 2,2'-azidobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and a precursor for the synthesis of cobalt nanoparticles/nitrogen, sulfur-codoped carbon nanotubes (Co NPs/NS-CNTs), which were employed as the electrode material for constructing both the glucose oxidase-based bioanode and the laccase-based biocathode. The target analyte ACE can specifically bind to its aptamer, leading to the release of ABTS, which cyclically participates in the catalytic reaction of the biocathode, thereby amplifying the electrochemical signal. By leveraging the benefits of ABTS cyclic catalysis and the effective electrocatalysis of bioelectrodes based on Co NPs/NS-CNTs, the self-powered biosensor has a broad detection range of 0.1-1000 fM and a low detection limit of 25 aM toward ACE. The proposed signal amplification approach presents a promising strategy for enhancing sensitivity and enabling portable analysis in applications of food safety, environmental monitoring, and medical diagnostics.
Assuntos
Técnicas Biossensoriais , Eletrodos , Glucose Oxidase , Lacase , Neonicotinoides , Neonicotinoides/análise , Neonicotinoides/química , Técnicas Biossensoriais/métodos , Lacase/química , Lacase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Cobalto/química , Ácidos Sulfônicos/química , Benzotiazóis/química , Zeolitas/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Fontes de Energia BioelétricaRESUMO
A large number of Chinese herbal medicines (CHMs) are included in daily recipes, but their pesticide residues have aroused more and more concerns. In this paper, an electrochemiluminescence aptasensor was constructed for the trace detection of acetamiprid (ACE) in Angelica sinensis and Lycium barbarum. Possessing a large specific surface area, UiO-66 was modified with amino groups to improve biocompatibility, and the addition of AuNPs allowed UiO-66-NH2 to catalyze the formation of excited states of luminescent molecules (TPrAâ; Ru(bpy)32+â), and AuNPs@UiO-66-NH2 was used to bridge the aptamer (Au-S) and luminescent substrate (peptide bond). The conventional luminescent reagent Ru(bpy)32+ was doped with multi-walled carbon nanotubes (MWCNTs) to obtain a more powerful and stable light signal. After optimizing the experimental parameters, the aptasensor could give results in 10 min with a detection range from 1×10-2-1×104 nM and a lower limit of detection (LOD) of 0.8 pM. The LOD of the study was at least one order of magnitude lower than that of the fluorescence detection method. Furthermore, the accuracy of the aptasensor was validated for spiked recovery experiments.
Assuntos
Aptâmeros de Nucleotídeos , Medicamentos de Ervas Chinesas , Técnicas Eletroquímicas , Ouro , Medições Luminescentes , Nanopartículas Metálicas , Resíduos de Praguicidas , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Ouro/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Resíduos de Praguicidas/análise , Lycium/química , Estruturas Metalorgânicas/química , Angelica sinensis/química , Técnicas Biossensoriais/métodos , Neonicotinoides/análise , Neonicotinoides/química , Limite de Detecção , Nanotubos de Carbono/químicaRESUMO
Cancer antigen 125 (CA125) is the gold standard biomarker for clinical diagnosis of ovarian cancer, with a threshold value of 35 U/mL in serum. In this paper, a disposable ultrasensitive immunosensor based on Ti3C2Tx-MXene/amino-functionalized carbon nanotube (NH2-CNT) modified screen-printed carbon electrode (SPCE) was constructed for the detection of the ovarian cancer antigen CA125. By optimizing the mass ratio of Ti3C2Tx to NH2-CNT, Ti3C2Tx/NH2-CNT composite with excellent electrochemical properties was prepared, which is beneficial for amplifying the initial electrochemical signal. The positively charged NH2-CNT effectively alleviated the stacking problem of Ti3C2Tx, and its amino group also facilitated the covalent immobilization of the capture antibody. Meanwhile, chitosan (CS) with excellent film-forming ability was also used to successfully enhance the adsorption of electrode material, thus improving the stability of the sensor. In addition, CS could further enhance the current signal. The prepared immunosensor exhibited excellent performance in CA125 detection with a wide linear range from 1 mU/mL to 500 U/mL, and good selectivity, reproducibility and lomg-term stability. Furthermore, the immunosensor showed satisfactory results for the detection of CA125 in clinical serum samples, which is promising for the clinical screening, early diagnosis and prognostic examination of ovarian cancer.
Assuntos
Técnicas Biossensoriais , Antígeno Ca-125 , Eletrodos , Nanotubos de Carbono , Neoplasias Ovarianas , Antígeno Ca-125/sangue , Humanos , Nanotubos de Carbono/química , Feminino , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Titânio/química , Limite de Detecção , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Proteínas de MembranaRESUMO
In this research, the TT-COF(Fe)@NH2-CNTs was innovatively prepared through a post-modification synthetic process functionalized TT-COF@NH2-CNTs with active site (Fe), where TT-COF@NH2-CNTs was prepared via a one-pot strategy using 5,10,15,20-tetrakis (para-aminophenyl) porphyrin (TTAP), 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene (TTF) and aminated carbon nanotubes (NH2-CNTs) as raw materials. The complex TT-COF(Fe)@NH2-CNTs material possessed porous structures, outstanding conductivity and rich catalytic sites. Thus, it can be adopted to construct electrochemical sensor with glassy carbon electrode (GCE). The TT-COF(Fe)@NH2-CNTs/GCE can selectively detect luteolin (Lu) with a wide linear plot ranging from 0.005 to 3 µM and a low limit of detection (LOD) of 1.45 nM (S/N = 3). The Lu residues in carrot samples were determined using TT-COF(Fe)@NH2-CNTs sensor and UV-visible (UV-Vis) approach. This TT-COF(Fe)@NH2-CNTs/GCE sensor paves the way for the quantification of Lu through a cost-efficient and sensitive electrochemical approach, which can make a significant step in the sensing field based on crystalline COFs.
Assuntos
Técnicas Eletroquímicas , Luteolina , Nanotubos de Carbono , Nanotubos de Carbono/química , Luteolina/química , Luteolina/análise , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Domínio CatalíticoRESUMO
With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (â¼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.
Assuntos
Biomassa , Nanotubos de Carbono , Nanotubos de Carbono/química , Vírus de Plantas/fisiologia , Purificação da Água/métodos , Tobamovirus , PeróxidosRESUMO
Leishmaniasis is a parasitic disease spread by the bite of an infected sandfly and caused by protozoan parasites of the genus Leishmania. Currently, there is no vaccine available for leishmaniasis in humans, and the existing chemotherapy methods face various clinical challenges. The majority of drugs are limited to a few toxic compounds, with some parasite strains developing resistance. Therefore, the discovery and development of a new anti-leishmanial compound is crucial. One promising strategy involves the use of nanoparticle delivery systems to accelerate the effectiveness of existing treatments. In this study, Amphotericin B (AmB) was incorporated into functionalized carbon nanotube (f-CNT) and evaluated for its efficacy against Leishmania major in vitro and in a BALB/c mice model. The increase in footpad thickness was measured, and real-time PCR was used to quantify the parasite load post-infection. Levels of nitric oxide and cytokines IL-4 and IFN-γ were also determined. We found that f-CNT-AmB significantly reduced the levels of promastigotes and amastigotes of the Leishmania parasite. The nanoparticle showed strong anti-leishmanial activity with an IC50 of 0.00494 ± 0.00095 mg/mL for promastigotes and EC50 of 0.00294 ± 0.00065 mg/mL for amastigotes at 72 h post-infection, without causing harm to mice macrophages. Treatment of infected BALB/c mice with f-CNT-AmB resulted in a significant decrease in cutaneous leishmania (CL) lesion size in the foot pad, as well as reduced Leishmania burden in both lymph nodes and spleen. The levels of nitric oxide and IFN-γ significantly increased in the f-CNT-AmB treated groups. Also, our results showed that the level of IL-4 significantly decreased after f-CNT-AmB treatment in comparison to other groups. In conclusion, our results demonstrate that AmB loaded into f-CNT is significantly more effective than AmB alone in inhibiting parasite propagation and promoting a shift towards a Th1 response.
Assuntos
Anfotericina B , Antiprotozoários , Leishmania major , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Carga Parasitária , Animais , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Anfotericina B/administração & dosagem , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Feminino , Nanopartículas , Interleucina-4/metabolismo , Óxido Nítrico/metabolismo , Modelos Animais de Doenças , Nanotubos de Carbono/química , Interferon gama , Concentração Inibidora 50RESUMO
The urine albumin (Alb)-to-creatinine (Crn) ratio (UACR) is a sensitive and early indicator of chronic kidney disease (CKD) and cardiorenal syndrome. This study developed a portable and wireless electrochemical-sensing platform for the sensitive and accurate determination of UACR. The developed platform consists of a carbon nanotube (CNT)-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)(ABTS)-based modified UACR sensor, a miniaturised potentiostat, a cup holder embedded with a magnetic stirrer and a smartphone app. The UACR sensing electrode is composed of two screen-printed carbon working electrodes, one screen-printed carbon counter electrode and a screen-printed AgCl reference electrode. The miniaturised potentiostat, which is controlled by the developed app, performs cyclic voltammetry and amperometry to detect Alb and Crn, respectively. Clinical trials of the proposed system by using spot urine samples from 30 diabetic patients indicate that it can accurately classify all three CKD risk statuses within 30 min. The high accuracy of our proposed sensing system exhibits satisfactory agreement with the commercial biochemical analyser TBA-25FR (Y = 0.999X, R2 = 0.995). The proposed UACR sensing system offers a convenient, reliable and affordable solution for personal mobile health monitoring and point-of-care urinalysis.
Assuntos
Albuminúria , Síndrome Cardiorrenal , Creatinina , Técnicas Eletroquímicas , Sistemas Automatizados de Assistência Junto ao Leito , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/diagnóstico , Creatinina/urina , Albuminúria/urina , Síndrome Cardiorrenal/urina , Síndrome Cardiorrenal/diagnóstico , Técnicas Biossensoriais , Nanotubos de CarbonoRESUMO
Herein, we report a ratio-based electrochemical biosensor for the detection of interleukin-6 (IL-6). We electropolymerized methylene blue (MB) on the surface of screen-printed carbon electrodes; introduced an internal reference signal probe; modified the carboxylate multi-walled carbon nanotubes on the electrode surface to increase the electrochemically active area; and finally linked the amino-modified IL-6 aptamer to the electrode surface through the Schiff base reaction, with bovine serum albumin (BSA) added to mask non-specific adsorption. After adding IL-6 to the samples, the signal of IMB remained almost unchanged, while the signal of I[Fe(CN)6]3-/4- decreased with increasing IL-6 concentration. Thus, a novel ratiometric electrochemical sensor with a linear range of 0.001~1000.0 ng/mL and a low detection limit of 0.54 pg/mL was successfully developed. The sensor had high repeatability, stability, sensitivity, and practicability. It provides a new method for constructing proportional electrochemical sensors and detecting IL-6.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Interleucina-6 , Azul de Metileno , Nanotubos de Carbono , Interleucina-6/análise , Nanotubos de Carbono/química , Limite de Detecção , Carbono/químicaRESUMO
Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, non-enzymatic biosensor was proposed to quantify urea concentrations. For the detection of urea, the biosensor was modified with a multi-walled carbon nanotube-zinc oxide (MWCNT-ZnO) nanocomposite functionalized with copper oxide (CuO) micro-flowers (MFs). Further, the CuO-MFs were synthesized using a standard sol-gel approach, and the obtained particles were subjected to various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR) spectroscopy. The sensor's performance for urea detection was evaluated by assessing the dependence of peak currents on analyte concentration using cyclic voltammetry (CV) at different scan rates of 50, 75, and 100 mV/s. The designed non-enzymatic biosensor showed an acceptable linear range of operation of 0.5-8 mM, and the limit of detection (LoD) observed was 78.479 nM, which is well aligned with the urea concentration found in human blood and exhibits a good sensitivity of 117.98 mA mM-1 cm-2. Additionally, different regression-based ML models were applied to determine CV parameters to predict urea concentrations experimentally. ML significantly improves the accuracy and reliability of screen-printed biosensors, enabling accurate predictions of urea levels. Finally, the combination of ML and biosensor design emphasizes not only the high sensitivity and accuracy of the sensor but also its potential for complex non-enzymatic urea detection applications. Future advancements in accurate biochemical sensing technologies are made possible by this strong and dependable methodology.
Assuntos
Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Aprendizado de Máquina , Nanotubos de Carbono , Ureia , Nanotubos de Carbono/química , Ureia/análise , Cobre/química , Cobre/análise , Humanos , Óxido de Zinco/química , Limite de DetecçãoRESUMO
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Organofosfatos , Praguicidas , Organofosfatos/análise , Praguicidas/análise , Nanotubos de Carbono , Imunoensaio , Nanopartículas Metálicas , Dispositivos Lab-On-A-Chip , HumanosRESUMO
Carbon nanotubes (CNTs) had room temperature response, large surface area, and excellent mechanical properties, making them favorable for the design of flexible, wearable, and portable gas sensors. However, CNTs were lacking in response and selective response to different gases, such as H2S. Here, we demonstrated a flexible H2S ppb-level gas sensor based on a carbon nanotube/amorphous Fe2O3 (CNT/Fe2O3) film at room temperature, which was fabricated via a simple one-step solvent-thermal method. The CNT/Fe2O3 film gas sensor exhibited a high selective response to H2S (with a response of 55.1% to 100 ppb H2S), rapid reversible response at room temperature (with a response time of â¼127 s to 100 ppb H2S), and low limit of detection to about 2 ppb. Additionally, the CNT/Fe2O3 film maintained good sensing performance under various bending conditions and could be further fabricated into the fiber gas sensor device via wet stretching, retaining response at the ppb level (with a response of 18.6% to 100 ppb H2S). This research on a flexible gas sensor device based on the CNT film/fiber opened up new possibilities for wearable portable electronic device applications.
Assuntos
Compostos Férricos , Sulfeto de Hidrogênio , Nanotubos de Carbono , Temperatura , Nanotubos de Carbono/química , Compostos Férricos/química , Sulfeto de Hidrogênio/análise , Limite de Detecção , Dispositivos Eletrônicos VestíveisRESUMO
This paper presents a platform for amyloid-ß (Aß) biosensors, employing nearly monolayer semiconducting single-walled carbon nanotubes (sc-SWNTs) via click reaction. A high-purity sc-SWNT ink was obtained by employing a conjugated polymer wrapping method with the addition of silica gel. Aß detection involved monitoring the electrical resistances of the sc-SWNT layers. Electrical resistances increased rapidly corresponding to the concentration of amyloid-ß 1-42 (Aß1-42) peptides. Furthermore, we introduced Aß peptides onto the 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker, confirming that only the chemical adsorption of the peptide by the antibody-antigen reaction yielded a significant change in electrical resistance. The optimized sensor exhibited a high sensitivity of 29% for Aß at a concentration of 10 pM. Notably, the biosensor platform featuring chemically immobilized sc-SWNT networks can be customized by incorporating various bioreceptors beyond Aß antibodies.
Assuntos
Peptídeos beta-Amiloides , Técnicas Biossensoriais , Nanotubos de Carbono , Semicondutores , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , HumanosRESUMO
The preparation of a hybrid nanomaterial is reported by covalently attaching 3,5-dinitrobenzoic acid groups to the surface of oxidized multi-walled carbon nanotubes using 1,6-diaminohexane as cross-linking agent. This nanomaterial, modified with the redox mediator, was used as transduction element to construct an amperometric sensor for the efficient indirect determination of glutathione reductase at a low working potential of - 0.05 V, through the oxidation of unconsumed nicotinamide adenine dinucleotide phosphate (NADPH) in the enzymatic reaction. The sensor exhibited an excellent linear response in the range 1.6 to 174 µU/µL, with high reproducibility and selectivity. The developed device was successfully validated in real samples, accurately determining the active enzyme in diluted human serum, making it a promising alternative for the determination of glutathione reductase and other related NADPH-dependent enzymes with relevance in clinical analysis.
Assuntos
Técnicas Eletroquímicas , Eletrodos , Glutationa Redutase , Nanotubos de Carbono , Nanotubos de Carbono/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Glutationa Redutase/metabolismo , Técnicas Biossensoriais/métodos , NADP/química , NADP/metabolismo , Oxirredução , Nitrobenzoatos/química , Limite de DetecçãoRESUMO
BACKGROUND: Heavy metal pollution poses a serious threat to the ecological environment. Mercury ion (Hg2+) is a class of highly toxic heavy metal ions, which is bioaccumulative, difficult to breakdown, and has a significant affinity with sulfur and thiol-containing proteins, which seriously affects environmental safety and human health. Nanozyme-based sensing methods are expected to be used to detect toxic heavy metal ions. However, the application of precious metal nanozymes to develop portable sensors with simplicity, high stability, and high sensitivity has not been explored to a large extent. RESULTS: In this paper, based on MXene's unique adsorption capacity for certain precious metal ions, PtNPs/Ti3C2TXNR composites were successfully prepared by in-situ growth of Pt nanoparticles (PtNPs) on the surface of Ti3C2TX MXene nanoribbons (Ti3C2TXNR) using the hydrothermal technique. Experimental data revealed PtNPs/Ti3C2TXNR exhibited superior peroxidase-like activity, attributed to the synergistic effect of well-dispersed ultrasmall PtNPs and electron transfer effect. Hg2+ can significantly inhibit enzyme-like activity of PtNPs/Ti3C2TXNR due to specific capture and partial in-situ reduction of PtNPs, so a colorimetric sensor was constructed for ultra-trace detection of Hg2+ with a linear range of 0.2 nM and 400 nM. Furthermore, using the portable detecting capabilities of smartphones and hydrogel, a smartphone-assisted hydrogel sensing platform of Hg2+ was constructed. Notably, the two-mode sensing platforms exhibited outstanding detection performance with LOD values as low as 15 pM (colorimetric) and 26 pM (hydrogel), respectively, superior to recently reported nanozyme-based Hg2+ sensors. SIGNIFICANCE: Compared with other methods, the PtNPs/Ti3C2TXNR-based dual-mode sensor designed in this paper has superior sensitivity, high selectivity, simple operation and portability. In particular, the dual-output sensing strategy enables self-confirmation of detection results, greatly improving the reliability of the sensor, and is expected to be used for the on-site determination of trace mercury ions.
Assuntos
Hidrogéis , Mercúrio , Nanopartículas Metálicas , Platina , Smartphone , Titânio , Platina/química , Mercúrio/análise , Nanopartículas Metálicas/química , Titânio/química , Hidrogéis/química , Transporte de Elétrons , Nanotubos de Carbono/química , Limite de Detecção , Colorimetria/métodos , Peroxidase/química , Peroxidase/metabolismoRESUMO
Herein, the electrochemical sensing efficacy of carboxylic acid functionalized multiwalled carbon nanotubes (C-MWCNT) intertwined with coexisting phases of gadolinium monosulfide (GdS) and gadolinium oxide (Gd2O3) nanosheets is explored for the first time. The nanocomposite demonstrated splendid specificity for nonenzymatic electrochemical detection of uric acid (UA) in biological samples. It was synthesized using the coprecipitation method and thoroughly characterized. The presence of functional groups and disorder in the as-synthesized nanocomposite are confirmed using Fourier transform infrared spectroscopy and Raman spectroscopy. Furthermore, field emission scanning electron microscopy, high-resolution transmission electron microscope, X-ray powder diffraction, and X-ray photoelectron spectroscopy provides a clear understanding of the morphology, coexisting phases, and elemental composition of the as-synthesized nanocomposites. The differential pulse voltammetry technique was utilized to elaborate the electrochemical sensing of UA using a GdS-Gd2O3/C-MWCNT modified glassy carbon electrode (GCE), The sensor showed an enhanced current response by more than 2-fold compared to bare GCE. Also, the sensor's performance was further improved by dispersing the nanocomposite in an ionic liquid with the exceptional reproducibility (SD = 0.0025, n = 3). The fabricated UA sensor GdS-Gd2O3/C-MWCNT/IL/GCE demonstrated a wide linear detection range from 0.5-30 µM and 30-2000 µM, effectively covering the entire physiological range of UA in biological fluids with a limit of detection (LOD) of 0.380 µM (+3SD of blank) and a sensitivity of 356.125 µA mM-1 cm-2. Moreover, the electrodes exhibited storage stability for 2 weeks with decrease in zero-day current by only 4.5%. The sensor was validated by quantifying UA in 12 unprocessed clinical human urine and serum samples, and its comparison with the gold standard test yielded remarkable results (p < 0.05). Hence, the proposed nonenzymatic electrochemical UA sensor is selective, sensitive, reproducible, and stable, making it reliable for point-of-care diagnostics.
Assuntos
Técnicas Eletroquímicas , Gadolínio , Nanotubos de Carbono , Ácido Úrico , Humanos , Nanotubos de Carbono/química , Ácido Úrico/sangue , Ácido Úrico/urina , Ácido Úrico/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Gadolínio/química , Eletrodos , Nanocompostos/química , Limite de Detecção , Ácidos Carboxílicos/químicaRESUMO
Self-locking structures are often studied in macroscopic energy absorbers, but the concept of self-locking can also be effectively applied at the nanoscale. In particular, we can engineer self-locking mechanisms at the molecular level through careful shape selection or chemical functionalisation. The present work focuses on the use of collapsed carbon nanotubes (CNTs) as self-locking elements. We start by inserting a thin CNT into each of the two lobes of a collapsed larger CNT. We aim to create a system that utilises the unique properties of CNTs to achieve stable configurations and enhanced energy absorption capabilities at the nanoscale. We used molecular dynamics simulations to investigate the mechanical properties of periodic systems realised with such units. This approach extends the application of self-locking mechanisms and opens up new possibilities for the development of advanced materials and devices.
Assuntos
Simulação de Dinâmica Molecular , Nanotubos de Carbono , Nanotubos de Carbono/químicaRESUMO
The demetallation reaction of sulfanyl magnesium(II) porphyrazine with N-ethylphthalimide substituents, followed by remetallation with manganese(II) salts, yields the corresponding manganese(III) derivative (Pz3) with high efficiency. This novel manganese(III) sulfanyl porphyrazine was characterized by HPLC and analyzed using UV-Vis, MS, and FT-IR spectroscopy. Electrochemical experiments of Pz3 conducted in dichloromethane revealed electrochemical activity of the new complex due to both manganese and N-ethylphthalimide substituents redox transitions. Subsequently, Pz3 was deposited on multiwalled carbon nanotubes (MWCNTs), and this hybrid material was then applied to glassy carbon electrodes (GC). The resulting hybrid electroactive electrode material, combining manganese(III) porphyrazine with MWCNTs, showed a significant decrease in overpotential of H2O2 oxidation compared to bare GC or GC electrodes modified with only carbon nanotubes (GC/MWCNTs). This improvement, attributed to the electrocatalytic performance of Mn3+, enabled linear response and sensitive detection of H2O2 at neutral pH. Furthermore, a glucose oxidase (GOx)-containing biosensing platform was developed by modifying the prepared GC/MWCNT/Pz3 electrode for the electrochemical detection of glucose. The bioelectrode incorporating the newly designed Pz3 exhibited good activity in the presence of glucose, confirming effective electronic communication between the Pz3, GOx and MWCNT surface. The linear range for glucose detection was 0.2-3.7 mM.
Assuntos
Técnicas Biossensoriais , Eletrodos , Glucose , Peróxido de Hidrogênio , Manganês , Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Manganês/química , Glucose/química , Glucose/análise , Catálise , Técnicas Eletroquímicas/métodos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , OxirreduçãoRESUMO
Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Nanotubos de Carbono , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Adsorção , Nanotubos de Carbono/química , Quitosana/química , Espectrometria de Massas em Tandem , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Animais , BovinosRESUMO
In this study, several materials are presented as modifiers of the screen-printed carbon electrodes with the aim of developing new sensing platforms for the voltammetric analysis of drugs. Specifically, Clotiapine and Sulfamethoxazole were selected as models for antipsychotics and antibiotics, respectively. Different nanostructures were studied as modifiers, including both transition metals and carbon-based materials. Moreover, biochar and two metal-organic frameworks (MOFs) were tested as well. The NH2-MIL-125(Ti) MOF showed an 80% improvement in the analytical signal of Sulfamethoxazole, but it partially overlapped with an additional signal associated with the loss of the MOF ligand. For this reason, several immobilization strategies were tested, but none of them met the requirements for the development of a sensor for this analyte. Conversely, carbon nanotubes and the NH2-MIL-101(Fe) MOF were successfully applied for the analysis of Clotiapine in the medicine Etumine®, with RSD below 2% and relative errors that did not exceed 9% in any case, which demonstrates the precision and accuracy achieved with the tested modifications. Despite these promising results, it was not possible to lower the limits of detection and quantification, so in this sense further investigation must be performed to increase the sensitivity of the developed sensors.
Assuntos
Eletrodos , Estruturas Metalorgânicas , Nanoestruturas , Estruturas Metalorgânicas/química , Nanoestruturas/química , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , TransdutoresRESUMO
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.