Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1426913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319258

RESUMO

Introduction: The role of immune cells in the pathogenesis and advancement of diabetic nephropathy (DN) is crucial. The objective of this study was to identify immune-cell-related biomarkers that could potentially aid in the diagnosis and management of DN. Methods: The GSE96804 dataset was obtained from the Gene Expression Omnibus (GEO) database. Then, screen for intersections between differentially expressed genes (DEGs) and immune-related genes (IRGs). Identify core genes through protein-protein interaction (PPI) networks and the Cytoscape plugin. Subsequently, functional enrichment analysis was conducted. In addition, ROC analysis is performed to accurately identify diagnostic biomarkers. Apply the CIBERSORT algorithm to evaluate the proportion of immune cell infiltration. Finally, the mRNA, protein, and immunofluorescence expression of the biomarker was validated in the DN rat model. Results: The study yielded 74 shared genes associated with DN. Enrichment analysis indicated significant enrichment of these genes in focal adhesion, the humoral immune response, activation of the immune response, Cytokine-cytokine receptor interaction, and IL-17 signaling pathway. The optimal candidate gene VCAM1 was identified. The presence of VCAM1 in DN was further validated using the ROC curve. Analysis of immune cell infiltration matrices revealed a high abundance of monocytes, naïve B cells, memory B cells, and Macrophages M1/M2 in DN tissues. Correlation analysis identified one hub biomarker associated with immune-infiltrated cells in DN. Furthermore, our findings were validated through in vivo RT qPCR, WB, and IF techniques. Conclusions: Our research indicates that VCAM1 is a signature gene associated with DN and is linked to the progression, treatment, and prognosis of DN. A comprehensive examination of immune infiltration signature genes may offer new perspectives on the clinical diagnosis and management of DN.


Assuntos
Biomarcadores , Nefropatias Diabéticas , Molécula 1 de Adesão de Célula Vascular , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Animais , Ratos , Biomarcadores/metabolismo , Biomarcadores/análise , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4044-4053, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307756

RESUMO

Diabetic kidney disease(DKD) is a prevalent and severe microvascular complication of type 2 diabetes mellitus(T2DM). Chronic microinflammation is an important factor exacerbating renal tissue damage in DKD individuals. Macrophages play a crucial role in immune-inflammatory responses, and they can transiently and reversibly polarize into the pro-inflammatory M1 phenotype and anti-inflammatory M2 phenotype based on microenvironmental differences. The imbalance in M1/M2 macrophage polarization can exacerbate DKD progression by fostering inflammatory cytokine aggregation in the glomeruli and renal interstitium. Therefore, restoring the balance of macrophage is a pivotal avenue to ameliorate the chronic microinflammation state in DKD. Macrophage polarization is a complex and dynamic process. Various information molecules and cytokines involved in the polarization process play important roles in regulating phenotypes during the progression of DKD. They are closely related to various mechanisms such as metabolism, inflammation, fibrosis, and mitochondrial autophagy in DKD. By coordinating the inflammatory responses through polarization, they play a key role in regulating inflammation in metabolic-related diseases. The complex network of pathways involved in macrophage polarization corresponds well with the multi-pathway, multi-target treatment model of traditional Chinese medicine(TCM). Active ingredients and formulas of TCM can intervene in DKD by regulating macrophage polarization. Studies on relieving renal inflammation, repairing renal tissues, and promoting renal function recovery through macrophage polarization modulation are not uncommon. Therefore, based on exis-ting evidence, this study reviews TCM in targeting M1/M2 macrophage polarization balance to improve DKD, aiming to explore the potential of macrophage polarization in regulating DKD, which is expected to provide evidence support for the clinical diagnosis and treatment of DKD with TCM as well as the exploration of its biological mechanisms.


Assuntos
Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Macrófagos , Medicina Tradicional Chinesa , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/tratamento farmacológico
3.
Ren Fail ; 46(2): 2387208, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39091101

RESUMO

OBJECTIVE: Previous observational studies have indicated associations between various immune cells and diabetic nephropathy (DN). However, the causality remains unclear. We aimed to further evaluate the causal association between immune cells and DN using bidirectional two-sample Mendelian randomization (MR) analysis. METHOD: The DN data were retrieved from the IEU OpenGWAS Project database, while the data for 731 immune cells were sourced from GWAS summary statistics by Orru ̀ et al. The investigation into the causal relationship between immune cells and DN employed the inverse variance weighted (IVW), weighted median (WME), and MR-Egger methods. The stability and reliability of the findings underwent evaluation through Cochran's Q test, MR-Egger intercept's P-value, MR-PRESSO, and Leave-One-Out (LOO) method. RESULT: The IVW estimates suggested a positive causal effect of CD25 on IgD-CD38dim B cell, CD25 on naive-mature B cell, CD127 on granulocyte, SSC-A on HLA DR + Natural Killer, HLA DR on plasmacytoid Dendritic Cell, and HLA DR on Dendritic Cell on DN. Conversely, the abundance of Myeloid Dendritic Cell, CD62L- Dendritic Cell %Dendritic Cell, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD14- CD16-, CX3CR1 on CD14- CD16-, and SSC-A on CD4+ T cell had negative causal effects on DN. However, after correcting the P value for significant causality results using the FDR method, it was concluded that only Myeloid Dendritic Cells had a causal relationship with DN (FDR-p = 0.041), while the other immune cells showed no significant association with DN, so their relationship was suggestive. The results were stable with no observed horizontal pleiotropy and heterogeneity. Reverse MR analysis indicated no causal relationship between DN and the increased risk of positively identified immune cells. CONCLUSION: This study provides an initial insight into the genetic perspective of the causal relationship between immune cells and DN. It establishes a crucial theoretical foundation for future endeavors in precision medicine and individualized treatment.


Assuntos
Nefropatias Diabéticas , Análise da Randomização Mendeliana , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Estudo de Associação Genômica Ampla , Células Dendríticas/imunologia , Reprodutibilidade dos Testes , Linfócitos B/imunologia , Fatores de Risco
4.
Front Endocrinol (Lausanne) ; 15: 1460652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165512

RESUMO

Background: DKD, a leading cause of chronic kidney and end-stage renal disease, lacks robust immunological research. Recent GWAS utilizing SNPs and CNVs has shed light on immune mechanisms of kidney diseases. However, DKD's immunological basis remains elusive. Our goal is to unravel cause-effect relationships between immune cells and DKD using Mendelian randomization. Methodology: We analyzed FinnGen data (1032 DKD cases, 451,248 controls) with 731 immunocyte GWAS summaries (MP=32, MFI=389, AC=118, RC=192). We employed forward and reverse Mendelian randomization to explore causal links between immune cell traits and DKD. Sensitivity analysis ensured robustness, heterogeneity checks, and FDR correction minimized false positives. Results: Our study explored the causal link between diabetic nephropathy (DKD) and immunophenotypes using two-sample Mendelian Randomization (MR) with IVW. Nine immunophenotypes were significantly associated with DKD at p<0.05 after FDR correction. Elevated CD24, CD3 in Treg subsets, CD39+ CD4+, and CD33- HLA DR- AC correlated positively with DKD risk, while CD27 in B cells and SSC-A in CD4+ inversely correlated. Notably, while none showed significant protection, further research on immune cells' role in DKD may provide valuable insights. Conclusion: The results of this study show that the immune cells are closely related to DKD, which may be helpful in the future clinical study.


Assuntos
Nefropatias Diabéticas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Polimorfismo de Nucleotídeo Único , Imunofenotipagem , Predisposição Genética para Doença , Estudos de Casos e Controles , Masculino
5.
Sci Rep ; 14(1): 17760, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085362

RESUMO

Diabetic nephropathy (DN) is a common secondary kidney disease. Immune and inflammatory responses play an influential role in the development of DN. This study aims to explore the role and mechanisms of immune- and inflammatory-related factors in DN. Participants from the NHANES 2013-2018 were included to evaluate the association between the SII and DN. Considering the skewed distribution of SII, log SII was used for subsequent analysis. Then, the DEGs were extracted from the GSE96804 dataset by the "limma" package of R, which were further screened out genes in the key module based on WGCNA. The intersection genes between DEGs and key module genes were the key genes for the following mechanism exploration. The CyTargetlinker plug-in of Cytoscape software was used to construct the drug-genes network. Molecular docking was used to calculate the binding affinity between potential drugs and the hub genes. Among the 8236 participants from NHANES 2013-2018, Log SII was significantly associated with DN (p < 0.05). DEG and WGCNA revealed 30 DN-related genes, which mainly regulated immune- and inflammation pathways, and the NOD-like receptor signaling pathway was the core pathway highly involved in the DN occurrence. Moreover, NAIP, ZFP36, and DUSP1 were identified as hub genes in DN progression and there was a strong binding interaction between resveratrol and DUSP1.In conclusion, immune inflammation plays an influential role in the occurrence and development of DN. SII is an effective diagnostic marker for DN and resveratrol might have potential value in treating DN.


Assuntos
Nefropatias Diabéticas , Inflamação , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Masculino , Inflamação/genética , Feminino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Redes Reguladoras de Genes , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Transdução de Sinais
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 488-493, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952087

RESUMO

Objective To identify immune-related transcription factors (TFs) in renal glomeruli and tubules from diabetic kidney disease (DKD) patients by bioinformatics analysis. Methods Gene expression datasets from GEO (GSE30528, GSE30529) and RNA sequencing (RNA-seq) data from the Karolinska Kidney Research Center were used. Gene set enrichment analysis (GSEA) was conducted to examine differences in immune-related gene expression in the glomeruli and tubules (DKD) patients. To identify immune-related genes (IRGs) and TFs, differential expression analysis was carried out using the Limma and DESeq2 software packages. Key immune-related TFs were pinpointed through co-expression analysis. The interaction network between TFs and IRGs was constructed using the STRING database and Cytoscape software. Furthermore, the Nephroseq database was employed to investigate the correlation between the identified TFs and clinical-pathological features. Results When compared to normal control tissues, significant differences in the expression of immune genes were observed in both the glomeruli and tubules of individuals with Diabetic Kidney Disease (DKD). Through differential and co-expression analysis, 50 immune genes and 9 immune-related transcription factors (TFs) were identified in the glomeruli. In contrast, 131 immune response genes (IRGs) and 41 immune-related TFs were discovered in the renal tubules. The protein-protein interaction (PPI) network highlighted four key immune-related TFs for the glomeruli: Interferon regulatory factor 8 (IRF8), lactotransferrin (LTF), CCAAT/enhancer binding protein alpha (CEBPA), and Runt-related transcription factor 3 (RUNX3). For the renal tubules, the key immune-related TFs were FBJ murine osteosarcoma viral oncogene homolog B (FOSB), nuclear receptor subfamily 4 group A member 1 (NR4A1), IRF8, and signal transducer and activator of transcription 1 (STAT1). These identified TFs demonstrated a significant correlation with the glomerular filtration rate (GFR), highlighting their potential importance in the pathology of DKD. Conclusion Bioinformatics analysis identifies potential genes associated with DKD pathogenesis and immune dysregulation. Further validation of the expression and function of these genes may contribute to immune-based therapeutic research for DKD.


Assuntos
Biologia Computacional , Nefropatias Diabéticas , Fatores de Transcrição , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Fatores de Transcrição/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Redes Reguladoras de Genes , Túbulos Renais/imunologia , Túbulos Renais/metabolismo
7.
Medicine (Baltimore) ; 103(28): e38864, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996161

RESUMO

The main causative factors of diabetic nephropathy (DN), a common complication of diabetes mellitus, are metabolic abnormalities and hemodynamic changes. However, studies have shown that the immune-inflammatory response also plays an important role in DN pathogenesis. Therefore, in this study, we analyzed the causal relationship and immune infiltration between inflammatory factors and DN using Mendelian randomization (MR) and bioinformatics techniques. We analyzed the causal relationship between 91 inflammatory factors and DN using two-sample MR dominated by the results of inverse variance-weighted analysis. Based on the MR analysis, the immune mechanism of inflammatory factors in DN was further explored using immune cell infiltration analysis. MR analysis indicated a positive causal relationship between DN and IL1A, caspase 8 (CASP8), macrophage colony-stimulating factor 1, IL10, STAM-binding protein, and tumor necrosis factor ligand superfamily member 12 (TNFSF12) and a negative causal relationship between DN and cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. The pathogenic mechanism of CASP8 may involve the recruitment of CD4+ T cells and macrophages for DN infiltration. In this study, we found a causal relationship between DN and IL1A, CASP8, macrophage colony-stimulating factor 1, IL10, STAM-binding protein, TNFSF12, cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. Bioinformatic immune infiltration analysis further revealed that CASP8 regulates DN by influencing the infiltration of immune cells, such as T cells and macrophages.


Assuntos
Biologia Computacional , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Análise da Randomização Mendeliana , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/imunologia , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Inflamação/genética , Inflamação/sangue , Caspase 8/genética
8.
Am J Physiol Renal Physiol ; 326(6): F1054-F1065, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695075

RESUMO

Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Vacinas de Subunidades Antigênicas , Animais , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/imunologia , Masculino , Vacinas de Subunidades Antigênicas/farmacologia , Vacinas de Subunidades Antigênicas/imunologia , Albuminúria/prevenção & controle , Camundongos Endogâmicos C57BL , Angiopoietina-2/metabolismo , Camundongos , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/imunologia , Proteínas Angiogênicas/metabolismo , Vacinas de Subunidades Proteicas
9.
Front Immunol ; 15: 1365226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812511

RESUMO

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods: A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results: Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion: Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.


Assuntos
Nefropatias Diabéticas , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Feminino , Pessoa de Meia-Idade , Masculino , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Idoso , Adulto , Inflamação/imunologia , Rim/patologia , Rim/imunologia , Camundongos Endogâmicos C57BL , Progressão da Doença
10.
Int Immunopharmacol ; 133: 112044, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648716

RESUMO

BACKGROUND: The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS: By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS: A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION: The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.


Assuntos
Biologia Computacional , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Receptores de Interleucina-8B , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/genética , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos
11.
Int Urol Nephrol ; 56(8): 2769-2778, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520496

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the diabetic microvascular complications with complex pathophysiology, and exploring the landscape of immune dysregulation in DN is valuable for pathogenesis and disease treatment. We crystallized possible inflammatory exposures into 91 circulating inflammatory proteins and 109 blood immune cells; and assessed the causal relationship between inflammation and DN using Mendelian randomization (MR). METHODS: Based on publicly available genetic data, we explored causal associations between inflammation and DN risk by two-sample MR analysis. Genome-wide association study (GWAS) summary statistics for 91 circulating inflammatory proteins, 109 immune cells absolute counts, and DN were acquired from the GWAS Catalog. Inverse Variance Weighted (IVW) was the main MR method, while MR-Egger and MR-pleiotropy residuals and outliers (MR-PRESSO) were utilized for sensitivity analysis. Cochrane's Q was used to test for heterogeneity. The leave-one-out method ensured the stability of the MR results. RESULTS: This study revealed that higher levels of TNF-related activation-induced cytokine and tumor necrosis factor ligand superfamily member 14 were possibly associated with the increased risk of DN according to the IVW approach, with estimated odds ratios (OR) of 1.287 (95% confidence interval [CI] 1.051 to 1.577, P = 0.015) and 1.249 (95% CI 1.018 to 1.532, P = 0.033). Five immune cell traits were identified that might be linked to increased DN risk, including the higher absolute counts of HLA DR+ natural killer cell (OR = 1.248, 95% CI 1.055 to 1.476, P = 0.010), IgD+ CD38+ B cell (OR = 1.148, 95% CI 1.033 to 1.276, P = 0.010), CD25++ CD8+ T cell (OR = 1.159, 95% CI 1.032 to 1.302, P = 0.013), CD4- CD8- T cell (OR = 1.226, 95% CI 1.032 to 1.457, P = 0.020), and IgD- CD38- B cell (OR = 1.182, 95% CI 1.009 to 1.386, P = 0.039). In addition, elevated levels of interleukin-1 alpha (OR = 0.712, 95% CI 0.514 to 0.984, P = 0.040) and unswitched memory B cell (OR = 0.797, 95% CI 0.651 to 0.974, P = 0.027) may reduce the risk of developing DN. CONCLUSION: We identified inflammation-related exposures that may be associated with the risk of DN at the level of genetic prediction, which contributes to a better understanding of the etiologic of DN and facilitates the development of targeted therapies for DN.


Assuntos
Nefropatias Diabéticas , Inflamação , Análise da Randomização Mendeliana , Humanos , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/genética , Estudo de Associação Genômica Ampla
12.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446007

RESUMO

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Assuntos
Acetamidas , Antagonistas do Receptor A2 de Adenosina , Polaridade Celular , Fatores Quimiotáticos , Nefropatias Diabéticas , Glomérulos Renais , Macrófagos , Purinas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Fatores Quimiotáticos/antagonistas & inibidores , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2B de Adenosina , Acetamidas/farmacologia , Purinas/farmacologia , Animais , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética
13.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362050

RESUMO

Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1ß, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células Supressoras Mieloides , Animais , Camundongos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia
14.
Kidney360 ; 3(12): 2059-2076, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36591362

RESUMO

Background: Diabetic kidney disease (DKD) is the most common cause of kidney failure in the world, and novel predictive biomarkers and molecular mechanisms of disease are needed. Endothelial cell-specific molecule-1 (Esm-1) is a secreted proteoglycan that attenuates inflammation. We previously identified that a glomerular deficiency of Esm-1 associates with more pronounced albuminuria and glomerular inflammation in DKD-susceptible relative to DKD-resistant mice, but its contribution to DKD remains unexplored. Methods: Using hydrodynamic tail-vein injection, we overexpress Esm-1 in DKD-susceptible DBA/2 mice and delete Esm-1 in DKD-resistant C57BL/6 mice to study the contribution of Esm-1 to DKD. We analyze clinical indices of DKD, leukocyte infiltration, podocytopenia, and extracellular matrix production. We also study transcriptomic changes to assess potential mechanisms of Esm-1 in glomeruli. Results: In DKD-susceptible mice, Esm-1 inversely correlates with albuminuria and glomerular leukocyte infiltration. We show that overexpression of Esm-1 reduces albuminuria and diabetes-induced podocyte injury, independent of changes in leukocyte infiltration. Using a complementary approach, we find that constitutive deletion of Esm-1 in DKD-resistant mice modestly increases the degree of diabetes-induced albuminuria versus wild-type controls. By glomerular RNAseq, we identify that Esm-1 attenuates expression of kidney disease-promoting and interferon (IFN)-related genes, including Ackr2 and Cxcl11. Conclusions: We demonstrate that, in DKD-susceptible mice, Esm-1 protects against diabetes-induced albuminuria and podocytopathy, possibly through select IFN signaling. Companion studies in patients with diabetes suggest a role of Esm-1 in human DKD.


Assuntos
Albuminúria , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células Endoteliais , Inflamação , Animais , Camundongos , Albuminúria/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Suscetibilidade a Doenças/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fatores de Transcrição/metabolismo
15.
Front Immunol ; 12: 733808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925317

RESUMO

Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.


Assuntos
Polaridade Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nefrite/complicações , Nefrite/tratamento farmacológico , Fitoterapia/métodos , Substâncias Protetoras/administração & dosagem , Quercetina/análogos & derivados , Animais , Células Cultivadas , Nefropatias Diabéticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite/imunologia , Quercetina/administração & dosagem , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Resultado do Tratamento
16.
Am J Physiol Renal Physiol ; 321(6): F757-F770, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719947

RESUMO

The pathogenesis of diabetic nephropathy (DN) is related to macrophage (Mφ) recruitment to the kidneys, tumor necrosis factor-α (TNF-α) production, and oxidative stress. Toll-like receptor 9 (TLR9) activation is reportedly involved in systemic inflammation, and it exacerbates this condition in metabolic syndrome. Therefore, we hypothesized that TLR9 plays a role in the pathogenesis of DN. Two subsets of kidney Mφs in DN model (db/db) mice were analyzed using flow cytometry to evaluate their distribution and TLR9 expression and function. Mice were administered the CCR2 antagonist INCB3344 for 8 wk; changes in Mφ distribution and function and its therapeutic effects on DN pathology were examined. Bone marrow-derived CD11bhigh (BM-Mφ) and tissue-resident CD11blow Mφs (Res-Mφ) were identified in the mouse kidneys. As DN progressed, the BM-Mφ number, TLR9 expression, and TNF-α production increased significantly. In Res-Mφs, reactive oxygen species (ROS) production and phagocytic activity were enhanced. INCB3344 decreased albuminuria, serum creatinine level, BM-Mφ abundance, TLR9 expression, and TNF-α production by BM-Mφs and ROS production by Res-Mφs. Both increased activation of BM-Mφ via TLR9 and TNF-α production and increased ROS production by Res-Mφs were involved in DN progression. Thus, inactivating Mφs and their TLR9 expression by INCB3344 is a potential therapeutic strategy for DN.NEW & NOTEWORTHY We classified kidney macrophages (Mφs) into bone marrow-derived Mφs (BM-Mφs) expressing high CD11b and tissue-specific resident Mφ (Res-Mφs) expressing low CD11b. In diabetic nephropathy (DN) model mice, Toll-like receptor 9 (TLR9) expression and TNF-α production via TLR9 activation in BM-Mφs and ROS production in Res-Mφs were enhanced. Furthermore, CCR2 antagonist suppressed the kidney infiltration of BM-Mφs and their function and the ROS production by Res-Mφs, with concomitant TLR9 suppression. Our study presents a new therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pirrolidinas/farmacologia , Receptores CCR2/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Rim/imunologia , Rim/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores CCR2/metabolismo , Receptores para Leptina/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
Pharm Res ; 38(11): 1807-1820, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34773184

RESUMO

PURPOSE: Diabetic nephropathy (DN), one of severe diabetic complications in the diabetes, is the main cause of end stage renal disease (ESRD). Notably, the currently available medications used to treat DN remain limited. Here, we determined whether berberine (BBR) could enhance the anti-diabetic nephropathy activities of metformin (Met) and explored its possible mechanisms. METHOD: The anti-diabetic nephropathy properties were systematically analyzed in the diabetic db/db mice treated with Met, BBR or with combination of Met and BBR. RESULTS: We found that both single Met and BBR treatments, and combination therapy could lower blood glucose, and ameliorate insulin resistance. The improvement of lipids metabolism by co-administration was more evident, as indicated by reduced serum cholesterol and less fat accumulation in the liver. Further, it was found that Met and BBR treatments, and co-administration could attenuate the progression of DN. However, anti-diabetic nephropathy activities of Met were enhanced when combined with BBR, as evidenced by improved renal function and histological abnormalities of diabetic kidney. Mechanistically, BBR enhanced renal-protective effects of Met primarily through potently promoting expression of Trib1, which subsequently downregulated the increased protein levels of CCAAT/enhancer binding protein α (C/EBPα), and eventually inhibited fatty synthesis proteins and nuclear factor kappa-B (NF-κB) signaling. CONCLUSION: Our data provide novel insight that co-administration of BBR and Met exerts a preferable activity of anti-diabetic nephropathy via collectively enhancing lipolysis and inhibiting inflammation. Combination therapy with these two drugs may provide an effective therapeutic strategy for the medical treatment of diabetic nephropathy.


Assuntos
Berberina/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/agonistas , Metformina/farmacologia , Nefrite/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Berberina/uso terapêutico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Masculino , Metformina/uso terapêutico , Camundongos , Nefrite/genética , Nefrite/imunologia , Nefrite/patologia , Proteínas Serina-Treonina Quinases/metabolismo
18.
Eur J Pharmacol ; 910: 174468, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34478692

RESUMO

Acute kidney injury (AKI) is one of the major complications with increased oxidative stress and inflammation in diabetic patients. Hyperglycemia stimulates the formation of advanced glycation end products (AGEs). However, hyperglycemia directly triggers the interaction between AGEs and transmembrane AGEs receptors (RAGE), which enhances oxidative stress and increases the production of inflammatory substances. Therefore, diabetes plays a pivotal role in kidney injury. Hydralazine, a vasodilator and antihypertensive drug, was found to have the ability to reduce ROS, oxidative stress, and inflammation. We applied Hydralazine co-culture with AGEs in rat mesangial cells (RMC) and to renal ischemia/reperfusion(I/R) injury models in streptozotocin-induced diabetic rats. Hydralazine significantly decreased AGEs-induced RAGE, iNOS, and COX-2 expressions in RMC. Compared to the diabetic with AKI group, hydralazine decreased inflammation-related protein, and JAK2, STAT3 signaling in rat kidney tissue. Our studies indicate that Hydralazine has the potential to become a beneficial drug in the treatment of diabetic acute kidney injury.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hidralazina/farmacologia , Nefrite/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Células Cultivadas , Técnicas de Cocultura , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/imunologia , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/patologia , Produtos Finais de Glicação Avançada , Humanos , Hidralazina/uso terapêutico , Masculino , Células Mesangiais , Nefrite/imunologia , Nefrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Cultura Primária de Células , Ratos , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
19.
Hum Immunol ; 82(12): 960-967, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538530

RESUMO

OBJECTIVE: To explore the effect of LINC00323 on the polarization of M1 macrophages in diabetic nephropathy. To study the effect and biological mechanism of LINC00323 on the occurrence and development of diabetic nephropathy. METHODS: We used clinical samples to analyze the correlation between macrophage polarization and the occurrence and development of diabetic nephropathy. In addition, we used bioinformatics to analyze the key molecules of macrophage polarization. We then verified the key pathways that promote the M1 polarization of macrophages at the level of cell biology. And we verify the effectiveness of treatment against this target in animal experiments. RESULTS: We analyzed in clinical samples that the expression of inflammatory factors (TNF-α and IL-6) increased in patients with diabetic nephropathy. In addition, we found that the expression of M1 marker protein CD86 increased through PCR and western blot analysis. We found a key target (LINC00323) through bioinformatics. The expression of LINC00323 in patients' blood samples is also at a high level. We further explored the mechanism of LINC00323 involved in the polarization of M1 macrophages at the level of cellular molecular biology, and found that it is closely related to the PI3K/AKT signaling pathway. In animal models, we found that inhibiting the expression of LINC00323 can reduce the damage of diabetic nephropathy. CONCLUSION: We found that LINC00323 mediates the polarization of M1 macrophages through the PI3K/AKT signaling pathway. LINC00323 plays an important role in the occurrence and development of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/imunologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , RNA Longo não Codificante/imunologia , Transdução de Sinais/imunologia , Animais , Camundongos
20.
Bioengineered ; 12(1): 6655-6673, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506229

RESUMO

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), but the pathogenesis is not completely understood. Tubulointerstitial injury plays critical roles in the development and progression of DKD. The present study aimed to investigate the profile of tubulointerstitial immune cell infiltration and reveal the underlying mechanisms between tubular cell injury and interstitial inflammation in DKD using bioinformatics strategies. First, xCell analysis identified immune cells displaying significant changes in the DKD tubulointerstitium, including upregulated CD4+ T cells, Th2 cells, CD8+ T cells, M1 macrophages, activated dendritic cells (DCs) and conventional DCs, as well as downregulated Tregs. Second, pyroptosis was identified as the main form of cell death compared with other forms of programmed cell death. Vascular cell adhesion protein 1 (VCAM1) was identified as the top ranked hub gene. The correlation analysis showed that VCAM1 was significantly positively correlated with pyroptosis and infiltrated immune cells in the tubulointerstitium. Upregulation of VCAM1 in the DKD tubulointerstitium was further verified in European Renal cDNA Bank cohort and was observed to negatively correlate with the glomerular filtration rate (GFR). Our in vitro study validated increased VCAM1 expression in HK-2 cells under diabetic conditions, and pyroptosis inhibition by disulfiram decreased VCAM1 expression, inflammatory cytokine release and fibrosis. In conclusion, our study identified upregulated VCAM1 expression in renal tubular cells, which might interact with infiltrated immune cells, thus promoting fibrosis. The FDA-approved drug disulfiram might improve fibrosis in DKD by targeting tubular pyroptosis and VCAM1 expression.


Assuntos
Nefropatias Diabéticas , Molécula 1 de Adesão de Célula Vascular , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/patologia , Dissulfiram , Humanos , Túbulos Renais/imunologia , Túbulos Renais/patologia , Leucócitos/imunologia , Piroptose/genética , Piroptose/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...