Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.519
Filtrar
1.
Biomaterials ; 313: 122767, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39216327

RESUMO

Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation. We pursue intravascular drug delivery strategies that target the underlying cause of restenosis - intimal hyperplasia resulting from stress-induced vascular smooth muscle cell switching from the healthy contractile into a pathological synthetic phenotype. We have established MAPKAP kinase 2 (MK2) as a driver of this phenotype switch and seek to establish convective and contact transfer (coated balloon) methods for MK2 inhibitory peptide delivery to sites of angioplasty. Using a flow loop bioreactor, we showed MK2 inhibition in ex vivo arteries suppresses smooth muscle cell phenotype switching while preserving vessel contractility. A rat carotid artery balloon injury model demonstrated inhibition of intimal hyperplasia following MK2i coated balloon treatment in vivo. These studies establish both convective and drug coated balloon strategies as promising approaches for intravascular delivery of MK2 inhibitory formulations to improve efficacy of balloon angioplasty.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Ratos Sprague-Dawley , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Peptídeos/química , Peptídeos/farmacologia , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Angioplastia com Balão/métodos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Sistemas de Liberação de Medicamentos , Hiperplasia/prevenção & controle , Angioplastia , Neointima/prevenção & controle , Neointima/patologia
2.
Acta Cir Bras ; 39: e397324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258620

RESUMO

PURPOSE: To compare the endothelial coverage of different stents in porcine carotid arteries. Research problem: How effective are polyurethane stents (PU) and PU + rapamycin (PU + RAPA) compared to bare-metal stents on endothelial coverage by neointima in pigs after 28 days? METHODS: The methodology had two phases for an interventional, experimental, prospective study, with three Moura pigs, 12 weeks old and weighing between 19 and 22.5 kg. In phase I, eight stents were implanted in carotid arteries; three stents coated with PU, three coated with PU + RAPA, and two without coating. After 28 days, phase II was carried out, consisting of euthanasia, removal of the stents, to evaluate the exposed area of the stent struts, and the percentage of endothelialization through optical microscopy and scanning electron microscopy. RESULTS: The eight stents implanted with ultrasound sizing and post-dilation with a larger diameter balloon were analyzed by Doppler ultrasound, intravascular ultrasound, and angiography after 28 days. CONCLUSIONS: This study showed complete endothelial coverage by the endoluminal neointima of the stent struts, good integration and coverage with the arterial wall, with no exposed struts showing the presence of intimal hyperplasia (whitish tissue).


Assuntos
Stents Farmacológicos , Sirolimo , Animais , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Suínos , Artérias Carótidas/cirurgia , Artérias Carótidas/efeitos dos fármacos , Neointima/patologia , Microscopia Eletrônica de Varredura , Poliuretanos , Estudos Prospectivos , Endotélio Vascular/efeitos dos fármacos , Reprodutibilidade dos Testes , Polímeros , Modelos Animais , Fatores de Tempo , Materiais Revestidos Biocompatíveis
3.
EuroIntervention ; 20(18): e1173-e1183, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279514

RESUMO

BACKGROUND: The 12-month outcomes of BIOMAG-I - the first-in-human study investigating the third-generation drug-eluting resorbable magnesium scaffold (DREAMS 3G) - showed promising results regarding clinical outcomes and late lumen loss. AIMS: The current study aimed to investigate vascular healing parameters assessed by optical coherence tomography (OCT) and intravascular ultrasound (IVUS), focusing on strut visibility, vessel and scaffold areas, and neointimal growth patterns. METHODS: This is a BIOMAG-I substudy including patients with available serial OCT and IVUS data. We conducted a frame-based analysis of OCT findings in conjunction with IVUS-derived vessel and scaffold areas, evaluating the qualitative and quantitative aspects of vascular healing. RESULTS: Among the 116 patients enrolled in this trial, 56 patients treated with DREAMS 3G were included in the analysis. At 12 months, OCT imaging revealed that 99.0% of the struts were invisible, and no malapposed struts were depicted. While the vessel area showed no significant difference between the timepoints, the minimum lumen area significantly decreased from post-percutaneous coronary intervention to 6 months (6.88 mm2 to 4.75 mm2; p<0.0001), but no significant changes were observed between 6 and 12 months. Protruding neointimal tissue (PNT) - a unique neointimal presentation observed following resorbable magnesium scaffold implantation - was observed in 89.3% of the study patients at 12 months, and its area exhibited a 47.4% decrease from 6 to 12 months. CONCLUSIONS: This imaging substudy revealed that, at 12-month follow-up, virtually all struts of the DREAMS 3G scaffold became invisible, without evident malapposition. The vascular healing response to DREAMS 3G implantation also appeared favourable up to 12 months, which is indicated by advanced strut degradation and spontaneous regressing PNT between 6 and 12 months.


Assuntos
Implantes Absorvíveis , Doença da Artéria Coronariana , Vasos Coronários , Stents Farmacológicos , Magnésio , Intervenção Coronária Percutânea , Tomografia de Coerência Óptica , Ultrassonografia de Intervenção , Humanos , Tomografia de Coerência Óptica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Ultrassonografia de Intervenção/métodos , Idoso , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/diagnóstico por imagem , Intervenção Coronária Percutânea/métodos , Intervenção Coronária Percutânea/instrumentação , Vasos Coronários/diagnóstico por imagem , Resultado do Tratamento , Neointima , Alicerces Teciduais
4.
Int Heart J ; 65(5): 945-955, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39261031

RESUMO

Excessive neointimal hyperplasia (NIH) of coronary vessels in patients is the main cause of restenosis (RS) after percutaneous coronary intervention (PCI). This study aimed to identify the regulatory genes related to NIH in a rat carotid artery balloon injury model.We established a rat model and performed RNA sequencing to identify differentially expressed long non-coding RNAs (DElncRNAs) and differentially expressed message RNAs (DEmRNAs). Immune cells were analyzed using a murine Microenvironment Cell Population counter. The Pearson correlation between DEmRNAs, DElncRNAs, and immune cells was analyzed, followed by function enrichment analysis. Core DEmRNA was identified using Cytoscape. Next, a core lncRNAs-mRNAs-immune cell regulatory network was constructed. NIH-related gene sets from the Gene Expression Omnibus and GeneCards databases were used for validation.A total of 2,165 DEmRNAs and 705 DElncRNAs were identified in rat carotid artery tissue. Four key immune cells were screened out, including mast cells, vessels, endothelial cells, and fibroblasts. Based on the Pearson correlation between DEmRNAs, DElncRNAs and 4 key immune cells, 246 DEmRNAs and 93 DElncRNAs were obtained. DEmRNAs that interact with lncRNAs were mainly involved in the cell cycle, MAPK signaling pathway, and PI3K-Akt signaling pathway. A core lncRNA-mRNA-immune cell regulatory network was constructed, including 9 mRNAs, 4 lncRNAs, and fibroblasts. External datasets validation confirmed the significant correlation of both these mRNAs and lncRNAs with NIH.In this study, an lncRNA-mRNA-immune cell regulatory network related to NIH was constructed, which provided clues for exploring the potential mechanism of RS in cardiovascular diseases.


Assuntos
Lesões das Artérias Carótidas , Modelos Animais de Doenças , Redes Reguladoras de Genes , Hiperplasia , Neointima , RNA Longo não Codificante , RNA Mensageiro , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/imunologia , Ratos , Neointima/patologia , Neointima/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Masculino , Ratos Sprague-Dawley , Artérias Carótidas/patologia , Artérias Carótidas/metabolismo
5.
Eur J Pharmacol ; 983: 176824, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265882

RESUMO

Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.


Assuntos
Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2 , Epóxido Hidrolases , Hiperplasia , Músculo Liso Vascular , Miócitos de Músculo Liso , Ratos Sprague-Dawley , Animais , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Masculino , Ratos , Ciclo-Oxigenase 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Movimento Celular/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Túnica Íntima/patologia , Túnica Íntima/metabolismo , Túnica Íntima/efeitos dos fármacos , Becaplermina/farmacologia , Neointima/patologia , Neointima/metabolismo , Neointima/tratamento farmacológico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia
6.
Eur J Pharmacol ; 982: 176947, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39209097

RESUMO

The proliferative and migratory abilities of vascular smooth muscle cells (VSMCs) play a crucial role in neointima formation following vascular injury. Skp2 facilitates proliferation and migration in cells through cell cycle regulation, presenting an important therapeutic target for atherosclerosis, pulmonary hypertension, and vascular restenosis. This study aimed to identify a natural product capable of inhibiting neointima formation post vascular injury. Here, we demonstrate that troxerutin, a flavonoid, significantly reduced viability and downregulated Skp2 in VSMCs. Moreover, troxerutin exhibited anti-proliferative effects on VSMCs and mitigated neointima formation. These findings collectively elucidate the intrinsic mechanism of troxerutin in treating atherosclerosis, pulmonary hypertension, and vascular restenosis by targeting the E3-linked enzyme Skp2.


Assuntos
Proliferação de Células , Hidroxietilrutosídeo , Músculo Liso Vascular , Neointima , Proteínas Quinases Associadas a Fase S , Hidroxietilrutosídeo/análogos & derivados , Hidroxietilrutosídeo/farmacologia , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Neointima/tratamento farmacológico , Neointima/patologia , Neointima/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ratos
7.
Nat Commun ; 15(1): 7398, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191789

RESUMO

Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRß signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRß and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRß signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRß and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRßY692 negatively regulates PDGFRß signaling activation. The levels of both PTPN14 and phospho-PDGFRßY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRßY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRß activation.


Assuntos
Hiperplasia , Miócitos de Músculo Liso , Neointima , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Vasos Coronários/patologia , Vasos Coronários/metabolismo , Hiperplasia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Neointima/patologia , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
8.
Vasc Med ; 29(5): 470-482, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39212227

RESUMO

Introduction: Renin and prorenin promote the proliferation of vascular smooth muscle cells (VSMCs) through the (pro)renin receptor, or (P)RR, to promote restenosis occurrence. This study aimed to explore whether prorenin promoted the proliferation of VSMCs in a (P)RR-mediated Ang II-independent manner. Methods: Losartan and PD123319 were used to block the interaction between (P)RR and angiotensin in vitro. Cells were treated with renin, platelet-derived growth factor (PDGF), or RNAi-(P)RR, either jointly or individually. Cell proliferation was measured via Cell Counting Kit-8 (CCK-8) and flow cytometry methods; moreover, real-time polymerase chain reaction (RT-PCR) and Western blot (WB) assays were used to detect the expression of cyclin D1, proliferating cell nuclear antigen (PCNA), (P)RR, NOX1, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling proteins. Immunofluorescence staining was conducted to measure the expression of (P)RR, and the levels of renin, PDGF-BB, inflammatory factors, and oxidative stress were determined by using enzyme-linked immunosorbent assay (ELISA). Moreover, a balloon catheter was used to enlarge the carotid artery of the Sprague Dawley rats. PRO20 was applied to identify angiotensin II (Ang II). The hematoxylin and eosin, RT-PCR, and WB results validated the cell assay results. Results: Renin promoted the proliferation of rat VSMCs by enhancing cell viability and cell cycle protein expression when Ang II was blocked, but silencing (P)RR inhibited this effect. Furthermore, renin enhanced NOX1-mediated oxidative stress and inflammation by activating the extracellular signal-regulated kinase 1/2 (ERK1/2)-AKT pathway in vitro. Similarly, the inhibition of (P)RR resulted in the opposite phenomenon. Importantly, the inhibition of (P)RR inhibited neointimal hyperplasia in vivo after common carotid artery injury by restraining NOX1-mediated oxidative stress through the downregulation of the ERK1/2-AKT pathway. The animal study confirmed these findings. Conclusion: Renin and (P)RR induced VSMC proliferation and neointimal hyperplasia by activating oxidative stress, inflammation, and the ERK1/2-AKT pathway in an Ang II-independent manner.


Assuntos
Lesões das Artérias Carótidas , Hiperplasia , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Estresse Oxidativo , Receptor de Pró-Renina , Receptores de Superfície Celular , Renina , Animais , Masculino , Ratos , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais
9.
Nat Commun ; 15(1): 6919, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134547

RESUMO

Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). It is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice. Mechanistically, SENP1 deficiency in VSMCs increases SRF SUMOylation at lysine 143, reducing SRF lysosomal localization concomitant with increased nuclear accumulation and switching a contractile phenotype-responsive SRF-myocardin complex to a synthetic phenotype-responsive SRF-ELK1 complex. SUMOylated SRF and phospho-ELK1 are increased in VSMCs from coronary arteries of CVD patients. Importantly, ELK inhibitor AZD6244 prevents the shift from SRF-myocardin to SRF-ELK complex, attenuating VSMC synthetic phenotypes and neointimal formation in Senp1-deficient mice. Therefore, targeting the SRF complex may have a therapeutic potential for the treatment of CVD.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas Nucleares , Fenótipo , Fator de Resposta Sérica , Sumoilação , Remodelação Vascular , Animais , Humanos , Masculino , Camundongos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Transativadores/metabolismo , Transativadores/genética
10.
Nat Cardiovasc Res ; 3(5): 541-557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39195932

RESUMO

Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.


Assuntos
Artéria Torácica Interna , Animais , Humanos , Artéria Torácica Interna/transplante , Artéria Torácica Interna/metabolismo , Análise de Célula Única , Artéria Radial/transplante , Artéria Radial/metabolismo , Artéria Gastroepiploica/metabolismo , Artéria Gastroepiploica/transplante , Miócitos de Músculo Liso/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neointima/patologia , Neointima/metabolismo , Ponte de Artéria Coronária/métodos , Comunicação Celular , Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Camundongos , Transdução de Sinais , Transcriptoma , Vasoconstrição/efeitos dos fármacos , Células Cultivadas , Hiperplasia/metabolismo , Hiperplasia/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
11.
Cells ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39195275

RESUMO

Restenosis following percutaneous revascularization is a major challenge in patients with insulin resistance and diabetes. Currently, the vascular effects of insulin are not fully understood. In vitro, insulin's effects on endothelial cells (ECs) are beneficial, whereas on vascular smooth muscle cells (SMCs), they are mitogenic. We previously demonstrated a suppressive effect of insulin on neointimal growth under insulin-sensitive conditions that was abolished in insulin-resistant conditions. Here, we aimed to determine the cell-specific effects of insulin on neointimal growth in a model of restenosis under insulin-sensitive and insulin-resistant conditions. Vascular cell-specific insulin receptor (IR)-deficient mice were fed a low-fat diet (LFD) or a high-fat, high-sucrose diet (HFSD) and implanted with an insulin pellet or vehicle prior to femoral artery wire injury. In insulin-sensitive conditions, insulin decreased neointimal growth only in controls. However, under insulin-resistant conditions, insulin had no effect in either control, EC-specific or SMC-specific IR-deficient mice. These data demonstrate that EC and SMC IRs are required for the anti-restenotic effect of insulin in insulin-sensitive conditions and that, in insulin resistance, insulin has no adverse effect on vascular SMCs in vivo.


Assuntos
Modelos Animais de Doenças , Células Endoteliais , Resistência à Insulina , Insulina , Receptor de Insulina , Animais , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Receptor de Insulina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/patologia , Neointima/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Camundongos Endogâmicos C57BL
12.
Animal Model Exp Med ; 7(4): 397-407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970173

RESUMO

BACKGROUND: Restenosis frequently occurs after percutaneous angioplasty in patients with vascular occlusion and seriously threatens their health. Substantial evidence has revealed that preventing vascular smooth muscle cell proliferation using a drug-eluting stent is an effective approach to improve restenosis. Cucurbitacins have been demonstrated to exert an anti-proliferation effect in various tumors and a hypotensive effect. This study aims to investigate the role of cucurbitacins extracted from Cucumis melo L. (CuECs) and cucurbitacin B (CuB) on restenosis. METHODS: C57BL/6 mice were subjected to left carotid artery ligation and subcutaneously injected with CuECs or CuB for 4 weeks. Hematoxylin-Eosin, immunofluorescence and immunohistochemistry staining were used to evaluate the effect of CuECs and CuB on neointimal hyperplasia. Western blot, real-time PCR, flow cytometry analysis, EdU staining and cellular immunofluorescence assay were employed to measure the effects of CuECs and CuB on cell proliferation and the cell cycle in vitro. The potential interactions of CuECs with cyclin A2 were performed by molecular docking. RESULTS: The results demonstrated that both CuECs and CuB exhibited significant inhibitory effects on neointimal hyperplasia and proliferation of vascular smooth muscle cells. Furthermore, CuECs and CuB mediated cell cycle arrest at the S phase. Autodocking analysis demonstrated that CuB, CuD, CuE and CuI had high binding energy for cyclin A2. Our study also showed that CuECs and CuB dramatically inhibited FBS-induced cyclin A2 expression. Moreover, the expression of cyclin A2 in CuEC- and CuB-treated neointima was downregulated. CONCLUSIONS: CuECs, especially CuB, exert an anti-proliferation effect in VSMCs and may be potential drugs to prevent restenosis.


Assuntos
Proliferação de Células , Ciclina A2 , Hiperplasia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Neointima , Animais , Proliferação de Células/efeitos dos fármacos , Neointima/tratamento farmacológico , Neointima/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Ciclina A2/metabolismo , Hiperplasia/tratamento farmacológico , Hiperplasia/prevenção & controle , Masculino , Camundongos , Cucurbitacinas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-39008640

RESUMO

BACKGROUND: Hemodialysis is a prevalent treatment for the end-stage chronic kidney disease (CKD) worldwide. The primary arteriovenous fistula (AVF), widely considered the optimal hemodialysis access method, fails to mature in up to two-thirds of the cases. The etiology of the early AVF failure, defined as thrombosis or inability to use within three months post-creation remains less understood, and is influenced by various factors including patient demographics, surgical techniques, and genetic predispositions. Neointimal hyperplasia is a primary histological finding in stenotic lesions leading to the AVF failure. However, there are insufficient data on the cellular phenotypes and the impact of the preexisting CKD-related factors. This study aims to investigate the histological, morphometric, and immunohistochemical alterations in the fistula vein, pre-, peri-, and post-early failure. MATERIALS AND METHODS: Eighty-nine stage 4-5 CKD patients underwent standard preoperative assessment, including the Doppler ultrasound, before a typical radio-cephalic AVF creation. Post-failure, a new AVF was created proximally. The vein specimens were collected during the surgery, processed, and analyzed for morphometric analyses and various cellular markers, including Vimentin, TGF, and Ki 67. RESULTS: The study enrolled 89 CKD patients, analyzing various aspects of their condition and AVF failures. The histomorphometric analysis revealed substantial venous luminal stenosis and varied endothelial changes. The immunohistologic analysis showed differential marker expressions pre- and post-AVF creation. CONCLUSION: This study highlights the complexity of the early AVF failures in CKD patients. The medial hypertrophy emerged as a significant preexisting lesion, while the postoperative analyses indicated a shift towards neointimal hyperplasia. The research underscores the nuanced interplay of vascular remodeling, endothelial damage, and cellular proliferation in the AVF outcomes.


Assuntos
Derivação Arteriovenosa Cirúrgica , Hiperplasia , Neointima , Diálise Renal , Humanos , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neointima/patologia , Hiperplasia/patologia , Imuno-Histoquímica , Adulto , Falha de Tratamento , Fatores de Tempo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia , Falência Renal Crônica/complicações , Oclusão de Enxerto Vascular/patologia , Oclusão de Enxerto Vascular/etiologia , Grau de Desobstrução Vascular , Antígeno Ki-67/metabolismo , Antígeno Ki-67/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Veias/patologia , Veias/diagnóstico por imagem , Remodelação Vascular
14.
J Am Heart Assoc ; 13(15): e034203, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39023067

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.


Assuntos
Proliferação de Células , Receptores de Inositol 1,4,5-Trifosfato , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Animais , Masculino , Camundongos , Becaplermina/farmacologia , Becaplermina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Movimento Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Curr Vasc Pharmacol ; 22(5): 342-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910413

RESUMO

BACKGROUND: Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS. OBJECTIVE: This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS. METHODS: Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia. RESULTS: MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3. CONCLUSION: MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.


Assuntos
Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Fator de Transcrição E2F3 , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Doença Arterial Periférica , Ratos Sprague-Dawley , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Doença Arterial Periférica/genética , Doença Arterial Periférica/patologia , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/terapia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Células Cultivadas , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Estudos de Casos e Controles , Artéria Femoral/patologia , Artéria Femoral/metabolismo , Artéria Femoral/cirurgia , Artéria Femoral/fisiopatologia , Neointima , Feminino , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Idoso , Angioplastia com Balão/efeitos adversos , Apoptose/genética
16.
Arterioscler Thromb Vasc Biol ; 44(8): 1748-1763, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38934115

RESUMO

BACKGROUND: Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-ß (transforming growth factor-ß) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-ß activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-ß and to prevent it from activating its receptor. METHODS: We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS: In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-ß signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-ß antibody or additional SMC-specific loss of the TGF-ß receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS: In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-ß signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Transdução de Sinais , Tenascina , Remodelação Vascular , Animais , Humanos , Masculino , Camundongos , Angiotensina II , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/prevenção & controle , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertensão/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Tenascina/metabolismo , Tenascina/genética , Tenascina/deficiência , Fator de Crescimento Transformador beta/metabolismo
17.
Atherosclerosis ; 397: 117595, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38879387

RESUMO

BACKGROUND AND AIMS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors have been shown to reduce the risk of cardiovascular events independently of glycemic control. However, the possibility that SGLT2 inhibitors improve vascular restenosis is unknown. The aim of this study was to examine whether dapagliflozin could prevent neointima thickening following balloon injury and, if so, to determine the underlying mechanisms. METHODS: Saline, dapagliflozin (1.5 mg/kg/day), or losartan (30 mg/kg/day) was administered orally for five weeks to male Wistar rats. Balloon injury of the left carotid artery was performed a week after starting the treatment and rats were sacrificed 4 weeks later. The extent of neointima was assessed by histomorphometric and immunofluorescence staining analyses. Vascular reactivity was assessed on injured and non-injured carotid artery rings, changes of target factors by immunofluorescence, RT-qPCR, and histochemistry. RESULTS: Dapagliflozin and losartan treatments reduced neointima thickening by 32 % and 27 %, respectively. Blunted contractile responses to phenylephrine and relaxations to acetylcholine and down-regulation of eNOS were observed in the injured arteries. RT-qPCR investigations indicated an increased in gene expression of inflammatory (IL-1beta, VCAM-1), oxidative (p47phox, p22phox) and fibrotic (TGF-beta1) markers in the injured carotid. While these changes were not affected by dapagliflozin, increased levels of AT1R and NTPDase1 (CD39) and decreased levels of ENPP1 were observed in the restenotic carotid artery of the dapagliflozin group. CONCLUSIONS: Dapagliflozin effectively reduced neointimal thickening. The present data suggest that dapagliflozin prevents restenosis through interfering with angiotensin and/or extracellular nucleotides signaling. SGLT2 represents potential new target for limiting vascular restenosis.


Assuntos
Compostos Benzidrílicos , Lesões das Artérias Carótidas , Glucosídeos , Neointima , Ratos Wistar , Inibidores do Transportador 2 de Sódio-Glicose , Remodelação Vascular , Animais , Compostos Benzidrílicos/farmacologia , Masculino , Glucosídeos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Modelos Animais de Doenças , Losartan/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Artérias Carótidas/metabolismo , Ratos , Angioplastia com Balão/efeitos adversos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
18.
Biomed Pharmacother ; 177: 117022, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917756

RESUMO

BACKGROUND: The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS: EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS: The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-ß1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS: Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.


Assuntos
Lesões das Artérias Carótidas , Células Progenitoras Endoteliais , Hiperplasia , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Neointima , Ratos Sprague-Dawley , Animais , Células Progenitoras Endoteliais/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Neointima/patologia , Lesões das Artérias Carótidas/patologia , Masculino , Ratos
19.
Front Immunol ; 15: 1345199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911855

RESUMO

Background: The intimal hyperplasia (IH) and vascular remodelling that follows endovascular injury, for instance after post-angioplasty re-stenosis, results in downstream ischaemia and progressive end organ damage. Interferon gamma (IFNγ) is known to play a critical role in this process. In mouse models we have previously shown that fibrocytes expressing tissue factor (TF) are recruited early to the site of injury. Through thrombin generation and protease activated receptor-1 (PAR-1) activation, fibrocytes secrete angiopoietin-2, stimulate neointimal cell proliferation, inhibit apoptosis and induce CXCL-12 production, all of which contribute to the progressive IH that then develops. In this study we investigated the relationship between TF, angiopoietin-2 and IFNγ. Methods and results: IH developing in carotid arteries of wild-type mice 4 weeks after endoluminal injury contained a significant proportion of IFNγ+ fibrocytes and macrophages, which we show, using a previously defined adoptive transfer model, were derived from circulating CD34+ cells. IH did not develop after injury in IFNγ-deficient mice, except after transplantation of WT bone marrow or adoptive transfer of WT CD34+ cells. In vitro, CD34+ cells isolated from post-injury mice did not express IFNγ, but this was induced when provided with FVIIa and FX, and enhanced when prothrombin was also provided: In both cases IFNγ secretion was TF-dependent and mediated mainly through protease activated PAR-1. IFNγ was predominantly expressed by fibrocytes. In vivo, all IFNγ+ neointimal cells in WT mice co-expressed angiopoietin-2, as did the small numbers of neointimal cells recruited in IFNγ-/- mice. Adoptively transferred WT CD34+ cells treated with either an anti-TIE-2 antibody, or with siRNA against angiopoetin-2 inhibited the expression of IFNγ and the development of IH. Conclusion: TF-dependent angiopoietin-2 production by newly recruited fibrocytes, and to a lesser extent macrophages, switches on IFNγ expression, and this is necessary for the IH to develop. These novel findings enhance our understanding of the pathophysiology of IH and expose potential targets for therapeutic intervention.


Assuntos
Angiopoietina-2 , Hiperplasia , Interferon gama , Macrófagos , Camundongos Knockout , Neointima , Tromboplastina , Animais , Camundongos , Interferon gama/metabolismo , Angiopoietina-2/metabolismo , Neointima/patologia , Neointima/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Tromboplastina/metabolismo , Tromboplastina/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Fibroblastos/metabolismo , Lesões das Artérias Carótidas/imunologia , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo
20.
ACS Appl Mater Interfaces ; 16(26): 33159-33168, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912610

RESUMO

In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.


Assuntos
Bismuto , Ratos Sprague-Dawley , Rosuvastatina Cálcica , Sirolimo , Animais , Ratos , Sirolimo/química , Sirolimo/farmacologia , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/farmacocinética , Bismuto/química , Bismuto/farmacologia , Poliésteres/química , Masculino , Fístula Arteriovenosa/patologia , Nanopartículas Metálicas/química , Neointima/patologia , Nanopartículas/química , Humanos , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...