Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
J Agric Food Chem ; 72(32): 17824-17833, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088303

RESUMO

Sitobion miscanthi, the main species of wheat aphids, is one kind of harmful pest. Chemical insecticides are the important agrochemical products to effectively control wheat aphids. However, the broad application has led to serious resistance of pests to several insecticides, and understanding insecticide resistance mechanisms is critical for integrated pest management. In this study, SmUGGT1, a new uridine diphosphate (UDP)-glycosyltransferase (UGT) gene, was cloned and more strongly expressed in the SM-R (the resistant strain to imidacloprid) than in the SM-S (the susceptible strain to imidacloprid). The increased susceptibility to imidacloprid was observed after silencing SmUGGT1, indicating that it can be related to the resistance to imidacloprid. Subsequently, SmUGGT1 regulated post-transcriptionally in the coding sequences (CDs) by miR-81 was verified and involved in the resistance to imidacloprid in S. miscanthi. This finding is crucial in the roles of UGT involved in insecticide resistance management in pests.


Assuntos
Afídeos , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Nitrocompostos/farmacologia , Neonicotinoides/farmacologia , Inseticidas/farmacologia , Animais , Resistência a Inseticidas/genética , Afídeos/genética , Afídeos/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/parasitologia , Triticum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Infect Dis ; 24(1): 733, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054424

RESUMO

Elevated resistance to pyrethroids in major malaria vectors has led to the introduction of novel insecticides including neonicotinoids. There is a fear that efficacy of these new insecticides could be impacted by cross-resistance mechanisms from metabolic resistance to pyrethroids. In this study, after evaluating the resistance to deltamethrin, clothianidin and mixture of clothianidin + deltamethrin in the lab using CDC bottle assays, the efficacy of the new IRS formulation Fludora® Fusion was tested in comparison to clothianidin and deltamethrin applied alone using experimental hut trials against wild free-flying pyrethroid-resistant Anopheles funestus from Elende and field An. gambiae collected from Nkolondom reared in the lab and released in the huts. Additionally, cone tests on the treated walls were performed each month for a period of twelve months to evaluate the residual efficacy of the sprayed products. Furthermore, the L1014F-kdr target-site mutation and the L119F-GSTe2 mediated metabolic resistance to pyrethroids were genotyped on a subset of mosquitoes from the EHT to assess the potential cross-resistance. All Anopheles species tested were fully susceptible to clothianidin and clothianidin + deltamethrin mixture in CDC bottle assay while resistance was noted to deltamethrin. Accordingly, Fludora® Fusion (62.83% vs 42.42%) and clothianidin (64.42% vs 42.42%) induced significantly higher mortality rates in EHT than deltamethrin (42.42%) against free flying An. funestus from Elende in month 1 (M1) and no significant difference in mortality was observed between the first (M1) and sixth (M6) months of the evaluation (P > 0.05). However, lower mortality rates were recorded against An. gambiae s.s from Nkolondom (mortality rates 50%, 45.56% and 26.68%). In-situ cone test on the wall showed a high residual efficacy of Fludora® Fusion and clothianidin on the susceptible strain KISUMU (> 12 months) and moderately on the highly pyrethroid-resistant An. gambiae strain from Nkolondom (6 months). Interestingly, no association was observed between the L119F-GSTe2 mutation and the ability of mosquitoes to survive exposure to Fludora® Fusion, whereas a trend was observed with the L1014F-kdr mutation. This study highlights that Fludora® Fusion, through its clothianidin component, has good potential of controlling pyrethroid-resistant mosquitoes with prolonged residual efficacy. This could be therefore an appropriate tool for vector control in several malaria endemic regions.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Animais , Piretrinas/farmacologia , Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Camarões , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Malária/transmissão , Malária/prevenção & controle , Guanidinas/farmacologia , Nitrilas/farmacologia , Feminino , Tiazóis/farmacologia , Neonicotinoides/farmacologia , Habitação
3.
Pestic Biochem Physiol ; 203: 105996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084770

RESUMO

Thiacloprid, a neonicotinoid insecticide, has become one of the major control agents for the pine sawyer beetle, Monochamus alternatus Hope, however, the mechanism of detoxification is unknown. We demonstrate that glutathione S-transferases (GSTs) and nicotinic acetylcholine receptors (nAChRs) are involved in the rapid detoxification of thiacloprid in M. alternatus larvae. The activity of detoxification enzyme GSTs was significantly higher, while the activity of acetylcholinesterase (AChE) was inhibited under thiacloprid exposure. The inhibition of AChE activity led to lethal over-stimulation of the cholinergic synapse, which was then released by the rapid downregulation of nAChRs. Meanwhile, GSTs were overexpressed to detoxify thiacloprid accordingly. A total of 3 nAChR and 12 GST genes were identified from M. alternatus, among which ManAChRα2 and MaGSTs1 were predicted to confer thiacloprid tolerance. RNA interference (RNAi) was subsequently conducted to confirm the function of ManAChRα2 and MaGSTs1 genes in thiacloprid detoxification. The successful knock-down of the ManAChRα2 gene led to lower mortality of M. alternatus under LC30 thiacloprid treatment, and the suppression of the MaGSTs1 gene increased the mortality rate of M. alternatus. However, the mortality rate has no significant difference with controls when thiacloprid was fed together with both dsMaGSTs1 and dsManAChRα2. Molecular docking modeled the molecular basis for interaction between MaGSTs1/ManAChR and thiacloprid. This study highlights the important roles that ManAChRα2 and MaGSTs1 genes play in thiacloprid detoxification through transcriptional regulation and enzymatic metabolization, and proposes a new avenue for integrated pest management that combines pesticides and RNAi technology as an efficient strategy for M. alternatus control.


Assuntos
Besouros , Glutationa Transferase , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Tiazinas , Animais , Neonicotinoides/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Besouros/efeitos dos fármacos , Besouros/genética , Besouros/metabolismo , Tiazinas/farmacologia , Tiazinas/metabolismo , Tiazinas/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Inativação Metabólica , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Piridinas/farmacologia
4.
Open Biol ; 14(7): 240057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39043224

RESUMO

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Assuntos
Anopheles , Guanidinas , Inseticidas , Mosquitos Vetores , Neonicotinoides , Nitrocompostos , Receptores Nicotínicos , Animais , Anopheles/metabolismo , Anopheles/genética , Anopheles/efeitos dos fármacos , Neonicotinoides/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Inseticidas/farmacologia , Inseticidas/química , Nitrocompostos/farmacologia , Nitrocompostos/química , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Xenopus laevis , Ligantes , Piridinas/farmacologia , Malária/transmissão , Malária/parasitologia , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/metabolismo , Tiazinas/farmacologia , Tiazinas/química , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Feminino , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Imidazóis/farmacologia , Imidazóis/química
5.
PLoS One ; 19(6): e0290858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833488

RESUMO

The tarnished plant bug, (TPB) Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae) is a key pest of cotton in the midsouth region and some areas of the eastern United States. Its control methods have been solely based on chemical insecticides which has contributed to insecticidal resistance and shortened residual periods for control of this insect pest. This study was conducted over a two-year period and examined the efficacy and residual effect of four commercial insecticides including lambda-cyhalothrin (pyrethroid), acephate (organophosphate), imidacloprid (neonicotinoid), and sulfoxaflor (sulfoxamine). The effectiveness and residual effects of these insecticides were determined by application on cotton field plots on four different dates during each season using three different concentrations (high: highest labeled commercial dose (CD), medium: 1/10 of the CD, low: 1/100 of the CD) on field cotton plots. Four groups of cotton leaves were randomly pulled from each treated plot and control 0-, 2-, 4-, 7-, and 9-days post treatment (DPT) and exposed to a lab colony of TPB adults. One extra leaf sample/ plot/ spray /DPT interval (0-2-4-7-9-11) during 2016 was randomly collected from the high concentration plots and sent to Mississippi State Chemical Laboratory for residual analysis. Mortality of TPB adults was greatest for those placed on leaves sprayed with the organophosphate insecticide with mortalities (%) of 81.7±23.4 and 63.3±28.8 (SE) 1-day after exposure (DAE) on leaves 0-DPT with the high concentration for 2016 and 2017, respectively, reaching 94.5±9.5 and 95.4±7.6 6-DAE each year. Mortality to all insecticides continued until 9 and 4-DPT for high and medium concentrations, respectively. However, organophosphate (39.4±28.6) and pyrethroid (24.4±9.9) exhibited higher mortality than sulfoxamine (10.6±6.6) and the neonicotinoid (4.0±1.5) 7-DAE on 9-DPT leaves with the high concentration. Based on our results using the current assay procedure, TPB adults were significantly more susceptible to contact than systemic insecticides and due to its residual effect, organophosphate could kill over 80% of the TPB population 7-DPT.


Assuntos
Gossypium , Inseticidas , Neonicotinoides , Nitrilas , Nitrocompostos , Fosforamidas , Piretrinas , Inseticidas/farmacologia , Gossypium/parasitologia , Animais , Piretrinas/farmacologia , Neonicotinoides/farmacologia , Mississippi , Nitrilas/farmacologia , Nitrocompostos/farmacologia , Controle de Insetos/métodos , Heterópteros/efeitos dos fármacos , Imidazóis/farmacologia , Hemípteros/efeitos dos fármacos , Compostos Organotiofosforados , Piridinas , Compostos de Enxofre
6.
BMC Vet Res ; 20(1): 256, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867202

RESUMO

Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.


Assuntos
Cinnamomum zeylanicum , Emulsões , Inseticidas , Fígado , Simulação de Acoplamento Molecular , Neonicotinoides , Animais , Neonicotinoides/farmacologia , Cinnamomum zeylanicum/química , Inseticidas/toxicidade , Ratos , Emulsões/química , Emulsões/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Rim/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Antioxidantes/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia , Ratos Sprague-Dawley
7.
Pestic Biochem Physiol ; 202: 105973, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879316

RESUMO

Using a high-efficiency insecticide in combination with fungicides that have different mechanisms of action is a conventional method in the current management of brown planthopper (BPH) resistance. In this study, we investigate the separate and combined effects of the low-toxicity fungicide validamycin and the non-cross-resistant insecticide imidacloprid on the fitness and symbiosis of BPH. These research results indicate that when the proportion of active ingredients in validamycin is combined with imidacloprid at a ratio of 1:30, the toxicity ratio and co-toxicity coefficient are 1.34 and 691.73, respectively, suggesting that the combination has a synergistic effect on the control of BPH. The number of yeast-like symbiotic (YLS) and dominant symbiotic (Noda) in the imidacloprid + validamycin groups were significantly lower than the other three treatment groups (validamycin, imidacloprid, and water). The results of the study on population fitness show that the lifespan of the BPH population in validamycin, imidacloprid, and imidacloprid + validamycin was shortened. Notably, the BPH populations in the imidacloprid + validamycin groups were significantly lower than other groups in terms of average generation cycle, intrinsic growth rate, net reproduction rate, finite rate of increase, and fitness. The Real-time quantitative PCR showed that validamycin and imidacloprid + validamycin can significantly inhibit the expression of the farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) and uricase gene (EC1.7.3.3), with imidacloprid + validamycin demonstrating the most pronounced inhibitory effect. Our research results can provide insights and approaches for delaying resistance and integrated management of BPH.


Assuntos
Hemípteros , Inseticidas , Neonicotinoides , Nitrocompostos , Simbiose , Animais , Hemípteros/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Inseticidas/farmacologia , Inositol/análogos & derivados , Inositol/farmacologia , Imidazóis/farmacologia , Fungicidas Industriais/farmacologia
8.
Pestic Biochem Physiol ; 202: 105939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879330

RESUMO

The brown planthopper (BPH), Nilaparvata lugens is a devastating agricultural pest of rice, and they have developed resistance to many pesticides. In this study, we assessed the response of BPH nymphs to nitenpyram, imidacloprid, and etofenprox using contact and dietary bioassays, and investigated the underlying functional diversities of BPH glutathione-S-transferase (GST), carboxylesterase (CarE) and cytochrome P450 monooxygenase (P450) against these insecticides. Both contact and ingestion toxicity of nitenpyram to BPH were significantly higher than either imidacloprid or etofenprox. Under the LC50 concentration of each insecticide, they triggered a distinct response for GST, CarE, and P450 activities, and each insecticide induced at least one detoxification enzyme activity. These insecticides almost inhibited the expression of all tested GST, CarE, and P450 genes in contact bioassays but induced the transcriptional levels of these genes in dietary bioassays. Silencing of NlGSTD2 expression had the greatest effect on BPH sensitivity to nitenpyram in contact test and imidacloprid in dietary test. The sensitivities of BPH to insecticide increased the most in the contact test was etofenprox after silencing of NlCE, while the dietary test was nitenpyram. Knockdown of NlCYP408A1 resulted in BPH sensitivities to insecticide increasing the most in the contact test was nitenpyram, while the dietary test was imidacloprid. Taken together, these findings reveal that NlGSTD2, NlCE, and NlCYP408A1 play an indispensable role in the detoxification of the contact and ingestion toxicities of different types of insecticides to BPH, which is of great significance for the development of new strategies for the sucking pest control.


Assuntos
Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Glutationa Transferase , Hemípteros , Inseticidas , Neonicotinoides , Nitrocompostos , Piretrinas , Interferência de RNA , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/farmacologia , Nitrocompostos/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Carboxilesterase/genética , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piretrinas/toxicidade , Piretrinas/farmacologia , Inativação Metabólica , Ninfa/efeitos dos fármacos , Ninfa/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Piridinas/toxicidade , Piridinas/farmacologia
9.
Pestic Biochem Physiol ; 202: 105935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879327

RESUMO

Imidacloprid (IMI) is a contaminant widespread in surface water, causing serious intestinal damage in the common carp. Melatonin (MT), an endogenous indoleamine hormone, plays a crucial role in mitigating pesticide-induced toxicity. Our previous research has demonstrated that MT effectively reduces the production of intestinal microbial-derived signal peptidoglycan (PGN) induced by IMI, thereby alleviating intestinal tight junction injuries in the common carp. In this study, we performed a transcriptomic analysis to explore the effect of MT on the IMI exposure-induced gut damage of the common carp. The results elucidated that the ferroptosis, mitogen-activated protein kinases (MAPKs), and nucleotide oligomerization domain (NOD)-like signaling pathways were significantly associated with IMI exposure and MT treatment. Meanwhile, the exposure to IMI resulted in the formation of pyroptotic bodies and distinct morphological features of ferroptosis, both mitigated with the addition of MT. Immunofluorescence double staining demonstrated that MT abolished the elevated expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin D (GSDMD) induced by IMI, as well as reduced expression of ferritin heavy chains (FTH) and glutathione peroxidase 4 (GPX4) in gut tissues. Subsequently, we found that the exposure to IMI or PGN enhanced the expression of toll-like receptors (TLR) 2 (a direct recognition receptor of PGN) triggering the P38MAPK signaling pathway, thereby aggravating the process of pyroptosis and ferroptosis of cell models. The addition of MT or SB203580 (a P38MAPK inhibitor) significantly reduced pyroptotic cells, and also decreased iron accumulation. Consequently, these results indicate that MT alleviates IMI-induced pyroptosis and ferroptosis in the gut of the common carp through the PGN/TLR2/P38MAPK pathway.


Assuntos
Carpas , Ferroptose , Melatonina , Neonicotinoides , Nitrocompostos , Peptidoglicano , Piroptose , Animais , Carpas/metabolismo , Ferroptose/efeitos dos fármacos , Melatonina/farmacologia , Piroptose/efeitos dos fármacos , Neonicotinoides/farmacologia , Neonicotinoides/toxicidade , Peptidoglicano/farmacologia , Nitrocompostos/toxicidade , Nitrocompostos/farmacologia , Inseticidas/toxicidade , Intestinos/efeitos dos fármacos
10.
J Agric Food Chem ; 72(25): 14141-14151, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864686

RESUMO

The cotton aphid, Aphis gossypii, is a polyphagous pest that stunts host plant growth via direct feeding or transmitting plant virus. Due to the long-term application of insecticides, A. gossypii has developed different levels of resistance to numerous insecticides. We found that five field populations had evolved multiple resistances to neonicotinoids. To explore the resistance mechanism mediated by uridine diphosphate glycosyltransferases (UGTs), two upregulated UGT genes in these five strains, UGT350C3 and UGT344L7, were selected for functional analysis of their roles in neonicotinoid detoxification. Transgenic Drosophila bioassay results indicated that compared with the control lines, the UGT350C3 and UGT344L7 overexpression lines were more tolerant to thiamethoxam, imidacloprid, and dinotefuran. Knockdown of UGT350C3 and UGT344L7 significantly increased A. gossypii sensitivity to thiamethoxam, imidacloprid, and dinotefuran. Molecular docking analysis demonstrated that these neonicotinoids could bind to the active pockets of UGT350C3 and UGT344L7. This study provides functional evidence of neonicotinoid detoxification mediated by UGTs and will facilitate further work to identify strategies for preventing the development of neonicotinoid resistance in insects.


Assuntos
Afídeos , Glicosiltransferases , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Afídeos/genética , Afídeos/enzimologia , Afídeos/efeitos dos fármacos , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Neonicotinoides/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Tiametoxam , Drosophila/genética , Drosophila/enzimologia , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Guanidinas
11.
Pestic Biochem Physiol ; 202: 105958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879340

RESUMO

The wheat aphid Sitobion miscanthi is a dominant and destructive pest in agricultural production. Insecticides are the main substances used for effective control of wheat aphids. However, their extensive application has caused severe resistance of wheat aphids to some insecticides; therefore, exploring resistance mechanisms is essential for wheat aphid management. In the present study, CYP6CY2, a new P450 gene, was isolated and overexpressed in the imidacloprid-resistant strain (SM-R) compared to the imidacloprid-susceptible strain (SM-S). The increased sensitivity of S. miscanthi to imidacloprid after knockdown of CYP6CY2 indicates that it could be associated with imidacloprid resistance. Subsequently, the posttranscriptional regulation of CYP6CY2 in the 3' UTR by miR-3037 was confirmed, and CYP6CY2 participated in imidacloprid resistance. This finding is critical for determining the role of P450 in relation to the resistance of S. miscanthi to imidacloprid. It is of great significance to understand this regulatory mechanism of P450 expression in the resistance of S. miscanthi to neonicotinoids.


Assuntos
Afídeos , Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas , MicroRNAs , Neonicotinoides , Nitrocompostos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Afídeos/genética , Afídeos/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Imidazóis/farmacologia
12.
Sci Rep ; 14(1): 14622, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918480

RESUMO

Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.


Assuntos
Flores , Inseticidas , Neonicotinoides , Odorantes , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/farmacologia , Flores/química , Odorantes/análise , Neonicotinoides/farmacologia , Polinização/efeitos dos fármacos
13.
Acta Trop ; 256: 107269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821147

RESUMO

Mosquitoes serve as vectors for various diseases like malaria, dengue fever, yellow fever, and lymphatic filarial diseases causing significant global health problems, highlighting the importance of vector control. The study was conducted to assess the effectiveness of nanoformulated clothianidin and chlorfenapyr insecticides treated with ATSB in controlling three mosquito strains. The development of a natural thiolated polymer-coated ATSB nano formulation involved incorporating nano-carriers to deliver insecticides. Field- collected mosquito strains were subjected to laboratory-based bioassays using 1 % and 1.5 % concentrations of each conventionally used and nanoformulated insecticide with ATSB solution. Adult mosquitoes were left overnight to contact with N-ATSB and efficacy was recorded after 36 and 72 h. The results showed that nanoformulated chlorfenapyr was significantly more effective as compared to clothianidin against An. funestus and Cx. quinquefasciatus but the results were not significantly different against An. coluzzii (100 %). An. coluzzii was found to be the most susceptible strain followed by An. funestus and showed 100 % and ∼ 98 % mortality against nanoformulated chlorfenapyr (1.5 %). Nanoformulated clothianidin induced more than 92 % and ∼ 100 % mortality against An. funestus and An. coluzzii respectively. However, Cx. quinquefasciatus significantly showed less mortality against nanoformulated clothianidin (88 %) and chlorfenapyr (>95 %) as compared to Anopheline strains. Furthermore, results indicate that nanoformulated insecticides significantly caused greater and prolonged fatality as compared to conventional form, suggesting effective and suitable strategies for vector management.


Assuntos
Anopheles , Culex , Guanidinas , Inseticidas , Controle de Mosquitos , Neonicotinoides , Piretrinas , Tiazóis , Animais , Guanidinas/química , Guanidinas/farmacologia , Inseticidas/farmacologia , Culex/efeitos dos fármacos , Neonicotinoides/farmacologia , Anopheles/efeitos dos fármacos , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Feminino , Análise de Sobrevida , Bioensaio
14.
Biol Reprod ; 111(2): 472-482, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713677

RESUMO

Neonicotinoids are the most widely used insecticides in the world. They are synthetic nicotine derivatives that act as nicotinic acetylcholine receptor agonists. Although parent neonicotinoids have low affinity for the mammalian nicotinic acetylcholine receptor, they can be activated in the environment and the body to positively charged metabolites with high affinity for the mammalian nicotinic acetylcholine receptor. Imidacloprid, the most popular neonicotinoid, and its bioactive metabolite desnitro-imidacloprid differentially interfere with ovarian antral follicle physiology in vitro, but their effects on ovarian nicotinic acetylcholine receptor subunit expression are unknown. Furthermore, ovarian nicotinic acetylcholine receptor subtypes have yet to be characterized in the ovary. Thus, this work tested the hypothesis that ovarian follicles express nicotinic acetylcholine receptors and their expression is differentially modulated by imidacloprid and desnitro-imidacloprid in vitro. We used polymerase chain reaction, RNA in situ hybridization, and immunohistochemistry to identify and localize nicotinic acetylcholine receptor subunits (α2, 4, 5, 6, 7 and ß1, 2, 4) expressed in neonatal ovaries (NO) and antral follicles. Chrnb1 was expressed equally in NO and antral follicles. Chrna2 and Chrnb2 expression was higher in antral follicles compared to NO and Chrna4, Chrna5, Chrna6, Chrna7, and Chrnb4 expression was higher in NO compared to antral follicles. The α subunits were detected throughout the ovary, especially in oocytes and granulosa cells. Imidacloprid and desnitro-imidacloprid dysregulated the expression of multiple nicotinic acetylcholine receptor subunits in NO, but only dysregulated one subunit in antral follicles. These data indicate that mammalian ovaries contain nicotinic acetylcholine receptors, and their susceptibility to imidacloprid and desnitro-imidacloprid exposure varies with the stage of follicle maturity.


Assuntos
Inseticidas , Neonicotinoides , Folículo Ovariano , Receptores Nicotínicos , Feminino , Animais , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Neonicotinoides/farmacologia , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo
15.
Malar J ; 23(1): 160, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778399

RESUMO

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Côte d'Ivoire , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Piretrinas/farmacologia , Feminino , Neonicotinoides/farmacologia , Guanidinas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Tiazóis/farmacologia , Pirróis/farmacologia , Controle de Mosquitos , Larva/efeitos dos fármacos
16.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814790

RESUMO

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Assuntos
Hemípteros , Proteínas de Insetos , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Animais , Inseticidas/química , Inseticidas/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Hemípteros/química , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Hemípteros/metabolismo , Relação Estrutura-Atividade , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Neonicotinoides/química , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/química , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Aplysia/química , Aplysia/metabolismo , Aplysia/genética , Nicotina/química , Nicotina/metabolismo , Nicotina/análogos & derivados , Nicotina/farmacologia
17.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770623

RESUMO

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Assuntos
Inseticidas , Neonicotinoides , Temperatura , Inseticidas/farmacologia , Animais , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Controle de Insetos/métodos , Gorgulhos/efeitos dos fármacos , Tiazóis/farmacologia
18.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771932

RESUMO

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Assuntos
Aedes , Compostos Azo , Inseticidas , Neonicotinoides , Nitrocompostos , Pirazóis , Animais , Nitrocompostos/química , Nitrocompostos/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Neonicotinoides/química , Neonicotinoides/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Aedes/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Comportamento Animal/efeitos dos fármacos , Luz , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/química
19.
J Agric Food Chem ; 72(19): 10805-10813, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712504

RESUMO

Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.


Assuntos
Proteínas de Insetos , Inseticidas , Larva , Neonicotinoides , Nitrocompostos , Receptores de Hidrocarboneto Arílico , Animais , Inseticidas/farmacologia , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Dípteros/metabolismo , Dípteros/genética , Dípteros/efeitos dos fármacos , Dípteros/crescimento & desenvolvimento , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Inativação Metabólica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS One ; 19(5): e0303238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709762

RESUMO

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Assuntos
Clorpirifos , Besouros , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Tiazinas , Animais , Besouros/efeitos dos fármacos , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Clorpirifos/farmacologia , Piretrinas/farmacologia , Nitrilas/farmacologia , Larva/efeitos dos fármacos , República Tcheca , Tiametoxam , Solanum tuberosum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...