Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.132
Filtrar
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892243

RESUMO

This research paper presents a novel approach to identifying biomarkers that can be used to prognosticate patients with triple-negative breast cancer (TNBC) eligible for neoadjuvant therapy. The study utilized survival and RNA sequencing data from a cohort of TNBC patients and identified 276 genes whose expression was related to survival in such patients. The gene expression data were then used to classify patients into two major groups based on the presence or absence of Wingless/Integrated-pathway (Wnt-pathway) and mesenchymal (Mes) markers (Wnt/Mes). Patients with a low expression of Wnt/Mes-related genes had a favorable outcome, with no deaths observed during follow-up, while patients with a high expression of Wnt/Mes genes had a higher mortality rate of 50% within 19 months. The identified gene list could be validated and potentially used to shape treatment options for TNBC patients eligible for neoadjuvant therapy providing valuable insights into the development of more effective treatments for TNBC. Our data also showed significant variation in gene expression profiles before and after chemotherapy, with most tumors switching to a more mesenchymal/stem cell-like profile. To verify this observation, we performed an in silico analysis to classify breast cancer tumors in Prediction Analysis of Microarray 50 (PAM50) molecular classes before treatment and after treatment using gene expression data. Our findings demonstrate that following drug intervention and metastasis, certain tumors undergo a transition to alternative subtypes, resulting in diminished therapeutic efficacy. This underscores the necessity for reevaluation of patients who have experienced relapse or metastasis post-chemotherapy, with a focus on molecular subtyping. Tailoring treatment strategies based on these refined subtypes is imperative to optimize therapeutic outcomes for affected individuals.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Neoplasia Residual/genética , Neoplasia Residual/tratamento farmacológico , Terapia Neoadjuvante/métodos , Prognóstico , Metástase Neoplásica , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos
3.
Nat Commun ; 15(1): 5014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866774

RESUMO

Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Testes Genéticos/métodos , Receptores ErbB/genética , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
4.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891959

RESUMO

The tyrosine kinase domain of the FMS-Like tyrosine kinase 3 (FLT3-TKD) is recurrently mutated in acute myeloid leukemia (AML). Common molecular techniques used in its detection include PCR and capillary electrophoresis, Sanger sequencing and next-generation sequencing with recognized sensitivity limitations. This study aims to validate the use of droplet digital PCR (ddPCR) in the detection of measurable residual disease (MRD) involving the common FLT3-TKD mutations (D835Y, D835H, D835V, D835E). Twenty-two diagnostic samples, six donor controls, and a commercial D835Y positive control were tested using a commercial Bio-rad® ddPCR assay. All known variants were identified, and no false positives were detected in the wild-type control (100% specificity and sensitivity). The assays achieved a limit of detection suitable for MRD testing at 0.01% variant allelic fraction. Serial samples from seven intensively-treated patients with FLT3-TKD variants at diagnosis were tested. Five patients demonstrated clearance of FLT3-TKD clones, but two patients had FLT3-TKD persistence in the context of primary refractory disease. In conclusion, ddPCR is suitable for the detection and quantification of FLT3-TKD mutations in the MRD setting; however, the clinical significance and optimal management of MRD positivity require further exploration.


Assuntos
Leucemia Mieloide Aguda , Mutação , Neoplasia Residual , Reação em Cadeia da Polimerase , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Reação em Cadeia da Polimerase/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Nat Med ; 30(6): 1655-1666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877116

RESUMO

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.


Assuntos
DNA Tumoral Circulante , Variações do Número de Cópias de DNA , Aprendizado de Máquina , Neoplasia Residual , Carga Tumoral , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasia Residual/genética , Sequenciamento Completo do Genoma , Neoplasias/genética , Neoplasias/sangue , Neoplasias/terapia , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia
6.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 257-263, 2024 Mar 14.
Artigo em Chinês | MEDLINE | ID: mdl-38716597

RESUMO

Objective: To reassess the prognostic value of minimal residual disease (MRD) and IKZF1 gene deletions in adults with B-cell acute lymphoblastic leukemia (B-ALL) who received pediatric-specific chemotherapy regimens during the Nanfang Hospital PDT-ALL-2016 trial. Methods: We retrospectively analyzed the prognosis of 149 adult patients with B-ALL who were admitted to Nanfang Hospital from January 2016 to September 2020. Prognostic factors were identified using Cox regression models. Results: The complete remission rate was 93.2% in 149 patients, with a 5-year overall survival (OS) rate of (54.3±5.0) % and a cumulative incidence of relapse (CIR) of (47.5±5.2) %. The Cox regression analysis revealed that MRD positivity at day 45 (MRD(3)) after induction therapy was independently associated with relapse risk (HR=2.535, 95%CI 1.122-5.728, P=0.025). Deletion of IKZF1 gene was independently associated with mortality risk (HR=1.869, 95%CI 1.034-3.379, P=0.039). Based on MRD(3) and IKZF1 gene status, we categorized adult patients with B-ALL into the low-risk (MRD(3)-negative and IKZF1 gene deletion-negative) and high-risk (MRD(3)-positive and/or IKZF1 gene wild type) groups. The 5-year OS and CIR rates were (45.5±6.0) % vs (69.4±8.6) % (P<0.001) and (61.6±8.3) % vs (25.5±6.5) % (P<0.001), respectively, in the high-risk and low-risk groups, respectively. The multivariate analysis showed that the high-risk group was an independent risk factor for OS (HR=3.937, 95%CI 1.975-7.850, P<0.001) and CIR (HR=4.037, 95%CI 2.095-7.778, P<0.001) . Conclusion: The combined use of MRD and IKZF1 gene in prognostic stratification can improve clinical outcome prediction in adult patients with B-ALL, helping to guide their treatment.


Assuntos
Deleção de Genes , Fator de Transcrição Ikaros , Neoplasia Residual , Humanos , Fator de Transcrição Ikaros/genética , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Indução de Remissão , Estudos Retrospectivos , Taxa de Sobrevida
7.
Pathology ; 56(5): 681-687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38719770

RESUMO

The use of next-generation sequencing (NGS) for monitoring measurable residual disease (MRD) in acute lymphoblastic leukaemia (ALL) has been gaining traction. This study aimed to investigate the utility of NGS in MRD monitoring for the three major fusion transcript (FT) subtypes of B-precursor ALL (B-ALL). The MRD results for 104 bone marrow samples from 56 patients were analysed through NGS and real time quantitative reverse transcription PCR (RT-qPCR) for the three major FTs: BCR::ABL1, TCF3::PBX1, and ETV6::RUNX1. To validate the NGS approach, NGS-MRD was initially compared with allele-specific oligonucleotide-qPCR-MRD, and the coefficient of determination was good (R2=0.8158). A subsequent comparison of NGS-MRD with FT-MRD yielded a good coefficient of determination (R2=0.7690), but the coefficient varied by subtype. Specifically, the R2 was excellent for TCF3::PBX1 ALL (R2=0.9157), good for ETV6::RUNX1 ALL (R2=0.8606), and subpar for BCR::ABL1 ALL (R2=0.5763). The overall concordance between the two methods was 83.7%, and an excellent concordance rate of 95.8% was achieved for TCF3::PBX1 ALL. Major discordance, which was defined as a >1 log difference between discordant NGS-MRD and FT-MRD, occurred in 6.7% of the samples, with all but one sample being BCR::ABL1 ALL. Among the four non-transplanted patients with BCR::ABL1-MRD (+)/NGS-MRD (-), three did not relapse after long-term follow-up. Our finding indicates that NGS-MRD has a better prognostic impact than RT-qPCR-MRD in ETV6::RUNX1 and BCR::ABL1 ALL, whereas in TCF3::PBX1 ALL, both methods exhibit comparable efficacy.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasia Residual , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Feminino , Masculino , Adolescente , Adulto , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão bcr-abl/genética
8.
Leukemia ; 38(6): 1315-1322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744919

RESUMO

Minimal/measurable residual disease (MRD) diagnostics using real-time quantitative PCR analysis of rearranged immunoglobulin and T-cell receptor gene rearrangements are nowadays implemented in most treatment protocols for patients with acute lymphoblastic leukemia (ALL). Within the EuroMRD Consortium, we aim to provide comparable, high-quality MRD diagnostics, allowing appropriate risk-group classification for patients and inter-protocol comparisons. To this end, we set up a quality assessment scheme, that was gradually optimized and updated over the last 20 years, and that now includes participants from around 70 laboratories worldwide. We here describe the design and analysis of our quality assessment scheme. In addition, we here report revised data interpretation guidelines, based on our newly generated data and extensive discussions between experts. The main novelty is the partial re-definition of the "positive below quantitative range" category by two new categories, "MRD low positive, below quantitative range" and "MRD of uncertain significance". The quality assessment program and revised guidelines will ensure reproducible and accurate MRD data for ALL patients. Within the Consortium, similar programs and guidelines have been introduced for other lymphoid diseases (e.g., B-cell lymphoma), for new technological platforms (e.g., digital droplet PCR or Next-Generation Sequencing), and for other patient-specific MRD PCR-based targets (e.g., fusion genes).


Assuntos
Neoplasia Residual , Humanos , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Rearranjo Gênico , Garantia da Qualidade dos Cuidados de Saúde , Guias de Prática Clínica como Assunto/normas , Genes de Imunoglobulinas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas
10.
Clin Cancer Res ; 30(14): 2964-2973, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695832

RESUMO

PURPOSE: Minimal residual disease (MRD) detection can identify the recurrence in patients with colorectal cancer (CRC) following definitive treatment. We evaluated a plasma-only MRD assay to predict recurrence and survival in patients with metastatic CRC who underwent curative intent procedures (surgery and/or radiotherapy), with or without (neo)adjuvant chemotherapy. The primary objective of this study was to assess the correlation of postprocedure tumor cell-free DNA detection status with radiographic disease recurrence. EXPERIMENTAL DESIGN: Preprocedure and postprocedure longitudinal samples were collected from 53 patients and analyzed with a multiomic MRD assay detecting circulating tumor DNA (ctDNA) from genomic and epigenomic signals. Preprocedure and postprocedure ctDNA detection correlated with recurrence-free and overall survival (OS). RESULTS: From 52 patients, 230/233 samples were successfully analyzed. At the time of data cutoff, 36 (69.2%) patients recurred with median follow-up of 31 months. Detectable ctDNA was observed in 19/42 patients (45.2%) with ctDNA analyzed 3 weeks postprocedure. ctDNA detection 3 weeks postprocedure was associated with shorter median recurrence-free survival (RFS; HR, 5.27; 95% CI, 2.31-12.0; P < 0.0001) and OS (HR, 12.83; 95% CI, 3.6-45.9; P < 0.0001). Preprocedure ctDNA detection status was not associated with RFS but was associated with improved OS (HR, 4.65; 95% CI, 1.4-15.2; P = 0.0111). Undetectable ctDNA preprocedure had notable long-term OS, >90% 3 years postprocedure. CONCLUSIONS: In this cohort of oligometastatic CRC, detection of ctDNA preprocedure or postprocedure was associated with inferior outcomes even after accounting for known prognostic clinicopathologic variables. This suggests ctDNA may enhance current risk stratification methods helping the evaluation of novel treatments and surveillance strategies toward improving patient outcomes.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Colorretais , Recidiva Local de Neoplasia , Neoplasia Residual , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/terapia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/diagnóstico , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasia Residual/genética , Feminino , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/sangue , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Prognóstico , Adulto , Metástase Neoplásica , Idoso de 80 Anos ou mais
11.
Methods Cell Biol ; 186: 233-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705601

RESUMO

Multiple technologies have been used to monitor response to therapy in acute myeloid leukemia (AML) to improve detection of leukemia over the standard of practice, morphologic counting of blasts. The two techniques most frequently used in a routine clinical setting, flow cytometry and RQ-PCR, differ in their targets, sensitivity, and ability to detect residual disease. Both flow cytometry and RQ-PCR detect the expression of abnormal gene products, at the protein level or RNA level, respectively. Flow cytometry can be applied to a broad range of AML cases while RQ-PCR is limited to specific genetic abnormalities identified in subsets of AML. This article compares the results when both techniques were used in a reference laboratory to monitor AML over the course of treatment, comparing quantitative and qualitative results.


Assuntos
Citometria de Fluxo , Leucemia Mieloide Aguda , Citometria de Fluxo/métodos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Neoplasia Residual/genética
12.
Cancer Med ; 13(8): e7172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651186

RESUMO

BACKGROUND: Quantitative measurement of minimal residual disease (MRD) is the "gold standard" for estimating the response to therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Nevertheless, the speed of the MRD response differs for different cytogenetic subgroups. Here we present results of MRD measurement in children with BCP-ALL, in terms of genetic subgroups with relation to clinically defined risk groups. METHODS: A total of 485 children with non-high-risk BCP-ALL with available cytogenetic data and MRD studied at the end-of-induction (EOI) by multicolor flow cytometry (MFC) were included. All patients were treated with standard-risk (SR) of intermediate-risk (ImR) regimens of "ALL-MB 2008" reduced-intensity protocol. RESULTS AND DISCUSSION: Among all study group patients, 203 were found to have low-risk cytogenetics (ETV6::RUNX1 or high hyperdiploidy), while remaining 282 children were classified in intermediate cytogenetic risk group. For the patients with favorable and intermediate risk cytogenetics, the most significant thresholds for MFC-MRD values were different: 0.03% and 0.04% respectively. Nevertheless, the most meaningful thresholds were different for clinically defined SR and ImR groups. For the SR group, irrespective to presence/absence of favorable genetic lesions, MFC-MRD threshold of 0.1% was the most clinically valuable, although for ImR group the most informative thresholds were different in patients from low-(0.03%) and intermediate (0.01%) cytogenetic risk groups. CONCLUSION: Our data show that combining clinical risk factors with MFC-MRD measurement is the most useful tool for risk group stratification of children with BCP-ALL in the reduced-intensity protocols. However, this algorithm can be supplemented with cytogenetic data for part of the ImR group.


Assuntos
Citometria de Fluxo , Neoplasia Residual , Humanos , Neoplasia Residual/genética , Criança , Citometria de Fluxo/métodos , Masculino , Feminino , Pré-Escolar , Adolescente , Lactente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Análise Citogenética/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Subunidade alfa 2 de Fator de Ligação ao Core/genética
14.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
15.
Sci Rep ; 14(1): 6400, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493200

RESUMO

Leukaemia of various subtypes are driven by distinct chromosomal rearrangement or genetic abnormalities. The leukaemogenic fusion transcripts or genetic mutations serve as molecular markers for minimal residual disease (MRD) monitoring. The current study evaluated the applicability of several droplet digital PCR assays for the detection of these targets at RNA and DNA levels (atypical BCR::ABL1 e19a2, e23a2ins52, e13a2ins74, rare types of CBFB::MYH11 (G and I), PCM1::JAK2, KMT2A::ELL2, PICALM::MLLT10 fusion transcripts and CEBPA frame-shift and insertion/duplication mutations) with high sensitivity. The analytical performances were assessed by the limit of blanks, limit of detection, limit of quantification and linear regression. Our data demonstrated serial MRD monitoring for patients at molecular level could become "digitalized", which was deemed important to guide clinicians in treatment decision for better patient care.


Assuntos
Neoplasias Hematológicas , Leucemia , Humanos , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Reação em Cadeia da Polimerase , Leucemia/diagnóstico , Aberrações Cromossômicas , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Fatores de Elongação da Transcrição/genética
16.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461410

RESUMO

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , Resposta Patológica Completa , Prognóstico , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas Proto-Oncogênicas c-kit/genética
17.
Hum Immunol ; 85(3): 110794, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553384

RESUMO

Chimerism analysis is used to evaluate patients after allogeneic hematopoietic stem cell transplant (allo-HSCT) for engraftment and minimal measurable residual disease (MRD) monitoring. A combination of short-tandem repeat (STR) and quantitative polymerase chain reaction (qPCR) was required to achieve both sensitivity and accuracy in the patients with various chimerism statuses. In this study, an insertion/deletion-based multiplex chimerism assay by next generation sequencing (NGS) was evaluated using 5 simulated unrelated donor-recipient combinations from 10 volunteers. Median number of informative markers detected was 8 (range = 5 - 11). The limit of quantitation (LoQ) was determined to be 0.1 % recipient. Assay sample number/batch was 10-20 and total assay time was 19-31 h (manual labor = 2.1 h). Additionally, 50 peripheral blood samples from 5 allo-HSCT recipients (related: N = 4; unrelated: N = 1) were tested by NGS and STR/qPCR. Median number of informative markers detected was 7 (range = 4 - 12). Results from both assays demonstrated a strong correlation (Y = 0.9875X + 0.333; R2 = 0.9852), no significant assay bias (difference mean - 0.08), and 100 % concordant detection of percent recipient increase ≥ 0.1 % (indicator of increased relapse risk). NGS-based chimerism assay can support all allo-HSCT for engraftment and MRD monitoring and simplify clinical laboratory workflow compared to STR/qPCR.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Quimerismo , Transplante Homólogo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Quimeras de Transplante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
18.
J Clin Lab Anal ; 38(7): e25034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525919

RESUMO

BACKGROUND: Accurate quantification of the BCR::ABL1 transcripts is essential for measurable residual disease (MRD) monitoring in chronic myeloid leukemia (CML) after tyrosine kinase inhibitor (TKI) treatment. This study evaluated the newly developed digital real-time PCR method, Dr. PCR, as an alternative reverse transcription-PCR (qRT-PCR) for MRD detection. METHODS: The performance of Dr. PCR was assessed using reference and clinical materials. Precision, linearity, and correlation with qRT-PCR were evaluated. MRD levels detected by Dr. PCR were compared with qRT-PCR, and practical advantages were investigated. RESULTS: Dr. PCR detected MRD up to 0.0032%IS (MR4.5) with excellent precision and linearity and showed a strong correlation with qRT-PCR results. Notably, Dr. PCR identified higher levels of MRD in 12.7% (29/229) of patients than qRT-PCR, including six cases of MR4, which is a critical level for TKI discontinuation. Dr. PCR also allowed for sufficient ABL1 copies in all cases, while qRT-PCR necessitated multiple repeat tests in 3.5% (8/229) of cases. CONCLUSION: Our study provides a body of evidence supporting the clinical application of Dr. PCR as a rapid and efficient method for assessing MRD in patients with CML under the current treatment regimen.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Neoplasia Residual , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Neoplasia Residual/genética , Reprodutibilidade dos Testes
19.
Int J Clin Oncol ; 29(5): 495-511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551727

RESUMO

Circulating tumor DNA (ctDNA) is the fraction of cell-free DNA in patient blood that originates from a tumor. Advances in DNA sequencing technologies and our understanding of the molecular biology of tumors have increased interest in exploiting ctDNA to facilitate detection of molecular residual disease (MRD). Analysis of ctDNA as a promising MRD biomarker of solid malignancies has a central role in precision medicine initiatives exemplified by our CIRCULATE-Japan project involving patients with resectable colorectal cancer. Notably, the project underscores the prognostic significance of the ctDNA status at 4 weeks post-surgery and its correlation to adjuvant therapy efficacy at interim analysis. This substantiates the hypothesis that MRD is a critical prognostic indicator of relapse in patients with colorectal cancer. Despite remarkable advancements, challenges endure, primarily attributable to the exceedingly low ctDNA concentration in peripheral blood, particularly in scenarios involving low tumor shedding and the intrinsic error rates of current sequencing technologies. These complications necessitate more sensitive and sophisticated assays to verify the clinical utility of MRD across all solid tumors. Whole genome sequencing (WGS)-based tumor-informed MRD assays have recently demonstrated the ability to detect ctDNA in the parts-per-million range. This review delineates the current landscape of MRD assays, highlighting WGS-based approaches as the forefront technique in ctDNA analysis. Additionally, it introduces our upcoming endeavor, WGS-based pan-cancer MRD detection via ctDNA, in our forthcoming project, SCRUM-Japan MONSTAR-SCREEN-3.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasia Residual , Sequenciamento Completo do Genoma , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Sequenciamento Completo do Genoma/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Japão , Neoplasias Colorretais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Prognóstico , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/sangue , Neoplasias/diagnóstico
20.
Front Biosci (Landmark Ed) ; 29(2): 86, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420833

RESUMO

The term 'liquid biopsy' has become widely used by clinicians with the development of non-invasive diagnostic and monitoring techniques for malignancies. Liquid biopsy can provide genetic information for early diagnosis, risk stratification, treatment selection and postoperative follow-up. In the era of personalized medicine, liquid biopsy is an important research direction. In recent years, research on circulating tumour DNA (ctDNA) in hematological malignancies has also made great progress. This review provides an overview of the current understanding of circulating tumour DNA in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Additionally, recent advancements in the monitoring of minimal/measurable residual disease (MRD) through ctDNA are discussed.


Assuntos
DNA Tumoral Circulante , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , DNA Tumoral Circulante/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...