Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.708
Filtrar
1.
J Cancer Res Clin Oncol ; 150(7): 331, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951269

RESUMO

OBJECTIVE: To conduct a systematic review and meta-analysis of case-control and cohort human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal junction (GEJ), and gastric cancer (GC) in blood and tissue. BACKGROUND: Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with EC, GEJ and GC. METHODS: Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and registered at PROSPERO (CRD42023486631). The Newcastle-Ottawa Scale (NOS) was used to benchmark the risk of bias for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnostic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between patients with and without UGC were included. Two investigators independently completed title and abstract screening, data extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to investigate the association between metabolite levels and UGC. RESULTS: A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabolism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. CONCLUSION: Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomarkers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored management of UGC.


Assuntos
Metabolômica , Humanos , Metabolômica/métodos , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/metabolismo , Neoplasias Gástricas/sangue , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/diagnóstico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/diagnóstico , Metaboloma/fisiologia , Estudos de Casos e Controles , Junção Esofagogástrica/patologia , Junção Esofagogástrica/metabolismo
3.
Sci Rep ; 14(1): 14327, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906903

RESUMO

NOTCH receptor 3 (NOTCH3) is known to regulate the transcription of oncogenes or tumor suppressor genes, thereby playing a crucial role in tumor development, invasion, maintenance, and chemotherapy resistance. However, the specific mechanism of how NOTCH3 drives immune infiltration in gastrointestinal cancer remains uncertain. The expression of NOTCH3 was analyzed through Western blot, PCR, Oncomine database, and the Tumor Immune Estimation Resource (TIMER) site. Kaplan-Meier plotter, PrognoScan database, and gene expression profile interactive analysis (GEPIA) were used to assess the impact of NOTCH3 on clinical prognosis. The correlation between NOTCH3 expression and immune infiltration gene markers was investigated using TIMER and GEPIA. NOTCH3 was found to be commonly overexpressed in various types of gastrointestinal tumors and was significantly associated with poor prognosis. Furthermore, the expression level of NOTCH3 showed a significant correlation with the tumor purity of gastrointestinal tumors and the extent of immune infiltration by different immune cells. Our findings suggest that NOTCH3 may act as a crucial regulator of tumor immune cell infiltration and can serve as a valuable prognostic biomarker in gastrointestinal cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias Gastrointestinais , Regulação Neoplásica da Expressão Gênica , Receptor Notch3 , Receptor Notch3/genética , Receptor Notch3/metabolismo , Humanos , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Estimativa de Kaplan-Meier , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino
4.
Cell Biochem Funct ; 42(4): e4075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924101

RESUMO

The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.


Assuntos
Neoplasias Gastrointestinais , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Animais
5.
Mol Biol Rep ; 51(1): 741, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874869

RESUMO

Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.


Assuntos
Neoplasias Gastrointestinais , Ficocianina , Humanos , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo
6.
Oncogene ; 43(27): 2078-2091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760447

RESUMO

The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.


Assuntos
Tumores do Estroma Gastrointestinal , Proteínas Proto-Oncogênicas c-kit , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Humanos , Camundongos , Camundongos Transgênicos , Proliferação de Células , Linhagem Celular Tumoral , Mutação , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo
7.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791353

RESUMO

Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.


Assuntos
Acetilcolina , Neoplasias Gastrointestinais , Humanos , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Acetilcolina/metabolismo , Animais , Transdução de Sinais , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo
8.
Curr Opin Oncol ; 36(4): 320-325, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38726837

RESUMO

PURPOSE OF REVIEW: This review is timely and relevant due to the increasing recognition of the significance of the fibroblast growth factor receptor (FGFR) family in cancer biology. Understanding the role of FGFRs and their dysregulation in various cancers is crucial for developing targeted therapies and improving patient outcomes. RECENT FINDINGS: The review highlights the importance of the FGFR family in cellular processes such as growth, proliferation, and survival. It discusses how abnormalities in FGFR2, including overexpression, gene amplification, and other genetic alterations, contribute to cancer progression, particularly in gastro-intestinal cancers. The paper also emphasizes the promising results of FGFR-targeted therapies, especially tyrosine kinase inhibitors, in certain cancers such as cholangiocarcinoma and oesophagogastric cancers. SUMMARY: The findings underscore the potential of FGFR-targeted therapies in treating cancers with FGFR dysregulation. However, the review also addresses the challenges associated with these therapies, including toxicities and mechanisms of resistance. Understanding these complexities is essential for optimizing the efficacy of FGFR-targeted treatments and improving patient outcomes in clinical practice and research efforts.


Assuntos
Neoplasias Gastrointestinais , Receptores de Fatores de Crescimento de Fibroblastos , Humanos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
9.
J Nucl Med ; 65(6): 856-863, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38604764

RESUMO

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.


Assuntos
Claudinas , Radioisótopos de Gálio , Neoplasias Gastrointestinais , Imagem Corporal Total , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Claudinas/metabolismo , Feminino , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/metabolismo , Masculino , Distribuição Tecidual , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Compostos Radiofarmacêuticos/farmacocinética
10.
Int J Oncol ; 64(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666531

RESUMO

Digestive tract cancer is one of the most common types of cancers globally, with ~4.8 million new cases and 3.4 million cancer­associated deaths in 2018, accounting for 26% of cancer incidence and 35% of cancer­related deaths worldwide. S100 protein family is involved in regulating cancer cell proliferation, angiogenesis, epithelial­mesenchymal transition (EMT), metastasis, metabolism and immune microenvironment homeostasis. The critical role of S100 protein family in digestive tract cancer involves complicated mechanisms, such as cancer stemness remodeling, anaerobic glycolysis regulation, tumor­associated macrophage differentiation and EMT. The present study systematically reviewed published studies on the compositions, function and the underlying molecular mechanisms of the S100 family, as well as guidance for diagnosis, treatment and prognosis of digestive tract cancer. Systematic review of the roles and underlying molecular mechanisms of S100 protein family may provide new insight into exploring potential cancer biomarkers and the optimized therapeutic strategies for digestive tract cancer.


Assuntos
Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Proteínas S100 , Humanos , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Prognóstico , Proteínas S100/metabolismo , Microambiente Tumoral/imunologia
11.
Int Rev Cell Mol Biol ; 385: 41-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663962

RESUMO

Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.


Assuntos
Progressão da Doença , Neoplasias Gastrointestinais , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/metabolismo , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Transdução de Sinais
12.
Oncol Res Treat ; 47(6): 273-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636467

RESUMO

BACKGROUND: The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. SUMMARY: Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. KEY MESSAGES: In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.


Assuntos
Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias do Sistema Digestório/imunologia , Neoplasias do Sistema Digestório/metabolismo , Animais , Reprogramação Metabólica
13.
Appl Immunohistochem Mol Morphol ; 32(5): 229-232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584487

RESUMO

Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms with variable behavior characterized by differentiation toward the interstitial cells of Cajal occurring anywhere in the gastrointestinal stromal tract. Frequently, GISTs have fibrous stroma within tumor cell proliferation areas, which is unlike other types of malignant tumors. If this desmoplasia is active, there is a possibility that some sort of transmitter exists between GIST cells and cells related to fibrosis in the tumor cell proliferation areas. Transforming growth factor (TGF)-ß isoforms, particularly TGF-ß1, are critical for fibrosis pathogenesis. TGF-ß1 regulation of myofibroblasts and fibroblasts during fibrosis is well described. The induced fibroblast activation resulting in myofibroblast differentiation has been reported as an important source of collagen, glycoproteins, proteoglycans, and matrix metallopeptidases in wound healing and fibrosis. However, there are a few reports on the relationship between TGF-ß1 and GISTs. This study aims to clarify TGF-ß1 expression in 30 gastric GISTs using immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). For comparison, we also enrolled 30 samples of gastric tubular adenocarcinoma (GTAC). We confirmed TGF-ß1 expression (H-score ≥50 points) in 57% of GIST and 13% of GTAC samples, a significant difference between the 2 tumor types ( P =0.001). We examined the TGF-ß1 mRNA expression of 3 representative GIST samples, each having their respective immunostained areas detected by RT-PCR. Finding TGF-ß1 expression may indicate that this cytokine plays a part in the formation of desmoplasia within GIST cell proliferative areas.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Fator de Crescimento Transformador beta1 , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibrose , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética
14.
Front Immunol ; 15: 1359914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646539

RESUMO

Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.


Assuntos
Neoplasias Gastrointestinais , Transdução de Sinais , Humanos , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Animais , Metástase Neoplásica , Tolerância Imunológica , Evasão Tumoral
15.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629424

RESUMO

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Assuntos
Tumores do Estroma Gastrointestinal , Proteínas com Homeodomínio LIM , Proteínas Musculares , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fatores de Transcrição , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Mesilato de Imatinib/farmacologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Linhagem Celular Tumoral , Ubiquitinação
16.
Arch Toxicol ; 98(7): 2007-2018, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38602537

RESUMO

Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.


Assuntos
Autofagia , Ferritinas , Neoplasias Gastrointestinais , Coativadores de Receptor Nuclear , Humanos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Ferritinas/metabolismo , Autofagia/efeitos dos fármacos , Animais , Coativadores de Receptor Nuclear/metabolismo , Ferro/metabolismo , Homeostase
17.
J Cancer Res Clin Oncol ; 150(3): 129, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488909

RESUMO

BACKGROUND: T cells are key players in the tumor immune microenvironment (TIME), as they can recognize and eliminate cancer cells that express neoantigens derived from somatic mutations. However, the diversity and specificity of T-cell receptors (TCRs) that recognize neoantigens are largely unknown, due to the high variability of TCR sequences among individuals. METHODS: To address this challenge, we applied GLIPH2, a novel algorithm that groups TCRs based on their predicted antigen specificity and HLA restriction, to cluster the TCR repertoire of 1,702 patients with digestive tract cancer. The patients were divided into five groups based on whether they carried tumor-infiltrating or clonal-expanded TCRs and calculated their TCR diversity. The prognosis, tumor subtype, gene mutation, gene expression, and immune microenvironment of these groups were compared. Viral specificity inference and immunotherapy relevance analysis performed for the TCR groups. RESULTS: This approach reduced the complexity of TCR sequences to 249 clonally expanded and 150 tumor-infiltrating TCR groups, which revealed distinct patterns of TRBV usage, HLA association, and TCR diversity. In gastric adenocarcinoma (STAD), patients with tumor-infiltrating TCRs (Patients-TI) had significantly worse prognosis than other patients (Patients-nonTI). Patients-TI had richer CD8+ T cells in the immune microenvironment, and their gene expression features were positively correlated with immunotherapy response. We also found that tumor-infiltrating TCR groups were associated with four distinct tumor subtypes, 26 common gene mutations, and 39 gene expression signatures. We discovered that tumor-infiltrating TCRs had cross-reactivity with viral antigens, indicating a possible link between viral infections and tumor immunity. CONCLUSION: By applying GLIPH2 to TCR sequences from digestive tract tumors, we uncovered novel insights into the tumor immune landscape and identified potential candidates for shared TCRs and neoantigens.


Assuntos
Neoplasias Gastrointestinais , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Imunoterapia , Antígenos de Neoplasias , Microambiente Tumoral
18.
Biomed Pharmacother ; 174: 116488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520871

RESUMO

Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.


Assuntos
Epigênese Genética , Neoplasias Gastrointestinais , Histona Desmetilases , Histonas , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/enzimologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Humanos , Histonas/metabolismo , Animais , Histona Desmetilases/metabolismo , Histona Metiltransferases/metabolismo , Metilação , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Regulação Neoplásica da Expressão Gênica
19.
Ann Diagn Pathol ; 71: 152295, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38547761

RESUMO

The Ki-67 proliferative index plays a pivotal role in the subclassification of neuroendocrine neoplasm (NEN) according to the WHO Classification of Digestive System Tumors (5th edition), which designates neuroendocrine tumor (NET) grades 1, 2, and 3 for Ki-67 proliferative index of <3 %, 3-20 %, and >20 %, respectively. Proliferative index calculation must be performed in the hotspot, traditionally selected by visual scanning at low-power magnification. Recently, gradient map visualization has emerged as a tool for various purposes, including hotspot selection. This study includes 97 cases of gastrointestinal neuroendocrine neoplasms, with hotspots selected by bare eye and gradient map visualization (GM). Each hotspot was analyzed using three methods: eye estimation (EE), digital image analysis (DIA), and manual counting. Of the NENs studied, 91 % were NETs (26 % for G1, 55 % for G2, and 10 % for G3). Only 9 cases were neuroendocrine carcinoma (NEC). Between two hotspot selection methods, GM resulted in a higher grade in 14.77 % of cases, primarily upgrading from NET G1 to G2. Among the counting methods, DIA demonstrated substantial agreement with manual counting, both for pathologist and resident. Grading by other methods tended to result in a higher grade than MC (26.99 % with EE and 8.52 % with DIA). Given its clinical and statistical significance, this study advocates for the application of GM in hotspot selection to identify higher-grade tumors. Furthermore, DIA provides accurate grading, offering time efficiency over MC.


Assuntos
Processamento de Imagem Assistida por Computador , Antígeno Ki-67 , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/análise , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Gradação de Tumores/métodos , Neoplasias Intestinais/patologia , Neoplasias Intestinais/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/diagnóstico , Adulto , Índice Mitótico/métodos , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/metabolismo , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/diagnóstico
20.
Pediatr Dev Pathol ; 27(3): 228-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512910

RESUMO

INTRODUCTION: Blue rubber bleb nevus syndrome (BRBNS) is an uncommon vascular anomaly characterized by multifocal cutaneous, visceral, and other soft tissue or solid organ venous malformations. We observed that BRBNS lesions express immunohistochemical markers of lymphatic differentiation. METHODS: BRBNS histopathologic specimens assessed at our institution during the past 27 years were reviewed. Slides from 19 BRBNS lesions were selected from 14 patients (9 cutaneous, 9 gastrointestinal, and 1 hepatic). We recorded the involved anatomical compartments and presence/absence of thrombi or vascular smooth muscle. Immunohistochemical endothelial expression of PROX1 (nuclear) and D2-40 (membranous/cytoplasmic) was evaluated semi-quantitatively. RESULTS: Endothelial PROX1 immunopositivity was noted in all specimens; the majority (89.5%) demonstrated staining in more than 10% of cells. D2-40 immunopositivity was present in one-third (33%) of cutaneous lesions and only 1 gastrointestinal lesion. CONCLUSION: Endothelial cells in BRBNS almost always express 1 or more immunohistochemical markers of lymphatic differentiation.


Assuntos
Biomarcadores Tumorais , Neoplasias Gastrointestinais , Imuno-Histoquímica , Nevo Azul , Neoplasias Cutâneas , Humanos , Nevo Azul/metabolismo , Nevo Azul/patologia , Nevo Azul/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/diagnóstico , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/diagnóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Lactente , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/análise , Proteínas de Homeodomínio/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Anticorpos Monoclonais Murinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...