Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.452
Filtrar
1.
Sci Rep ; 14(1): 20358, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223192

RESUMO

Follicular helper and regulatory T cells (Tfh/TFR) cells are distinct subsets of CD4+ cells that have been recognized for their critical role in regulating cellular reactions within the germinal centers of lymphoid follicles. In the present study, we aimed to determine the presence and the frequency of these cells in draining lymph nodes of patients with bladder cancer (BC). Forty-six patients with BC who had undergone radical cystectomy and pelvic lymph node dissection were enrolled. Following routine pathological examination, a portion of the dissected lymph nodes was minced to obtain a single-cell suspension. Mononuclear cells were then separated using Ficoll-Hypaque gradient centrifugation, and the samples with proper viability (> 95%) were subjected to further analysis. To phenotype the follicular subsets, cells were stained with appropriate fluorochrome-conjugated antibodies specific for CD4, CXCR5, BCL6, and FOXP3. The cells were then acquired on a four-color flow cytometer. The data were analyzed with the FlowJo software version 10.8.1 package. Our analysis indicated that, on average 37.89 ± 16.36% of CD4+ lymphocytes in draining lymph nodes of patients with BC expressed CXCR5. The majority of them were negative for FOXP3, representing helper subsets (28.73 ± 13.66). A small percent simultaneously expressed BCL6 transcription factor (1.65% ± 1.35), designated as Tfh (CD4+BCL6+CXCR5+FOXP3-). While less than 10% of CD4+ lymphocytes expressed CXCR5 and FOXP3, 1.78 ± 2.54 were also positive for BCL6, known as TFR. Statistical analysis revealed that the frequency of both Tfh and TFR cells was higher in draining lymph nodes of patients with tumor-infiltrated nodes (P = 0.035 and P = 0.079, respectively) compared to those with negative ones. The percentage of these cells was also higher in high-grade tumors compared to low-grade ones (P = 0.031 for both). Our data collectively indicated that however approximately one third of CD4+ lymphocytes expressed CXCR5 and accordingly had the capacity to enter the follicles, less than 2% of them represented Tfh and TFR phenotypes. The percentage of these cells increased in progressed tumors and showed an association with negative prognostic factors.


Assuntos
Linfonodos , Linfócitos T Reguladores , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Feminino , Linfonodos/patologia , Linfonodos/imunologia , Prognóstico , Pessoa de Meia-Idade , Idoso , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Adulto , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
2.
Front Biosci (Landmark Ed) ; 29(8): 295, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39206898

RESUMO

While more than four decades have elapsed since intravesical Bacillus Calmette-Guérin (BCG) was first used to manage non-muscle invasive bladder cancer (NMIBC), its precise mechanism of anti-tumor action remains incompletely understood. Besides the classic theory that BCG induces local (within the bladder) innate and adaptive immunity through interaction with multiple immune cells, three new concepts have emerged in the past few years that help explain the variable response to BCG therapy between patients. First, BCG has been found to directly interact and become internalized within cancer cells, inducing them to act as antigen-presenting cells (APCs) for T-cells while releasing multiple cytokines. Second, BCG has a direct cytotoxic effect on cancer cells by inducing apoptosis through caspase-dependent pathways, causing cell cycle arrest, releasing proteases from mitochondria, and inducing reactive oxygen species-mediated cell injury. Third, BCG can increase the expression of programmed death ligand 1 (PD-L1) on both cancer and infiltrating inflammatory cells to impair the cell-mediated immune response. Current data has shown that high-grade recurrence after BCG therapy is related to CD8+ T-cell anergy or 'exhaustion'. High-field cancerization and subsequently higher neoantigen presentation to T-cells are also associated with this anergy. This may explain why BCG therapy stops working after a certain time in many patients. This review summarizes the detailed immunologic reactions associated with BCG therapy and the role of immune cell subsets in this process. Moreover, this improved mechanistic understanding suggests new strategies for enhancing the anti-tumor efficacy of BCG for future clinical benefit.


Assuntos
Vacina BCG , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/patologia , Humanos , Vacina BCG/imunologia , Vacina BCG/uso terapêutico , Vacina BCG/administração & dosagem , Administração Intravesical , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Neoplasias não Músculo Invasivas da Bexiga
3.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201633

RESUMO

Glutathione-S-transferases (GST) enzymes detoxify xenobiotics and are implicated in response to anticancer therapy. This study evaluated the association of GST theta 1 (GSTT1), GSTT2, and GSTT2B with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) response in non-muscle-invasive bladder cancer treatment. In vitro assessments of GSTT2 knockout (KO) effects were performed using cell lines and dendritic cells (DCs) from GSTT2KO mice. Deletion of GSTT2B, GSTT1, and single-nucleotide polymorphisms in the promoter region of GSTT2 was analysed in patients (n = 205) and healthy controls (n = 150). Silencing GSTT2 expression in MGH cells (GSTT2BFL/FL) resulted in increased BCG survival (p < 0.05) and decreased cellular reactive oxygen species. In our population, there are 24.2% with GSTT2BDel/Del and 24.5% with GSTT2BFL/FL. With ≤ 8 instillations of BCG therapy (n = 51), 12.5% of GSTT2BDel/Del and 53.8% of GSTT2BFL/FL patients had a recurrence (p = 0.041). With ≥9 instillations (n = 153), the disease recurred in 45.5% of GSTT2BDel/Del and 50% of GSTT2BFL/FL. GSTT2FL/FL patients had an increased likelihood of recurrence post-BCG therapy (HR 5.5 [1.87-16.69] p < 0.002). DCs from GSTT2KO mice produced three-fold more IL6 than wild-type DCs, indicating a robust inflammatory response. To summarise, GSTT2BDel/Del patients respond better to less BCG therapy and could be candidates for a reduced surveillance regimen.


Assuntos
Vacina BCG , Glutationa Transferase , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Humanos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Animais , Camundongos , Vacina BCG/uso terapêutico , Imunoterapia/métodos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Knockout , Mycobacterium bovis
4.
Sci Rep ; 14(1): 19025, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152248

RESUMO

Glycyl-tRNA synthetase (GARS1) is differentially expressed across cancers. In this study, the value of GARS1 in the diagnosis and prognosis of various cancers was comprehensively evaluated by multiple omics integrative pan-cancer analysis and experimental verification. Through Kaplan-Meier, ROC and multiple databases, we explored GARS1 expression and prognostic and diagnostic patterns across cancers. The GARS1 relative reaction network was identified in PPI, GO, KEGG, methylation models and the genetic mutation atlas. Further research on the GARS1 value in bladder urothelial carcinoma (BLCA) was conducted by regression and nomogram models. We further analyzed the correlation between GARS1 and immune markers and cells in BLCA. Finally, in vitro experiments were used to validate GARS1 the oncogenic function of GARS1 in BLCA. We found that GARS1 was highly expressed across cancers, especially in BLCA. GARS1 expression was correlated with poor survival and had high diagnostic value in most tumor types. GARS1 is significantly associated with tRNA-related pathways whose mutation sites are mainly located on tRNA synthetase. In addition, Upregulation of GARS1 was connected with immune cell infiltration and five key MMR genes. M2 macrophages, TAMs, Th1 and T-cell exhaustion, and marker sets associated with GARS1 expression indicated specific immune infiltration in BLCA. Finally, in vitro experiments validated that GARS1 expression promotes BLCA cell proliferation and metastasis and inhibits apoptosis. Overall, GARS1 can be a novel prognostic and immunological biomarker through multiple omics integrative pan-cancer analysis. The expression of GARS1 in BLCA was positively correlated with specific immune infiltration, indicating that GARS1 might be related to the tumor immune microenvironment.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Biomarcadores Tumorais/genética , Prognóstico , Linhagem Celular Tumoral , Proliferação de Células/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
5.
Front Immunol ; 15: 1442555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139561

RESUMO

Introduction: cGMP-dependent protein kinase 1 (PRKG1) has shown to be associated with some tumorigenesis, while the role of PRKG1 in bladder cancer is unclear. Methods: To investigate the biological and clinical significance of PRKG1 in bladder cancer, we detected the expression of PRKG1 and explored the function of PRKG1 in bladder cancer cells. The PRKG1 transcripts data was downloaded from The Cancer Genome Atlas (TCGA) database, and immunohistochemistry staining was conducted on formalin-fixed paraffin-embedded (FFPE) sample tissues. Relationship between clinical characteristics of patients and expression of PRKG1 was analyzed in FFPE samples, TCGA database, and GSE19423 dataset. PRKG1 was over-expressed, and cell proliferation, migration, invasion, apoptosis, and spheroidizing ability were then detected. Chemosensitivity to cisplatin was detected with cell viability, and half-maximal drug inhibitory concentration (IC50) was calculated. In addition, the relation between PRKG1 expression and the infiltration level of tumor immune cells in tumor microenvironment were analyzed. Results: The results showed expression of PRKG1 was lower in bladder cancer, compared with normal tissues both at protein and transcript levels. Lower PRKG1 expression was related to higher tumor grade, T stage, and muscle invasion, also predicted worse overall survival and recurrence free survival in patients treated with Bacillus Calmette-Guerin (BCG) intravesical immunotherapy. Analysis of tumor immune cells infiltration showed lower PRKG1 was associated with non-inflamed tumor microenvironment. Conclusion: The present study firstly identified the anti-tumor role and tumor immune regulatory role of PRKG1, also found loss of PRKG1 could be used as a prognosis factor. The present study provided a potential biomarker and therapy target to bladder cancer.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Humanos , Feminino , Masculino , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Proliferação de Células , Idoso , Apoptose , Regulação Neoplásica da Expressão Gênica , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Movimento Celular , Relevância Clínica
6.
Drug Dev Res ; 85(6): e22242, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161064

RESUMO

Bladder cancer is a highly prevalent malignancy. Asiaticoside (AC), a triterpenoid derivative, exhibits antitumor effect on different tumors. This study aimed to explore the role and mechanism of AC on bladder cancer. J82 and T24 cells were treated with AC and/or propofol, and nude mice were subcutaneously administrated with T24 cells. The effect and mechanism of AC and/or propofol were explored by cell counting kit-8, transwell, flow cytometry, enzyme-linked immunosorbent assay, immunohistochemistry and western blot assays both in vitro and in vivo. Cell viability of J82 and T24 cells was inhibited by AC with a IC50 value of 2.43 µM and 2.16 µM, and by propofol with a IC50 value of 42.51 µM and 48.37 µM, respectively. AC or propofol alone decreased cell proliferation, invasion, and immune escape with the increased ferroptosis, as well as downregulating the level of the PI3K/AKT pathway in both animal and cell experiments. The effect of propofol on the above-mentioned indicators was further enhanced with the co-treatment of AC in vitro and in vivo. Taken together, AC promoted the ameliorative effect of propofol on bladder cancer involved in PI3K/AKT pathway.


Assuntos
Ferroptose , Camundongos Nus , Propofol , Triterpenos , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Animais , Triterpenos/farmacologia , Humanos , Propofol/farmacologia , Ferroptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Invasividade Neoplásica , Evasão Tumoral/efeitos dos fármacos , Sinergismo Farmacológico , Transdução de Sinais/efeitos dos fármacos
7.
Bull Math Biol ; 86(9): 116, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107447

RESUMO

Bladder cancer poses a significant global health burden with high incidence and recurrence rates. This study addresses the therapeutic challenges in advanced bladder cancer, focusing on the competitive mechanisms of ligand or drug binding to receptors. We developed a refined mathematical model that integrates the dynamics of tumor cells and immune responses, particularly targeting fibroblast growth factor receptor 3 (FGFR3) and immune checkpoint inhibitors (ICIs). This study contributes to understanding combination therapies by elucidating the competitive binding dynamics and quantifying the synergistic effects. The findings highlight the importance of personalized immunotherapeutic strategies, considering factors such as drug dosage, dosing schedules, and patient-specific parameters. Our model further reveals that ligand-independent activated-state receptors are the most essential drivers of tumor proliferation. Moreover, we found that PD-L1 expression rate was more important than PD-1 in driving the dynamic evolution of tumor and immune cells. The proposed mathematical model provides a comprehensive framework for unraveling the complexities of combination therapies in advanced bladder cancer. As research progresses, this multidisciplinary approach contributes valuable insights toward optimizing therapeutic strategies and advancing cancer treatment paradigms.


Assuntos
Inibidores de Checkpoint Imunológico , Conceitos Matemáticos , Receptor de Morte Celular Programada 1 , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/antagonistas & inibidores , Modelos Biológicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Modelos Imunológicos , Imunoterapia/métodos , Simulação por Computador
8.
Sci Rep ; 14(1): 18500, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122807

RESUMO

Programmed cell death (PCD) is a process that eliminates infected, damaged, or possibly neoplastic cells to sustain homeostatic multicellular organisms. Although long noncoding RNAs (lncRNAs) are involved in various types of PCD and regulate tumor growth, invasion, and migration, the role of PCD-related lncRNAs in bladder cancer still lacks systematic exploration. In this research, we integrated multiple types of PCD as pan-PCD and identified eight pan-PCD-related lncRNAs (LINC00174, HCP5, HCG27, UCA1, SNHG15, GHRLOS, CYB561D2, and AGAP11). Then, we generated a pan-PCD-related lncRNA prognostic signature (PPlncPS) with excellent predictive power and reliability, which performed equally well in the E-MTAB-4321 cohort. In comparison with the low-PPlncPS score group, the high-PPlncPS score group had remarkably higher levels of angiogenesis, matrix, cancer-associated fibroblasts, myeloid cell traffic, and protumor cytokine signatures. In addition, the low-PPlncPS score group was positively correlated with relatively abundant immune cell infiltration, upregulated expression levels of immune checkpoints, and high tumor mutation burden (TMB). Immunogenomic profiles revealed that patients with both low PPlncPS scores and high TMB had the best prognosis and may benefit from immune checkpoint inhibitors. Furthermore, for patients with high PPlncPS scores, docetaxel, staurosporine, and luminespib were screened as potential therapeutic candidates. In conclusion, we generated a pan-PCD-related lncRNA signature, providing precise and individualized prediction for clinical prognosis and some new insights into chemotherapy and immune checkpoint inhibitor therapy for bladder cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Humanos , RNA Longo não Codificante/genética , Prognóstico , Biomarcadores Tumorais/genética , Apoptose/genética , Perfilação da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico
9.
Cancer Res Commun ; 4(8): 2228-2241, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39099201

RESUMO

Antagonism of the PD-1/PD-L1 axis is a critical therapeutic strategy for patients with advanced bladder cancer. IFNγ functions as a key regulator of PD-L1 in both immune as well as cancer cells. Forkhead box P3 (FOXP3) is a transcription factor synonymous in T regulatory cell function but with increasingly described functions in cancer cells. Here, we investigated the relationship between FOXP3 and PD-L1 in bladder cancer. We showed that FOXP3 is critical in the ability for IFNγ to activate PD-L1 in bladder cancer cells. FOXP3 can bind to the PD-L1 promoter and induces a gene program that leads to regulation of multiple immune-related genes and genes involved in epithelial-to-mesenchymal transition (EMT). Using in vitro and in vivo human and murine models, we showed that FOXP3 can influence bladder cancer EMT as well as promote cancer metastases. Furthermore, FOXP3 may be a convergent factor for multiple activators of PD-L1, including the chemotherapeutic drug cisplatin. SIGNIFICANCE: Historically a key transcription factor driving T regulatory cell function, FOXP3 has an increasingly recognized role in cancer cells. In bladder cancer, we defined a novel mechanism whereby FOXP3 mediates the activation of the immune checkpoint PD-L1 by the cytokine IFNγ. We also showed that FOXP3 induces other immune checkpoints as well as genes involved in EMT, promoting immune resistance and cancer metastases.


Assuntos
Antígeno B7-H1 , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead , Interferon gama , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Transição Epitelial-Mesenquimal/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Interferon gama/metabolismo , Interferon gama/genética , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Feminino
10.
Front Immunol ; 15: 1402548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39192988

RESUMO

Background: Single nucleotide polymorphisms (SNPs) in DNA repair genes can impair protein function and hinder DNA repair, leading to genetic instability and increased cancer risk. The Excision Repair Cross-Complementation (ERCC) family plays a crucial role in nucleotide excision repair, yet their comprehensive multi-omics characterization and roles in tumor prognosis and immune microenvironment remain unexplored. Methods and materials: We performed bioinformatics analysis using publicly available data from 33 cancer types to investigate associations between ERCC gene expression, patient prognosis, and clinical features. We also validated the role of ERCC2 in bladder cancer through in vitro assays, including CCK-8, colony formation, wound healing, and Transwell assays. Results: By utilizing the most recent database, we have conducted an analysis that reveals associations between variations in ERCC expression across multiple cancer types and both patient prognosis and the tumor microenvironment. To ensure the reliability of our findings, we applied the Benjamini-Hochberg procedure to adjust for multiple testing. After correction, we identified that ERCC expression levels remained significantly correlated with patient prognosis in various cancer types (p < 0.05). In addition, according to the results of drug sensitivity studies of anticancer drugs, there is a large correlation between ERCC expression and the sensitivity of different anticancer drugs. Finally, in vitro cell behavioral assays determined that knockdown of ERCC2 gene expression significantly inhibited the proliferation, migration and invasion of bladder cancer cells. Conclusion: Through in-depth exploration of ERCC differential expression and its correlation with immune-related indicators, the unique microenvironment of tumors, and patient prognosis, we verified the potential role of ERCC2 in the process of bladder cancer genesis and progression. Therefore, we believe that the ERCC family of genes is expected to be a new option for cancer treatment and deserves to be further explored in the future.


Assuntos
Biologia Computacional , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Proteína Grupo D do Xeroderma Pigmentoso , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Biologia Computacional/métodos , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética , Biomarcadores Tumorais/genética , Polimorfismo de Nucleotídeo Único , Proliferação de Células/genética , Reparo do DNA
11.
BMC Cancer ; 24(1): 1046, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187773

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are rapidly evolving in the management of bladder cancer (BLCA). Nevertheless, effective biomarkers for predicting immunotherapeutic outcomes in BLCA are still insufficient. Ferroptosis, a form of immunogenic cell death, has been found to enhance patient sensitivity to ICIs. However, the underlying mechanisms of ferroptosis in promoting immunotherapy efficacy in BLCA remain obscure. METHODS: Our analysis of The Cancer Genome Atlas (TCGA) mRNA data using single sample Gene Set Enrichment Analysis (ssGSEA) revealed two immunologically distinct subtypes. Based on these subtypes and various other public cohorts, we identified Apolipoprotein L6 (APOL6) as a biomarker predicting the efficacy of ICIs and explored its immunological correlation and predictive value for treatment. Furthermore, the role of APOL6 in promoting ferroptosis and its mechanism in regulating this process were experimentally validated. RESULTS: The results indicate that APOL6 has significant immunological relevance and is indicative of immunologically hot tumors in BLCA and many other cancers. APOL6, interacting with acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), mediates immunotherapy efficacy by ferroptosis. Additionally, APOL6 is regulated by signal transducer and activator of transcription 1 (STAT1). CONCLUSIONS: To conclude, our findings indicate APOL6 has potential as a predictive biomarker for immunotherapy treatment success estimation and reveal the STAT1/APOL6/GPX4 axis as a critical regulatory mechanism in BLCA.


Assuntos
Biomarcadores Tumorais , Ferroptose , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Ferroptose/genética , Humanos , Imunoterapia/métodos , Biomarcadores Tumorais/genética , Apolipoproteínas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Animais , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos
12.
BMC Cancer ; 24(1): 947, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095785

RESUMO

BACKGROUND: Although immunotherapy shows tremendous potential in the treatment of bladder cancer (BLCA), the overall prognosis and response rates to immunotherapy in BLCA remain suboptimal. METHODS: We performed an extensive evaluation of glycosyltransferase expression patterns in BLCA patients by analyzing 210 glycosyltransferase-related genes. Subsequently, we established correlations between these glycosyltransferase patterns, prognosis, and tumor microenvironment (TME) phenotypes. To offer personalized patient assessments, we developed a glycosyltransferase risk score that accurately predicts prognosis, TME phenotypes, and molecular subtypes. Importantly, we developed a RNA-seq cohort, named Xiangya cohort, to validate our results. RESULTS: Two distinct patterns of glycosyltransferase expression were identified, corresponding to inflamed and noninflamed TME phenotypes, and demonstrated the potential to predict prognosis. We developed and validated a comprehensive risk score that accurately predicted individual patient prognosis in the TCGA-BLCA cohort. Additionally, we constructed a nomogram that integrated the risk score with several key clinical factors. Importantly, this risk score was successfully validated in external cohorts, including the Xiangya cohort and GSE48075. Furthermore, we discovered a positive correlation between this risk score and tumor-infiltrating lymphocytes in both the TCGA-BLCA and Xiangya cohorts, suggesting that patients with a higher risk score exhibited an inflamed TME phenotype and were more responsive to immunotherapy. Finally, we observed that the high and low risk score groups were consistent with the luminal and basal subtypes of BLCA, respectively, providing further validation of the risk score's role in the TME in terms of molecular subtypes. CONCLUSIONS: Glycosyltransferase patterns exhibit distinct TME phenotypes in BLCA. Our comprehensive risk score provides a promising approach for prognostic prediction and assessment of immunotherapy efficacy, offering valuable guidance for precision medicine.


Assuntos
Glicosiltransferases , Imunoterapia , Nomogramas , Fenótipo , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Imunoterapia/métodos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Masculino , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Medição de Risco , Idoso , Regulação Neoplásica da Expressão Gênica , Fatores de Risco
13.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39114912

RESUMO

The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.


Assuntos
Apoptose , Vacina BCG , Macrófagos , Transdução de Sinais , Neoplasias da Bexiga Urinária , Peixe-Zebra , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Vacina BCG/farmacologia , Vacina BCG/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Microambiente Tumoral
14.
Front Immunol ; 15: 1430792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104534

RESUMO

Background: Bladder cancer (BLCA) was recognized as a significant public health challenge due to its high incidence and mortality rates. The influence of molecular subtypes on treatment outcomes was well-acknowledged, necessitating further exploration of their characterization and application. This study was aimed at enhancing the understanding of BLCA by mapping its molecular heterogeneity and developing a robust prognostic model using single-cell and bulk RNA sequencing data. Additionally, immunological characteristics and personalized treatment strategies were investigated through the risk score. Methods: Single-cell RNA sequencing (scRNA-seq) data from GSE135337 and bulk RNA-seq data from several sources, including GSE13507, GSE31684, GSE32894, GSE69795, and TCGA-BLCA, were utilized. Molecular subtypes, particularly the basal-squamous (Ba/Sq) subtype associated with poor prognosis, were identified. A prognostic model was constructed using LASSO and Cox regression analyses focused on genes linked with the Ba/Sq subtype. this model was validated across internal and external datasets to ensure predictive accuracy. High- and low-risk groups based on the risk score derived from TCGA-BLCA data were analyzed to examine their immune-related molecular profiles and treatment responses. Results: Six molecular subtypes were identified, with the Ba/Sq subtype being consistently associated with poor prognosis. The prognostic model, based on basal-squamous subtype-related genes (BSSRGs), was shown to have strong predictive performance across diverse clinical settings with AUC values at 1, 3, and 5 years indicating robust predictability in training, testing, and entire datasets. Analysis of the different risk groups revealed distinct immune infiltration and microenvironments. Generally higher tumor mutation burden (TMB) scores and lower tumor immune dysfunction and exclusion (TIDE) scores were exhibited by the low-risk group, suggesting varied potentials for systemic drug response between the groups. Finally, significant differences in potential systemic drug response rates were also observed between risk groups. Conclusions: The study introduced and validated a new prognostic model for BLCA based on BSSRGs, which was proven effective in prognosis prediction. The potential for personalized therapy, optimized by patient stratification and immune profiling, was highlighted by our risk score, aiming to improve treatment efficacy. This approach was promised to offer significant advancements in managing BLCA, tailoring treatments based on detailed molecular and immunological insights.


Assuntos
Biomarcadores Tumorais , Medicina de Precisão , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/imunologia , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Análise de Célula Única , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
15.
BMC Cancer ; 24(1): 1024, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160525

RESUMO

BACKGROUND: In the past few decades, researchers have made promising progress, including the development of immune checkpoint inhibitors (ICIs) in the therapy of bladder cancer (BLCA). Existing studies mainly focus on single immune checkpoint inhibitors but lack relevant studies on the gene expression profiles of multiple immune checkpoints. METHODS: RNA-sequencing profiling data and clinical information of BLCA patients and normal human bladder samples were acquired from the Cancer Genome Atlas and Gene Expression Omnibus databases and analyzed to identify different expression profiles of immune checkpoint genes (ICGs) after consensus clustering analysis. Based on the 526 intersecting differentially expressed genes, the LASSO Cox regression analysis was utilized to construct the ICG signature. RESULTS: According to the expression of ICGs, BLCA patients were divided into three subtypes with different phenotypic and mechanistic characteristics. Furthermore, the developed ICG signature were independent predictors of outcome in BLCA patients, and was correlated with the immune infiltration, the expression of ICGs and chemotherapeutic effect. CONCLUSIONS: This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Prognóstico , Transcriptoma , Imunoterapia/métodos , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso
16.
Cancer Med ; 13(15): e70088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119802

RESUMO

BACKGROUND: Neoadjuvant cisplatin-based chemotherapy (NAC) followed by cystectomy is the standard of care for patients with muscle-invasive bladder cancer (MIBC). Pathologic complete response (pCR) is associated with favorable outcomes, but only 30%-40% of patients achieve that response. The aim of this study is to investigate the role played by the Tumor and Immune Microenvironment (TIME) in association with the clinical outcome of patients with MIBC undergoing NAC. METHODS: Nineteen patients received NAC and were classified as pCR (n = 10) or non-pCR (n = 9). Bulk RNA-seq and immune protein evaluations using Digital Spatial Profiling (DSP) were performed on formalin-fixed paraffin-embedded (FFPE) tumor biopsies collected before NAC (baseline). Immunohistochemistry (IHC) evaluation focused on CD3 and CD20 expression was performed on baseline and end-of-treatment (EOT) FFPEs. Baseline peripheral blood was assessed for lymphocyte and neutrophil counts. Kaplan-Meier analyses and Cox PH regression models were used for survival analyses (OS). RESULTS: In the periphery, pCR patients showed lower neutrophil counts, and neutrophil/ lymphocyte ratio (NLR) when compared to non-pCR patients. In the tumor microenvironment (TME), gene expression analysis and protein evaluations highlighted an abundance of B cells and CD3+ T cells in pCR versus non-pCR patients. On the contrary, increased protein expression of ARG1+ cells, and cells expressing immune checkpoints such as LAG3, ICOS, and STING were observed in the TME of patients with non-pCR. CONCLUSIONS: In the current study, we demonstrated that lower NLR levels and increased CD3+ T cells and B cell infiltration are associated with improved response and long-term outcomes in patients with MIBC receiving NAC. These findings suggest that the impact of immune environment should be considered in determining the clinical outcome of MIBC patients treated with NAC.


Assuntos
Cisplatino , Terapia Neoadjuvante , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Cisplatino/uso terapêutico , Masculino , Feminino , Terapia Neoadjuvante/métodos , Idoso , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Invasividade Neoplásica , Cistectomia , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Prognóstico , Neutrófilos/imunologia , Neutrófilos/metabolismo
17.
Cancer Res ; 84(13): 2169-2180, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39082679

RESUMO

The receptor tyrosine kinase FGFR3 is frequently mutated in bladder cancer and is a validated therapeutic target. Although pan-FGFR tyrosine kinase inhibitors (TKI) have shown clinical efficacy, toxicity and acquired resistance limit the benefit of these agents. While antibody-based therapeutics can offer superior selectivity than TKIs, conventional ligand-blocking antibodies are usually ineffective inhibitors of constitutively active receptor tyrosine kinases. Furthermore, the existence of multiple oncogenic variants of FGFR3 presents an additional challenge for antibody-mediated blockade. Here, we developed a tetravalent FGFR3×FGFR3 bispecific antibody that inhibited FGFR3 point mutants and fusion proteins more effectively than any of the conventional FGFR3 antibodies that we produced. Each arm of the bispecific antibody contacted two distinct epitopes of FGFR3 through a cis mode of binding. The antibody blocked dimerization of the most common FGFR3 oncogenic variant (S249C extracellular domain mutation) and inhibited the function of FGFR3 variants that are resistant to pan-FGFR TKIs. The antibody was highly effective in suppressing growth of FGFR3-driven tumor models, providing efficacy comparable to that of the FDA-approved TKI erdafitinib. Thus, this bispecific antibody may provide an effective approach for broad and highly selective inhibition of oncogenic FGFR3 variants. Significance: Development of a bispecific antibody that broadly inhibits gain-of-function FGFR3 variants provides a therapeutic strategy to target tumors with oncogenic FGFR3 point mutations and fusions, a particularly difficult case for antibody blockade.


Assuntos
Anticorpos Biespecíficos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Neoplasias da Bexiga Urinária , Anticorpos Biespecíficos/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Animais , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Mutação Puntual
18.
Life Sci ; 353: 122919, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39034028

RESUMO

AIMS: B7 molecules (B7s) are crucial synergistic signals for effective immune surveillance against tumor cells. While previous studies have explored the association between the B7 family and cancer, most have been limited to specific genes or cancer subtypes. MAIN METHODS: Our study utilized multi-omics data to investigate potential correlations between B7s expression (B7s exp.) and prognosis, clinicopathological features, somatic mutations (SMs), copy number variations (CNVs), immune characteristics, tumor microenvironment (TME), microsatellite instability, tumor mutation burden, immune checkpoint gene (ICG), and drug responsiveness in TCGA tumors. Furthermore, the connection between B7s exp. and immunotherapy (IT) performance assessed in various validated datasets. Following this, immune infiltration analysis (IIA) was conducted based on B7s exp., CNVs, or SMs in bladder cancer (BLCA), complemented by real-time PCR (RT-PCR) and protein confirmation of B7-H3. KEY FINDINGS: Across most cancer types, B7s exp. was related to prognosis, clinicopathological characteristics, mutations, CNVs, ICG, TMB, TME. The examination of sensitivity to anticancer drugs unveiled correlations between B7 molecules and different drug sensitivities. Specific B7s exp. patterns were linked to the clinical effectiveness of IT. Using GSEA, several enriched immune-related functions and pathways were identified. Particularly in BLCA, IIA revealed significant connections between B7 CNVs, mutation status, and various immune cell infiltrates. RT-PCR confirmed elevated B7-H3 gene levels in BLCA tumor tissues. SIGNIFICANCE: This study confirmed the significance of B7s exp. and genomic changes in predicting outcomes and treatment across different cancer types. Moreover, they indicate a critical function of B7s in BLCA and their potential as IT biomarkers.


Assuntos
Antígenos B7 , Imunoterapia , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Antígenos B7/genética , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Multiômica , Mutação , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
19.
BMC Microbiol ; 24(1): 237, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961326

RESUMO

OBJECTIVE: Bladder cancer(BCa) was a disease that seriously affects patients' quality of life and prognosis. To address this issue, many researches suggested that the gut microbiota modulated tumor response to treatment; however, this had not been well-characterized in bladder cancer. In this study, our objective was to determine whether the diversity and composition of the gut microbiota or the density of specific bacterial genera influence the prognosis of patients with bladder cancer. METHODS: We collected fecal samples from a total of 50 bladder cancer patients and 22 matched non-cancer individuals for 16S rDNA sequencing to investigate the distribution of Parabacteroides in these two groups. Further we conducted follow-up with cancer patients to access the impact of different genera of microorganisms on patients survival. We conducted a Fecal Microbiota Transplantation (FMT) and mono-colonization experiment with Parabacteroides distasonis to explore its potential enhancement of the efficacy of anti-PD-1 immunotherapy in MB49 tumor-bearing mice. Immunohistochemistry, transcriptomics and molecular experiment analyses were employed to uncover the underlying mechanisms. RESULTS: The 16S rDNA showed that abundance of the genus Parabacteroides was elevated in the non-cancer control group compared to bladder cancer group. The results of tumor growth curves showed that a combination therapy of P. distasonis and ICIs treatment significantly delayed tumor growth and increased the intratumoral densities of both CD4+T and CD8+T cells. The results of transcriptome analysis demonstrated that the pathways associated with antitumoral immune response were remarkably upregulated in the P. distasonis gavage group. CONCLUSION: P. distasonis delivery combined with α-PD-1 mAb could be a new strategy to enhance the effect of anti-PD-1 immunotherapy. This effect might be achieved by activating immune and antitumor related pathways.


Assuntos
Bacteroidetes , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/microbiologia , Animais , Humanos , Camundongos , Imunoterapia/métodos , Bacteroidetes/genética , Bacteroidetes/imunologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Fezes/microbiologia , Pessoa de Meia-Idade , Idoso , Camundongos Endogâmicos C57BL
20.
J Zhejiang Univ Sci B ; 25(7): 557-567, 2024 Jul 11.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39011676

RESUMO

Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.


Assuntos
Vacina BCG , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Humanos , Imunoterapia/métodos , Vacina BCG/uso terapêutico , Animais , Microambiente Tumoral , Nanopartículas , Mycobacterium bovis , Engenharia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...