Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.707
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2402903121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102549

RESUMO

Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.


Assuntos
Neoplasias Ósseas , Células Endoteliais , Macrófagos , Osteoblastos , Microambiente Tumoral , Via de Sinalização Wnt , Masculino , Microambiente Tumoral/imunologia , Humanos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Osteoblastos/metabolismo , Osteoblastos/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia
2.
MAbs ; 16(1): 2387240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113562

RESUMO

Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.


Assuntos
Antígenos de Neoplasias , Proteínas Ligadas por GPI , Imunoconjugados , Proteínas de Neoplasias , Neoplasias da Próstata , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Imunoconjugados/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Proteínas Ligadas por GPI/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Linhagem Celular Tumoral , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia
3.
Sci Rep ; 14(1): 18036, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098988

RESUMO

Prostate cancer, one of the most prevalent malignancies among men worldwide, is intricately linked with androgen signaling, a key driver of its pathogenesis and progression. Understanding the diverse expression patterns of androgen-responsive genes holds paramount importance in unraveling the biological intricacies of this disease and prognosticating patient outcomes. In this study, utilizing consensus clustering analysis based on the expression profiles of androgen-responsive genes, prostate cancer patients from the TCGA database were stratified into two distinct subtypes, denoted as C1 and C2. Notably, the C1 subtype demonstrates a significant upregulation of certain genes, such as CGA and HSD17B12, along with a shorter progression-free survival duration, indicating a potentially unfavorable prognosis. Further analyses elucidated the immune infiltration disparities, mutation landscapes, and gene functional pathways characteristic of each subtype. Through integrated bioinformatics approaches and machine learning techniques, key genes such as BIRC5, CENPA, and MMP11 were identified as potential therapeutic targets, providing novel insights into tailored treatment strategies. Additionally, single-cell transcriptome analysis shed light on the heterogeneous expression patterns of these genes across different cell types within the tumor microenvironment. Furthermore, virtual screening identified candidate drugs targeting the BIRC5 receptor, offering promising avenues for drug development. Collectively, these findings deepen our understanding of prostate cancer biology, paving the way for personalized therapeutic interventions and advancing the quest for more effective treatments in prostate cancer management.


Assuntos
Androgênios , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Prognóstico , Transcriptoma , Biologia Computacional/métodos
4.
Front Biosci (Landmark Ed) ; 29(7): 256, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39082359

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most common malignant tumors of the male urinary system, and its incidence and mortality rates have been increasing worldwide. Benign prostatic hyperplasia (BPH) represents stromal and epithelial cell proliferation in the prostate in elderly males. Abnormal activation of inflammation-related signalling molecules, such as toll-like receptor 4 (TLR4) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) has been linked to the initiation and progression of various human diseases including PCa and BPH. Cylindromatosis (CYLD) gene alterations are associated with PCa progression. In this study, the contribution of CYLD, JAK2, and TLR4 gene variants to PCa and BPH risks and their associations with prostate-specific antigen (PSA) levels, immunophenotype, and clinical features in Vietnamese men were determined. METHODS: A total of 102 patients with PCa, 65 with BPH, and 114 healthy controls were enrolled. The immunophenotype was analyzed by flow cytometry, cytokine secretion by enzyme-linked immunosorbent assay (ELISA), and gene variants by DNA sequencing. RESULTS: Lower levels of transforming growth factor ß (TGF-ß) and higher numbers of CD13+CD117- and CD56+CD25+ cells were observed in the PCa group than in the BPH group. Genetic analysis of the CYLD gene identified five single nucleotide polymorphisms (SNPs), of which c.2351-47 C>T, c.2351-46A>T, and rs1971432171 T>G had significantly higher frequencies in PCa patients than in the control and BPH groups. Sequencing of the TLR4 gene revealed five nucleotide changes, in which the rs2149356 SNP showed an increased risk for both PCa and BPH and the c.331-206 SNP had a reduced risk for PCa. Importantly, the expansion of activated natural killer (NK) cells and higher levels of PSA were found in PCa patients carrying the CT genotype of the CYLD c.2351-47 compared to those with the wild-type genotype. CONCLUSION: Activation of NK cells in CYLD-sensitive PCa patients was associated with serum PSA release and the CYLD c.2351-47 variant may be a significant risk factor for prostatitis in PCa patients.


Assuntos
Enzima Desubiquitinante CYLD , Janus Quinase 2 , Antígeno Prostático Específico , Hiperplasia Prostática , Neoplasias da Próstata , Receptor 4 Toll-Like , Humanos , Masculino , Hiperplasia Prostática/genética , Hiperplasia Prostática/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/sangue , Receptor 4 Toll-Like/genética , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Antígeno Prostático Específico/sangue , Idoso , Janus Quinase 2/genética , Pessoa de Meia-Idade , Imunofenotipagem , Genótipo , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles
5.
Front Immunol ; 15: 1401097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055716

RESUMO

Purpose: The aim of this study was to assess the role of sPD-L1 and sPD-1 as potential biomarkers in prostate cancer (PCa). The association of the values of these soluble proteins were correlated to the clinical data: stage of disease, Gleason score, biochemical recurrence etc. For a comprehensive study, the relationship between sPD-L1 and sPD-1 and circulating immune cells was further investigated. Methods: A total of 88 patients with pT2 and pT3 PCa diagnosis and 41 heathy men were enrolled. Soluble sPD-L1 and sPD-1 levels were measured in plasma by ELISA method. Immunophenotyping was performed by flow cytometry analysis. Results: Our study's findings demonstrate that PCa patients had higher levels of circulating sPD-L1 and sPD-1 comparing to healthy controls (p < 0.001). We found a statistically significant (p < 0.05) relationship between improved progression free survival and lower initial sPD-L1 values. Furthermore, patients with a lower sPD-1/sPD-L1 ratio were associated with a higher probability of disease progression (p < 0.05). Additionally, a significant (p < 0.05) association was discovered between higher Gleason scores and elevated preoperative sPD-L1 levels and between sPD-1 and advanced stage of disease (p < 0.05). A strong correlation (p < 0.05), between immunosuppressive CD4+CD25+FoxP3+ regulatory T cells and baseline sPD-L1 was observed in patients with unfavorable postoperative course of the disease, supporting the idea that these elements influence each other in cancer progression. In addition to the postoperative drop in circulating PD-L1, the inverse relationship (p < 0.05), between the percentage of M-MDSC and sPD-L1 in patients with BCR suggests that M-MDSC is not a source of sPD-L1 in PCa patients. Conclusion: Our findings suggest the potential of sPD-L1 as a promising prognostic marker in prostate cancer.


Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Pessoa de Meia-Idade , Idoso , Prognóstico , Gradação de Tumores , Estadiamento de Neoplasias
6.
Asian Pac J Cancer Prev ; 25(7): 2319-2327, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068564

RESUMO

BACKGROUND: Prostate cancer is the most common tumor in men worldwide with a poor prognosis. In recent years, studies have revealed that pyroptosis can affect the tumor immune microenvironment. However, the relationship between the immune microenvironment regulated by pyroptosis-related genes and the prognosis of prostate cancer is still unclear. METHODS: Thirty-three cell death-associated genes were selected from a literature review. The "DESeq2" R package was used to identify differentially expressed cell death-associated genes between normal prostate tissue (GTEx) and prostate cancer tissue (TCGA) samples. Biological functional enrichment analysis of differentially expressed cell death genes was performed using R statistical software packages, such as "clusterProfiler," "org.Hs.eg.db," "enrichplot," "ggplot2," and "GOplot." Univariate Cox and LASSO Cox regression analyses were conducted to identify prognostic genes associated with the immune microenvironment using the "survival" package. Finally, a predictive model was established based on Gleason score, T stage, and cell death-associated genes.odel was established based on Gleason score, T stage, and cell death-associated genes. RESULTS: Seventeen differentially expressed genes related to pyroptosis were screened out. Based on these differentially expressed genes, biological function enrichment analysis showed that they were related to pyroptosis of prostate cells. Based on univariate Cox and (LASSO) Cox regression analysis, four pyroptosis-related genes (CASP3, PLCG1, GSDMB, GPX4) were determined to be related to the prognosis of prostate cancer, and the immune correlation analysis of the four pyroptosis-related genes was performed. The expression of CASP3, PLCG1 and GSDMB was positively correlated with the proportion of immune cells, and the expression of GPX4 was negatively correlated with the proportion of immune cells. A predictive nomogram was established by combining Gleason score, T and pyroptosis genes. The nomogram was accompanied by a calibration curve and used to predict 1 -, 2 -, and 5-year survival in PAAD patients. CONCLUSION: Cell death-associated genes (CASP3, PLCG1, GSDMB, GPX4) play crucial roles in modulating the immune microenvironment and can be used to predict the prognosis of prostate cancer.


Assuntos
Biomarcadores Tumorais , Nomogramas , Neoplasias da Próstata , Piroptose , Microambiente Tumoral , Humanos , Masculino , Piroptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
7.
Sci Rep ; 14(1): 17173, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060412

RESUMO

Toll-like receptors (TLRs) are critical components to stimulate immune responses against various infections. Recently, TLR agonists have emerged as a promising way to activate anti-tumor immunity. L-pampo, a TLR1/2 and TLR3 agonist, induces humoral and cellular immune responses and also causes cancer cell death. In this study, we investigated the L-pampo-induced signals and delineated their interactions with molecular signaling pathways using RNA-seq in immune cells and colon and prostate cancer cells. We first constructed a template network with differentially expressed genes and influential genes from network propagation using the weighted gene co-expression network analysis. Next, we obtained perturbed modules using the above method and extracted core submodules from them by conducting Walktrap. Finally, we reconstructed the subnetworks of major molecular signals utilizing a shortest path-finding algorithm, TOPAS. Our analysis suggests that TLR signaling activated by L-pampo is transmitted to oxidative phosphorylation (OXPHOS) with reactive oxygen species (ROS) through PI3K-AKT and JAK-STAT only in immune and prostate cancer cells that highly express TLRs. This signal flow may further sensitize prostate cancer to L-pampo due to its high basal expression level of OXPHOS and ROS. Our computational approaches can be applied for inferring underlying molecular mechanisms from complex gene expression profiles.


Assuntos
Redes Reguladoras de Genes , Transdução de Sinais , Receptores Toll-Like , Humanos , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Fosforilação Oxidativa , Agonistas do Receptor Semelhante a Toll
8.
Front Immunol ; 15: 1372956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953033

RESUMO

Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.


Assuntos
Apoptose , Galectina 1 , Imunoterapia , Neoplasias da Próstata , Linfócitos T , Microambiente Tumoral , Masculino , Galectina 1/genética , Galectina 1/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Animais , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
9.
Lancet Oncol ; 25(8): 1015-1024, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950555

RESUMO

BACKGROUND: Delta-like ligand 3 (DLL3) is aberrantly expressed on the surface of small-cell lung cancer (SCLC) and neuroendocrine prostate cancer cells. We assessed the safety and feasibility of the DLL3-targeted imaging tracer [89Zr]Zr-DFO-SC16.56 (composed of the anti-DLL3 antibody SC16.56 conjugated to p-SCN-Bn-deferoxamine [DFO] serving as a chelator for zirconium-89) in patients with neuroendocrine-derived cancer. METHODS: We conducted an open-label, first-in-human study of immunoPET-CT imaging with [89Zr]Zr-DFO-SC16.56. The study was done at Memorial Sloan Kettering Cancer Center, New York, NY, USA. Patients aged 18 years or older with a histologically verified neuroendocrine-derived malignancy and an Eastern Cooperative Oncology Group performance status of 0-2 were eligible. An initial cohort of patients with SCLC (cohort 1) received 37-74 MBq [89Zr]Zr-DFO-SC16.56 as a single intravenous infusion at a total mass dose of 2·5 mg and had serial PET-CT scans at 1 h, day 1, day 3, and day 7 post-injection. The primary outcomes of phase 1 of the study (cohort 1) were to estimate terminal clearance half-time, determine whole organ time-integrated activity coefficients, and assess the safety of [89Zr]Zr-DFO-SC16.56. An expansion cohort of additional patients (with SCLC, neuroendocrine prostate cancer, atypical carcinoid tumours, and non-small-cell lung cancer; cohort 2) received a single infusion of [89Zr]Zr-DFO-SC16.56 at the same activity and mass dose as in the initial cohort followed by a single PET-CT scan 3-6 days later. Retrospectively collected tumour biopsy samples were assessed for DLL3 by immunohistochemistry. The primary outcome of phase 2 of the study in cohort 2 was to determine the potential association between tumour uptake of the tracer and intratumoural DLL3 protein expression, as determined by immunohistochemistry. This study is ongoing and is registered with ClinicalTrials.gov, NCT04199741. FINDINGS: Between Feb 11, 2020, and Jan 30, 2023, 12 (67%) men and six (33%) women were enrolled, with a median age of 64 years (range 23-81). Cohort 1 included three patients and cohort 2 included 15 additional patients. Imaging of the three patients with SCLC in cohort 1 showed strong tumour-specific uptake of [89Zr]Zr-DFO-SC16.56 at day 3 and day 7 post-injection. Serum clearance was biphasic with an estimated terminal clearance half-time of 119 h (SD 31). The highest mean absorbed dose was observed in the liver (1·83 mGy/MBq [SD 0·36]), and the mean effective dose was 0·49 mSv/MBq (SD 0·10). In cohort 2, a single immunoPET-CT scan on day 3-6 post-administration could delineate DLL3-avid tumours in 12 (80%) of 15 patients. Tumoural uptake varied between and within patients, and across anatomical sites, with a wide range in maximum standardised uptake value (from 3·3 to 66·7). Tumour uptake by [89Zr]Zr-DFO-SC16.56 was congruent with DLL3 immunohistochemistry in 15 (94%) of 16 patients with evaluable tissue. Two patients with non-avid DLL3 SCLC and neuroendocrine prostate cancer by PET scan showed the lowest DLL3 expression by tumour immunohistochemistry. One (6%) of 18 patients had a grade 1 allergic reaction; no grade 2 or worse adverse events were noted in either cohort. INTERPRETATION: DLL3 PET-CT imaging of patients with neuroendocrine cancers is safe and feasible. These results show the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in-vivo detection of DLL3-expressing malignancies. FUNDING: National Institutes of Health, Prostate Cancer Foundation, and Scannell Foundation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares , Proteínas de Membrana , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Radioisótopos , Zircônio , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/tratamento farmacológico , Feminino , Desferroxamina/química , Imunoconjugados/farmacocinética , Gradação de Tumores , Compostos Radiofarmacêuticos , Adulto , Anticorpos Monoclonais/química , Anticorpos Monoclonais/administração & dosagem , Idoso de 80 Anos ou mais , Benzodiazepinonas , Anticorpos Monoclonais Humanizados
10.
Biomed Pharmacother ; 177: 117002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960836

RESUMO

This review provides an in-depth examination of the role that tumor-associated macrophages (TAMs) play in the progression of prostate cancer (PCa), with a particular focus on the factors influencing the polarization of M1 and M2 macrophages and the implications of targeting these cells for cancer progression. The development and prognosis of PCa are significantly influenced by the behavior of macrophages within the tumor microenvironment. M1 macrophages typically exhibit anti-tumor properties by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), thereby enhancing the immune response. Conversely, M2 macrophages contribute to tumor cell migration and invasion through the production of factors like arginase-1 (Arg1) and interleukin-10 (IL-10). This review not only explores the diverse factors that affect macrophage polarization but also delves into the potential therapeutic strategies targeting macrophage polarization, including the critical roles of non-coding RNA and exosomes in regulating this process. The polarization state of macrophages is highlighted as a key determinant in PCa progression, offering a novel perspective for clinical treatment. Future research should concentrate on gaining a deeper understanding of the molecular mechanisms underlying macrophage polarization and on developing effective targeted therapeutic strategies. The exploration of the potential of combination therapies to improve treatment efficacy is also emphasized. By emphasizing the importance of macrophages as a therapeutic target in PCa, this review aims to provide valuable insights and research directions for clinicians and researchers.


Assuntos
Macrófagos , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Masculino , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Progressão da Doença , Citocinas/metabolismo
11.
Oncoimmunology ; 13(1): 2373526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948931

RESUMO

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Assuntos
Adjuvantes Imunológicos , Antígenos de Neoplasias , Vacinas Anticâncer , Células Dendríticas , Neoplasias da Próstata , RNA Mensageiro , Animais , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Neoplasias/imunologia , Camundongos , Células Dendríticas/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Humanos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Vacinas de mRNA , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos
12.
Medicine (Baltimore) ; 103(27): e38825, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968485

RESUMO

The potential relationship between the gut microbiota and prostate cancer, possibly influenced by immune cells, remains unclear. This study employed the mediation Mendelian randomization (MR) technique to investigate the causal link between the gut microbiota, immune cells, and prostate cancer. Data on immune cell activity were sourced from Valeria Orrù's research, whereas the genome-wide association study outcome dataset was obtained from the Integrative Epidemiology Unit database. The bidirectional MR analysis utilized 5 different methods: inverse variance weighted (IVW), weighted median, MR-Egger regression, weighted mode, and simple mode. In addition, the mediating effect of immune cells on the gut microbiota and prostate cancer was explored using mediation analysis. Eighty-three single nucleotide polymorphisms associated with prostate cancer were screened as instrumental variables. In a positive MR analysis with gut microbiota as the exposure factor, IVW showed an association between 8 gut microbiota and prostate cancer. Additionally, 9 types of immune cells have been found to be associated with prostate cancer using methods such as IVW. MR analysis of the gut microbiota on immune cells (beta1) revealed a negative correlation between Bifidobacterium and CD39+ T regulatory cells (Tregs; odds ratio [OR] = 0.785, 95% confidence interval [CI] = 0.627-0.983, P = .03). Furthermore, MR analysis of immune cells in prostate cancer disease (beta2) showed that CD39+Tregs are a risk factor for prostate cancer (OR = 1.215, 95% CI = 1.027-1.354, P = .04). Moreover, MR analysis of gut microbiota in prostate cancer (total effect) indicated that Bifidobacterium is a protective factor for prostate cancer (OR = 0.905, 95% CI = 0.822-0.977, P = .04). The sensitivity analysis verified the robustness of the above results. Mediation analysis demonstrated that CD39+Tregs partially mediate the causal relationship between Bifidobacterium and prostate cancer. This study demonstrates that Bifidobacterium inhibits prostate cancer progression through CD39+Tregs as mediators, providing new ideas and approaches for the treatment and prevention of prostate cancer.


Assuntos
Progressão da Doença , Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata , Humanos , Masculino , Microbioma Gastrointestinal/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Estudo de Associação Genômica Ampla , Linfócitos T Reguladores/imunologia , Análise de Mediação , Bifidobacterium
13.
Front Immunol ; 15: 1426474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947325

RESUMO

Background: Monocytes play a critical role in tumor initiation and progression, with their impact on prostate adenocarcinoma (PRAD) not yet fully understood. This study aimed to identify key monocyte-related genes and elucidate their mechanisms in PRAD. Method: Utilizing the TCGA-PRAD dataset, immune cell infiltration levels were assessed using CIBERSORT, and their correlation with patient prognosis was analyzed. The WGCNA method pinpointed 14 crucial monocyte-related genes. A diagnostic model focused on monocytes was developed using a combination of machine learning algorithms, while a prognostic model was created using the LASSO algorithm, both of which were validated. Random forest and gradient boosting machine singled out CCNA2 as the most significant gene related to prognosis in monocytes, with its function further investigated through gene enrichment analysis. Mendelian randomization analysis of the association of HLA-DR high-expressing monocytes with PRAD. Molecular docking was employed to assess the binding affinity of CCNA2 with targeted drugs for PRAD, and experimental validation confirmed the expression and prognostic value of CCNA2 in PRAD. Result: Based on the identification of 14 monocyte-related genes by WGCNA, we developed a diagnostic model for PRAD using a combination of multiple machine learning algorithms. Additionally, we constructed a prognostic model using the LASSO algorithm, both of which demonstrated excellent predictive capabilities. Analysis with random forest and gradient boosting machine algorithms further supported the potential prognostic value of CCNA2 in PRAD. Gene enrichment analysis revealed the association of CCNA2 with the regulation of cell cycle and cellular senescence in PRAD. Mendelian randomization analysis confirmed that monocytes expressing high levels of HLA-DR may promote PRAD. Molecular docking results suggested a strong affinity of CCNA2 for drugs targeting PRAD. Furthermore, immunohistochemistry experiments validated the upregulation of CCNA2 expression in PRAD and its correlation with patient prognosis. Conclusion: Our findings offer new insights into monocyte heterogeneity and its role in PRAD. Furthermore, CCNA2 holds potential as a novel targeted drug for PRAD.


Assuntos
Imunoterapia , Monócitos , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico , Monócitos/imunologia , Monócitos/metabolismo , Prognóstico , Imunoterapia/métodos , Biomarcadores Tumorais/genética , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Multiômica
14.
Sci Rep ; 14(1): 16512, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020051

RESUMO

Prostate-specific antigen (PSA) levels are widely used to screen for prostate cancer, yet the test has poor sensitivity, specificity and predictive value, which leads to overdiagnosis and overtreatment. Alterations in the glycosylation status of PSA, including fucosylation, may offer scope for an improved biomarker. We sought to generate a monoclonal antibody (mAb) targeting α-1,6-fucosylated PSA (fuc-PSA) and to develop a tissue-based immunological assay for fuc-PSA detection. Immunogens representing fuc-PSA were used for immunisation and resultant mAbs were extensively characterised. The mAbs reacted specifically with fuc-PSA-specific glycopeptide, but not with aglycosylated PSA or glycan without the PSA peptide. Reactivity was confirmed using high-throughput surface plasmon resonance spectroscopy. X-ray crystallography investigations showed that the mAbs bound to an α-helical form of the peptide, whereas the native PSA epitope is linear. Protein unfolding was required for detection of fuc-PSA in patient samples. Peptide inhibition of fuc-PSA mAbs was observed with positive screening reagents, and target epitope specificity was observed in formalin-fixed, paraffin-embedded tissue samples. This research introduces a well-characterised, first-in-class antibody targeting fuc-PSA and presents the first crystal structure of an antibody demonstrating glycosylation-specific binding to a peptide.


Assuntos
Anticorpos Monoclonais , Fucose , Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Antígeno Prostático Específico/imunologia , Antígeno Prostático Específico/metabolismo , Masculino , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Glicosilação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/imunologia , Fucose/metabolismo , Epitopos/imunologia , Epitopos/química , Animais , Cristalografia por Raios X , Camundongos
15.
Front Immunol ; 15: 1372837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887294

RESUMO

Introduction: The localization, density but mostly the phenotype of tumor infiltrating lymphocytes (TIL) provide important information on the initial interaction between the host immune system and the tumor. Our objective was to assess the prognostic significance of T (CD3+), T regulatory (Treg) (FoxP3+) and T memory (Tmem) (CD45RO+) infiltrating lymphocytes and of genes associated with TIL in prostate cancer (PCa). Methods: Immunohistochemistry (IHC) was used to assess the infiltration of CD3+, FoxP3+ and CD45RO+ cells in the tumor area, tumor margin and adjacent normal-like epithelium of a series of 98 PCa samples with long clinical follow-up. Expression of a panel of 31 TIL-associated genes was analyzed by Taqman Low-Density Array (TLDA) technology in another series of 50 tumors with long clinical follow-up. Kaplan-Meier and Cox proportional hazards regression analyses were performed to determine association of these markers with biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa. Results: TIL subtypes were present at different densities in the tumor, tumor margin and adjacent normal-like epithelium, but their density and phenotype in the tumor area were the most predictive of clinical outcomes. In multivariate analyses, a high density of Treg (high FoxP3+/CD3+ cell ratio) predicted a higher risk for need of definitive ADT (HR=7.69, p=0.001) and lethal PCa (HR=4.37, p=0.04). Conversely, a high density of Tmem (high CD45RO+/CD3+ cell ratio) predicted a reduced risk of lethal PCa (HR=0.06, p=0.04). TLDA analyses showed that a high expression of FoxP3 was associated with a higher risk of lethal PCa (HR=5.26, p=0.02). Expression of CTLA-4, PD-1, TIM-3 and LAG-3 were correlated with that of FoxP3. Amongst these, only a high expression of TIM-3 was associated with a significant higher risk for definitive ADT in univariate Cox regression analysis (HR=3.11, p=0.01). Conclusion: These results show that the proportion of Treg and Tmem found within the tumor area is a strong and independent predictor of late systemic progression of PCa. Our results also suggest that inhibition of TIM-3 might be a potential approach to counter the immunosuppressive functions of Treg in order to improve the anti-tumor immune response against PCa.


Assuntos
Linfócitos do Interstício Tumoral , Células T de Memória , Neoplasias da Próstata , Linfócitos T Reguladores , Humanos , Masculino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Linfócitos T Reguladores/imunologia , Idoso , Prognóstico , Pessoa de Meia-Idade , Células T de Memória/imunologia , Células T de Memória/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Biomarcadores Tumorais
16.
Br J Cancer ; 131(3): 551-564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38902531

RESUMO

BACKGROUND: The Ec peptide (PEc) that defines the IGF-1Ec isoform, is associated with prostate cancer progression by inducing proliferation, metastases, and tumour repair. On these grounds, an anti-PEc monoclonal antibody (MAb) was developed. Our objective is to examine the effects of this antibody on prostate cancer and its possible side effects. METHODS: The effects of the obtained MAb were examined in cancer and non-cancerous cell lines (unmodified and modified either to overexpress or silence PEc) and in tumours in SCID mice injected with unmodified prostate cancer cells. The investigation was obtained with respect to cellular proliferation, migration, invasion, toxicity to tumours, effects on the cell cycle, immune response activation, effects on mesenchymal stem cell mobilisation leading to tumour repair, tissue distribution, and toxicity to mice. RESULTS: Anti-PEc MAb treatment led to a significant decrease in cellular proliferation, migration, and invasion compared to the untreated cell lines (p < 0.0005 in every case). Mechanistically, these effects were associated with the downregulation of pERK1/2 and vimentin and the upregulation of E-Cadherin. In vivo, anti-PEc MAb treatment was associated with a significant decrease in tumour size and metastases rate (p < 0.0005 in every case) by reversing the tumours mesenchymal phenotype. It also inhibited host stem cell mobilisation towards the tumour, leading to apoptosis. Anti-PEc MAb assessment in respect to distribution and toxicity, indicated its tumour specificity and lack of toxicity. CONCLUSIONS: These data indicate that the therapeutic targeting of PEc with the anti-PEc MAb may have considerable clinical benefit for prostate cancer patients.


Assuntos
Anticorpos Monoclonais , Proliferação de Células , Camundongos SCID , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Insulin-Like I/imunologia
17.
Trends Cancer ; 10(7): 584-587, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839545

RESUMO

B7-H3, an immune checkpoint glycoprotein, facilitates immune evasion and the promotion of tumors and is highly expressed on the surface of prostate cancer (PCa) cells, which makes it a feasible and robust candidate for immunotherapies against advanced prostate cancer. Here, we summarize and discuss recent findings on the suitability of targeting B7-H3 in PCa treatment.


Assuntos
Antígenos B7 , Imunoterapia , Neoplasias da Próstata , Humanos , Masculino , Antígenos B7/antagonistas & inibidores , Antígenos B7/imunologia , Antígenos B7/metabolismo , Antígenos B7/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Terapia de Alvo Molecular/métodos
18.
Aging (Albany NY) ; 16(12): 10477-10488, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38888513

RESUMO

BACKGROUND: Immune cell signatures have been implicated in cancer progression and response to treatment. However, the causal relationship between immune cell signatures and prostate cancer (PCa) is still unclear. This study aimed to investigate the potential causal associations between immune cell signatures and PCa using Mendelian randomization (MR). METHOD: This study utilized genome-wide association studies (GWAS) summary statistics for PCa and immune cell signatures from publicly available datasets. MR analyses, including IVW, MR-Egger, and weighted median methods, were performed to evaluate the causal associations between immune cell signatures and PCa. Multiple sensitivity analysis methods have been adopted to test the robustness of our results. RESULTS: After FDR correction, our findings suggested that specific immune cell signatures, such as HLA DR on CD33+ HLA DR+ CD14dim (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.12-1.92, p = 0.006), HLA DR on CD33+ HLA DR+ CD14- (OR = 1.32, 95% CI = 1.05-1.67, p = 0.018), and HLA DR on monocyte (OR = 1.23, 95% CI = 1.03-1.47, p = 0.021), were significantly associated with PCa. PCa had no statistically significant effect on immunophenotypes. These results remained robust in sensitivity analyses, supporting the validity of the causal associations. CONCLUSIONS: This study provides evidence of a potential causal relationship between certain immune cell signatures and PCa. We observed that immune cell signatures involving HLA DR expression on specific cell types are associated with an increased risk of PCa.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Antígenos HLA-DR/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Monócitos/imunologia
19.
Math Biosci ; 374: 109239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906526

RESUMO

Recent studies have utilized evolutionary mechanisms to impede the emergence of drug-resistant populations. In this paper, we develop a mathematical model that integrates hormonal treatment, immunotherapy, and the interactions among three cell types: drug-sensitive cancer cells, drug-resistant cancer cells and immune effector cells. Dynamical analysis is performed, examining the existence and stability of equilibria, thereby confirming the model's interpretability. Model parameters are calibrated using available prostate cancer data and literature. Through bifurcation analysis for drug sensitivity under different immune effector cells recruitment responses, we find that resistant cancer cells grow rapidly under weak recruitment response, maintain at a low level under strong recruitment response, and both may occur under moderate recruitment response. To quantify the competitiveness of sensitive and resistant cells, we introduce the comprehensive measures R1 and R2, respectively, which determine the outcome of competition. Additionally, we introduce the quantitative indicators CIE1 and CIE2 as comprehensive measures of the immune effects on sensitive and resistant cancer cells, respectively. These two indicators determine whether the corresponding cancer cells can maintain at a low level. Our work shows that the immune system is an important factor affecting the evolution of drug resistance and provides insights into how to enhance immune response to control resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/imunologia , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/tratamento farmacológico , Modelos Biológicos , Imunoterapia/métodos , Dinâmica não Linear , Conceitos Matemáticos
20.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832955

RESUMO

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...