Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
2.
Cells ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38994974

RESUMO

Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Histonas , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Histonas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Epigênese Genética , Terapia de Alvo Molecular , Mutação/genética , Animais
3.
Int J Biochem Cell Biol ; 174: 106617, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009182

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly brain cancers in children for which there is no effective treatment. This can partly be attributed to preclinical models that lack essential elements of the in vivo tissue environment, resulting in treatments that appear promising preclinically, but fail to result in effective cures. Recently developed co-culture models combining stem cell-derived brain organoids with brain cancer cells provide tissue dimensionality and a human-relevant tissue-like microenvironment. As these models are technically challenging, we aimed to establish whether interaction with the organoid influences DIPG biology and thus warrants their use. To address this question DIPG24 cells were cultured with pluripotent stem cell-derived cortical organoids. We created "mosaic" co-cultures enriched for tumour cell-neuronal cell interactions versus "assembloid" co-cultures enriched for tumour cell-tumour cell interactions. Sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to analyse the proteomes of DIPG fractions isolated by flow-assisted cell sorting. Control proteomes from DIPG spheroids were compared with DIPG cells isolated from mosaic and assembloid co-cultures. This suggested changes in cell interaction with the external environment reflected by decreased gene ontology terms associated with adhesion and extracellular matrix, and increased DNA synthesis and replication, in DIPG24 cells under either co-culture condition. By contrast, the mosaic co-culture was associated with neuron-specific brahma-associated factor (nBAF) complex signalling, a process associated with neuronal maturation. We propose that co-culture with brain organoids is a valuable tool to parse the contribution of the brain microenvironment to DIPG tumour biology.


Assuntos
Neoplasias do Tronco Encefálico , Técnicas de Cocultura , Organoides , Proteômica , Humanos , Organoides/metabolismo , Organoides/patologia , Proteômica/métodos , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Linhagem Celular Tumoral , Encéfalo/metabolismo , Encéfalo/patologia , Proteoma/metabolismo , Glioma/patologia , Glioma/metabolismo , Microambiente Tumoral
4.
Acta Neurochir (Wien) ; 166(1): 263, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864949

RESUMO

BACKGROUND: With the recent advent of genetic testing, IDH-mutant glioma has been found among adult brainstem gliomas. However, the clinical outcome and prognosis of IDH-mutant brainstem gliomas in adults have not been elucidated. This study aimed to investigate the clinical outcome, radiological findings, and genetic features of adult patients with IDH-mutant diffuse brainstem gliomas. METHODS: Data from adult patients with brainstem glioma at Hokkaido University Hospital between 2006 and 2022 were retrospectively analyzed. Patient characteristics, treatment methods, genetic features, and prognosis were evaluated. RESULTS: Of 12 patients with brainstem glioma with proven histopathology, 4 were identified with IDH mutation. All patients underwent local radiotherapy with 54 Gray in 27 fractions combined with chemotherapy with temozolomide. Three patients had IDH1 R132H mutation and one had IDH2 R172G mutation. The median progression-free survival and overall survival were 68.4 months and 85.2 months, respectively, longer than that for IDH-wildtype gliomas (5.6 months and 12.0 months, respectively). At the time of initial onset, contrast-enhanced lesions were observed in two of the four cases in magnetic resonance imaging. CONCLUSION: As some adult brainstem gliomas have IDH mutations, and a clearly different prognosis from those with IDH-wildtype, biopsies are proactively considered to confirm the genotype.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/terapia , Masculino , Glioma/genética , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/terapia , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Resultado do Tratamento , Prognóstico , Imageamento por Ressonância Magnética , Adulto Jovem
5.
Anticancer Res ; 44(6): 2325-2333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821589

RESUMO

BACKGROUND/AIM: In the past decade, diffuse intrinsic pontine glioma (DIPG), the most common childhood brainstem glioma, has benefitted from an increase in tissue-based research because of improved biopsy collection techniques. However, the adaptive immune receptor (IR) features represented by tumor material and tumor infiltrating lymphocytes have remained poorly understood. MATERIALS AND METHODS: Herein, we characterized the adaptive immune parameters of DIPG through the recovery of IR recombination reads from RNAseq files representing initial and progressive DIPG samples. RESULTS: An elevated level of immunoglobulin gene expression in the progressive DIPG sample files and a reduced number of bacterial sequencing read recoveries in comparison to RNAseq files representing the initial form of DIPG, was found. Furthermore, the RNAseq files representing both initial and progressive DIPG samples had significant numbers of reads representing Cutibacterium acnes, a bacterium previously linked to prostate cancer development. Results also indicated an opportunity to distinguish overall survival probabilities based on IGL complementarity determining region-3 amino acid sequence physicochemical parameters. CONCLUSION: Genomics analyses allow for a better understanding of adaptive IR features and bacterial infections in the DIPG setting.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/microbiologia , Neoplasias do Tronco Encefálico/patologia , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/microbiologia , Glioma Pontino Intrínseco Difuso/patologia , Masculino , Progressão da Doença , Criança , Imunoglobulinas/genética , Feminino , Pré-Escolar , Linfócitos do Interstício Tumoral/imunologia
6.
Acta Neuropathol Commun ; 12(1): 71, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
7.
Brain Res ; 1837: 148961, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679312

RESUMO

This study reevaluates the conventional understanding of midbrain anatomy and neuroanatomical nomenclature in the context of recent genetic and anatomical discoveries. The authors assert that the midbrain should be viewed as an integral part of the forebrain due to shared genetic determinants and evolutionary lineage. The isthmo-mesencephalic boundary is recognized as a significant organizer for both the caudal midbrain and the isthmo-cerebellar area. The article adopts the prosomeric model, redefining the whole brain as neuromeres, offering a more precise depiction of brain development, including processes like proliferation, neurogenesis, cell migration, and differentiation. This shift in understanding challenges traditional definitions of the midbrain based on external brain morphology. The study also delves into the historical context of neuroanatomical models, including the columnar model proposed by Herrick in 1910, which has influenced our understanding of brain structure. Furthermore, the study has clinical implications, affecting neuroanatomy, neurodevelopmental studies, and the diagnosis and treatment of brain disorders. It emphasizes the need to integrate molecular research into human neuroanatomical studies and advocates for updating neuroanatomical terminology to reflect modern genetic and molecular insights. The authors propose two key revisions. First, we suggest reclassifying the isthmo-cerebellar prepontine region as part of the hindbrain, due to its role in cerebellar development and distinct location caudal to the genetically-defined midbrain. Second, we recommend redefining the anterior boundary of the genetically-defined midbrain to align with genetic markers. In conclusion, the authors highlight the importance of harmonizing neuroanatomical nomenclature with current scientific knowledge, promoting a more precise and informed understanding of brain structure, which is crucial for both research and clinical applications related to the human brain.


Assuntos
Neoplasias do Tronco Encefálico , Humanos , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Mesencéfalo , Tronco Encefálico
8.
Cancer Lett ; 590: 216876, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38609002

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Prognóstico , Microambiente Tumoral , Terapia de Alvo Molecular/métodos
9.
Childs Nerv Syst ; 40(8): 2603-2607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38642111

RESUMO

The embryonal central nervous system (CNS) tumor with PLAGL1 (pleomorphic adenoma gene-like) amplification is a novel type of pediatric neoplasm with a distinct methylation profile, described for the first time in 2022. It may be located anywhere in the neuroaxis and, as its name implies, it is driven by the amplification and overexpression of one of the PLAG family genes. Although the associated clinical, immunohistopathological, and molecular characteristics are well characterized in the seminal report of this entity, data on the radiological features is still lacking. Here, we present a case report of a 4-year-old girl with a biopsy-proven PLAGL1-amplified brainstem tumor and provide a detailed description of the corresponding conventional neuroimaging characteristics, aiming to better delineate this entity and to increase the awareness of this pathology in the radiological community.


Assuntos
Fatores de Transcrição , Humanos , Feminino , Pré-Escolar , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Neoplasias Embrionárias de Células Germinativas/diagnóstico por imagem , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Imageamento por Ressonância Magnética , Amplificação de Genes , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/patologia , Proteínas de Ciclo Celular
10.
Crit Rev Oncol Hematol ; 196: 104261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395241

RESUMO

Adult brainstem gliomas (BSGs) are a group of rare central nervous system tumors with varying prognoses and controversial standard treatment strategies. To provide an overview of current trends, a systematic review using the PRISMA guidelines, Class of evidence (CE) and strength of recommendation (SR), was conducted. The review identified 27 studies. Surgery was found to have a positive impact on survival, particularly for focal lesions with CE II SR C. Stereotactic image-guided biopsy was recommended when resective surgery was not feasible with CE II and SR B. The role of systemic treatments remains unclear. Eight studies provided molecular biology data. This review gathers crucial literature on diagnosis and management of adult BSGs. It provides evidence-based guidance with updated recommendations for diagnosing and treating, taking into account recent molecular and genetic advancements. The importance of brain biopsy is emphasized to optimize treatment using emerging genetic-molecular findings and explore potential targeted therapies.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Humanos , Glioma/patologia , Glioma/terapia , Glioma/diagnóstico , Glioma/genética , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/diagnóstico , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/genética , Adulto , Prognóstico
11.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
12.
Sci Rep ; 14(1): 328, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172189

RESUMO

H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.


Assuntos
Neoplasias Encefálicas , Neoplasias do Tronco Encefálico , Glioma , Criança , Humanos , Barreira Hematoencefálica , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Sobrevivência Celular , Terapia Combinada , Glioma/tratamento farmacológico , Glioma/genética , Mutação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Proteína-Arginina N-Metiltransferases/genética
13.
Mol Cancer Ther ; 23(1): 24-34, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37723046

RESUMO

Therapeutic resistance remains a major obstacle to successful clinical management of diffuse intrinsic pontine glioma (DIPG), a high-grade pediatric tumor of the brain stem. In nearly all patients, available therapies fail to prevent progression. Innovative combinatorial therapies that penetrate the blood-brain barrier and lead to long-term control of tumor growth are desperately needed. We identified mechanisms of resistance to radiotherapy, the standard of care for DIPG. On the basis of these findings, we rationally designed a brain-penetrant small molecule, MTX-241F, that is a highly selective inhibitor of EGFR and PI3 kinase family members, including the DNA repair protein DNA-PK. Preliminary studies demonstrated that micromolar levels of this inhibitor can be achieved in murine brain tissue and that MTX-241F exhibits promising single-agent efficacy and radiosensitizing activity in patient-derived DIPG neurospheres. Its physiochemical properties include high exposure in the brain, indicating excellent brain penetrance. Because radiotherapy results in double-strand breaks that are repaired by homologous recombination (HR) and non-homologous DNA end joining (NHEJ), we have tested the combination of MTX-241F with an inhibitor of Ataxia Telangiectasia Mutated to achieve blockade of HR and NHEJ, respectively, with or without radiotherapy. When HR blockers were combined with MTX-241F and radiotherapy, synthetic lethality was observed, providing impetus to explore this combination in clinically relevant models of DIPG. Our data provide proof-of-concept evidence to support advanced development of MTX-241F for the treatment of DIPG. Future studies will be designed to inform rapid clinical translation to ultimately impact patients diagnosed with this devastating disease.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Criança , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Recidiva Local de Neoplasia , Reparo do DNA , Transdução de Sinais , DNA/uso terapêutico , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia
14.
Cancer Res ; 84(4): 598-615, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095539

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is the most aggressive pediatric brain tumor, and the oncohistone H3.3K27M mutation is associated with significantly worse clinical outcomes. Despite extensive research efforts, effective approaches for treating DIPG are lacking. Through drug screening, we identified the combination of gemcitabine and fimepinostat as a potent therapeutic intervention for H3.3K27M DIPG. H3.3K27M facilitated gemcitabine-induced apoptosis in DIPG, and gemcitabine stabilized and activated p53, including increasing chromatin accessibility for p53 at apoptosis-related loci. Gemcitabine simultaneously induced a prosurvival program in DIPG through activation of RELB-mediated NF-κB signaling. Specifically, gemcitabine induced the transcription of long terminal repeat elements, activated cGAS-STING signaling, and stimulated noncanonical NF-κB signaling. A drug screen in gemcitabine-treated DIPG cells revealed that fimepinostat, a dual inhibitor of HDAC and PI3K, effectively suppressed the gemcitabine-induced NF-κB signaling in addition to blocking PI3K/AKT activation. Combination therapy comprising gemcitabine and fimepinostat elicited synergistic antitumor effects in vitro and in orthotopic H3.3K27M DIPG xenograft models. Collectively, p53 activation using gemcitabine and suppression of RELB-mediated NF-κB activation and PI3K/AKT signaling using fimepinostat is a potential therapeutic strategy for treating H3.3K27M DIPG. SIGNIFICANCE: Gemcitabine activates p53 and induces apoptosis to elicit antitumor effects in H3.3K27M DIPG, which can be enhanced by blocking NF-κB and PI3K/AKT signaling with fimepinostat, providing a synergistic combination therapy for DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Morfolinas , Pirimidinas , Compostos de Enxofre , Criança , Humanos , Glioma Pontino Intrínseco Difuso/genética , Gencitabina , NF-kappa B , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Proteína Supressora de Tumor p53
15.
Neuro Oncol ; 26(4): 735-748, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011799

RESUMO

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS: We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS: High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS: Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Imidazóis , Piridinas , Pirimidinas , Criança , Humanos , Epigênese Genética , Histonas/genética , Glioma Pontino Intrínseco Difuso/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Piperazinas
16.
Neuro Oncol ; 26(Supplement_2): S110-S124, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38102230

RESUMO

H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.


Assuntos
Glioma Pontino Intrínseco Difuso , Glioma , Histonas , Mutação , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Glioma Pontino Intrínseco Difuso/terapia , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Glioma/genética , Glioma/terapia , Glioma/patologia , Histonas/genética , Prognóstico
17.
Eur Rev Med Pharmacol Sci ; 27(22): 10926-10934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38039022

RESUMO

OBJECTIVE: Brainstem tumors present a significant challenge in surgical treatment, and the prognostic factors in children are lacking. This study aimed to investigate clinical characteristics and prognostic factors of surgical treatment in children with brainstem tumors. PATIENTS AND METHODS: 50 children with brainstem tumors who underwent surgical treatment, including frameless- or frame-based stereotactic biopsy and resection, were included and followed up for clinical and biological analysis. Factors of outcomes were assessed by univariate and multivariate analysis. RESULTS: 27 cases (54.0%) underwent resection in all children with brainstem tumors. The rate of resection reached as high as 81.8% in children with non-diffuse intrinsic pontine glioma (DIPG), while in children with DIPG, biopsy was performed in the majority, and resection was obtained in the minority with focal necrosis. A rare complication was found following the surgery. Multivariate analysis considered World Health Organization (WHO) grade 3-4, with hazard ratio (HR)=4.48, 95% confidence interval (CI) of 2.84-8.69, p=0.001, H3K27M mutation (HR=2.50, 95% CI 1.73-5.69, p=0.015), and hydrocephalus (HR=2.17, 95% CI 1.08-5.32, p=0.014) as independent adverse prognostic factors. For Kaplan-Meier analysis, children with WHO grade 3-4, Ki-67 LI ≥ 20%, TP53 mutation, H3K27M mutation, DIPG, and hydrocephalus had significantly decreased overall survival (OS). CONCLUSIONS: A high rate of resection has been obtained in non-DIPG, and surgical intervention is remarkably safe and efficient for children with brainstem tumors. WHO grade 3-4, H3K27M mutation, and hydrocephalus indicate poor prognosis in children with brainstem tumors.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Hidrocefalia , Humanos , Criança , Glioma/patologia , Prognóstico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/cirurgia , Neoplasias do Tronco Encefálico/patologia , Biópsia
18.
Mol Cancer Ther ; 22(12): 1413-1421, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683275

RESUMO

Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Animais , Humanos , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Mutação , Microtúbulos/metabolismo
19.
Biochem Biophys Res Commun ; 677: 6-12, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523894

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor with limited therapeutic options. Here, we investigated the potential of dimethyl alpha-ketoglutarate (DMKG) as an anti-proliferative agent against DIPG and unraveled its underlying molecular mechanisms. DMKG exhibited robust inhibition of DIPG cell proliferation, colony formation, and neurosphere growth. Transcriptomic analysis revealed substantial alterations in gene expression, with upregulated genes enriched in hypoxia-related pathways and downregulated genes associated with cell division and the mitotic cell cycle. Notably, DMKG induced G1/S phase cell cycle arrest and downregulated histone H3 lysine 27 acetylation (H3K27ac) without affecting H3 methylation levels. The inhibition of AKT and ERK signaling pathways by DMKG coincided with decreased expression of the CBP/p300 coactivator. Importantly, we identified the c-MYC-p300/ATF1-p300 axis as a key mediator of DMKG's effects, demonstrating reduced binding to target gene promoters and decreased H3K27ac levels. Depletion of c-MYC or ATF1 effectively inhibited DIPG cell growth. These findings highlight the potent anti-proliferative properties of DMKG, its impact on epigenetic modifications, and the involvement of the c-MYC-p300/ATF1-p300 axis in DIPG, shedding light on potential therapeutic strategies for this devastating disease.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Humanos , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Glioma/patologia , Redes Reguladoras de Genes , Epigênese Genética , Proliferação de Células/genética
20.
Radiother Oncol ; 186: 109789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414255

RESUMO

PURPOSE: To establish an individualized predictive model to identify patients with brainstem gliomas (BSGs) at high risk of H3K27M mutation, with the inclusion of brain structural connectivity analysis based on diffusion MRI (dMRI). MATERIALS AND METHODS: A primary cohort of 133 patients with BSGs (80 H3K27M-mutant) were retrospectively included. All patients underwent preoperative conventional MRI and dMRI. Tumor radiomics features were extracted from conventional MRI, while two kinds of global connectomics features were extracted from dMRI. A machine learning-based individualized H3K27M mutation prediction model combining radiomics and connectomics features was generated with a nested cross validation strategy. Relief algorithm and SVM method were used in each outer LOOCV loop to select the most robust and discriminative features. Additionally, two predictive signatures were established using the LASSO method, and simplified logistic models were built using multivariable logistic regression analysis. An independent cohort of 27 patients was used to validate the best model. RESULTS: 35 tumor-related radiomics features, 51 topological properties of brain structural connectivity networks, and 11 microstructural measures along white matter tracts were selected to construct a machine learning-based H3K27M mutation prediction model, which achieved an AUC of 0.9136 in the independent validation set. Radiomics- and connectomics-based signatures were generated and simplified combined logistic model was built, upon which derived nomograph achieved an AUC of 0.8827 in the validation cohort. CONCLUSION: dMRI is valuable in predicting H3K27M mutation in BSGs, and connectomics analysis is a promising approach. Combining multiple MRI sequences and clinical features, the established models have good performance.


Assuntos
Neoplasias do Tronco Encefálico , Conectoma , Glioma , Humanos , Estudos Retrospectivos , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Mutação , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...