Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.539
Filtrar
1.
Cells ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39195259

RESUMO

Retinopathy of prematurity (ROP) has a dual-phase disease pathology; in phase 1, hyperoxia-induced vaso-obliteration occurs in the retinal vasculature due to increased oxidative stress (OS) and inflammation, followed by phase 2, where hypoxia increases the overproduction of growth factors, inducing retinal neovascularization. Toll-like receptor 2 and -4 (TLR2 and TLR4) overactivation, hyper-inflammation, macrophages, and neutrophil infiltration contribute to the developing ROP. AVR-121 and AVR-123 are novel classes of small-molecule dual inhibitors of TLR2/4 tested in a human leukemia monocytic cell line (THP-1) and cord-blood-derived mononuclear cells (CBMCs). Both compounds inhibited TLR2/4 signaling-related inflammatory cytokines in THP-1 cells and inhibited VEGF-induced neovascularization in human retinal endothelial cells (HRECs), which are hallmarks of ROP. In an oxygen-induced retinopathy (OIR) murine model, the intraperitoneal injection of AVR-123 in the hyperoxia phase (P7-P12) or a nanosuspension eyedrop of AVR-123 in the hypoxic phase (P12-P17) significantly reduced vaso-obliteration, angiogenesis, and inflammatory cytokine profiles while not inhibiting the necessary growth factor VEGF in the juvenile mouse eyes. The results are consistent with our hypothesis that targeting the dual TLR2/4 pathway will reduce inflammation, angiogenesis, and vaso-obliteration in vitro and in vivo and reduce cytotoxic immune cells. AVR-123 has the potential to be developed as a therapy for ROP.


Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Modelos Animais de Doenças , Oxigênio , Retinopatia da Prematuridade , Animais , Camundongos , Humanos , Oxigênio/metabolismo , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Citocinas/metabolismo , Hiperóxia/complicações , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Invest Ophthalmol Vis Sci ; 65(10): 34, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39186263

RESUMO

Purpose: In response to hypoxia, sympathetic fibers to the retina activate ß-adrenoceptors (ß-ARs) that play an important role in the regulation of vascular and neuronal functions. We investigated the role of ß3-AR using the mouse model of oxygen-induced retinopathy (OIR). Methods: Mouse pups were exposed to 75% oxygen at postnatal day 7 (PD7) followed by a return to room air at PD12. The ß3-AR preferential agonist BRL37344 was subcutaneously administered once daily at different times after the return to room air. At PD17, the OIR mice underwent flash and pattern electroretinogram. After sacrifice, retinal wholemounts were used for vessel staining or immunohistochemistry for astrocytes, Müller cells, or retinal ganglion cells (RGCs). In retinal homogenates, the levels of markers associated with neovascularization (NV), the blood-retinal barrier (BRB), or astrocytes were determined by western blot, and quantitative reverse-transcription polymerase chain reaction was used to assess ß3-AR messenger. Administration of the ß3-AR antagonist SR59230A was performed to verify BRL37344 selectivity. Results: ß3-AR expression is upregulated in response to hypoxia, but its increase is prevented by BRL37344, which counteracts NV by inhibiting the pro-angiogenic pathway, activating the anti-angiogenic pathway, recovering BRB-associated markers, triggering nitric oxide production, and favoring revascularization of the central retina through recovered density of astrocytes that ultimately counteracts NV in the midperiphery. Vasculature rescue prevents dysfunctional retinal activity and counteracts OIR-associated retinal ganglion cell loss. Conclusions: ß3-AR has emerged as a crucial intermediary in hypoxia-dependent NV, suggesting a role of ß3-AR agonists in the treatment of proliferative retinopathies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Modelos Animais de Doenças , Eletrorretinografia , Camundongos Endogâmicos C57BL , Oxigênio , Receptores Adrenérgicos beta 3 , Neovascularização Retiniana , Animais , Camundongos , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Neovascularização Retiniana/patologia , Oxigênio/toxicidade , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Animais Recém-Nascidos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Etanolaminas/farmacologia , Vasos Retinianos/efeitos dos fármacos , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/tratamento farmacológico , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Imuno-Histoquímica , Angiogênese
3.
Exp Biol Med (Maywood) ; 249: 10070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114443

RESUMO

HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Neovascularização Retiniana , Proteínas Roundabout , Adulto , Feminino , Humanos , Masculino , Angiogênese , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia
4.
Invest Ophthalmol Vis Sci ; 65(10): 5, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093298

RESUMO

Purpose: Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods: C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results: RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions: Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.


Assuntos
Deferiprona , Modelos Animais de Doenças , Homeostase , Quelantes de Ferro , Ferro , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Retiniana , Animais , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Camundongos , Ferro/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Angiofluoresceinografia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Western Blotting , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo , Fator de Transcrição STAT3/metabolismo , Masculino
5.
Biomed Pharmacother ; 178: 117222, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39088968

RESUMO

BACKGROUND: Ocular neovascular diseases, which contribute significantly to vision loss, lack effective preventive treatments. Recent studies have highlighted the significant involvement of immune cells in neovascular retinopathy. Myeloid-derived suppressor cells (MDSCs) promote the development of neovascularization, but it is unknown whether they participate in pathological neovascularization and whether they are expected to be a therapeutic target. METHOD: We investigated the role of MDSCs in promoting pathological angiogenesis using an oxygen-induced retinopathy (OIR) model, employing flow cytometry, immunofluorescence, and smart-seq analysis. Then, we evaluated the proportion of MDSCs in patient blood samples using flow cytometry. Additionally, we assessed the effect of MDSC depletion using an anti-Gr-1 monoclonal antibody on retinal vasculopathy and alterations in retinal microglia. RESULTS: In the OIR model, an elevated ratio of MDSCs was observed in both blood and retinal tissue during phase II (Neovascularization). The depletion of MDSCs resulted in reduced retinal neovascularization and vaso-obliteration, along with a decrease in microglia within the neovascularization area. Furthermore, analysis of gene transcripts associated with MDSCs indicated activation of vascular endothelial growth factor (VEGF) regulation and inflammation. Importantly, infants with ROP exhibited a higher proportion of MDSCs in their blood samples. CONCLUSION: Our results suggested that excessive MDSCs represent an unrecognized feature of ocular neovascular diseases and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to ocular neovascular disease.


Assuntos
Células Supressoras Mieloides , Neovascularização Retiniana , Humanos , Células Supressoras Mieloides/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Animais , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Microglia/patologia , Microglia/metabolismo , Lactente , Oxigênio/sangue
6.
Invest Ophthalmol Vis Sci ; 65(8): 29, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023441

RESUMO

Purpose: To longitudinally investigate the changes in intraretinal microvascular abnormalities (IRMAs) over time, employing swept-source optical coherence tomography angiography in eyes with diabetic retinopathy. Methods: In this retrospective, longitudinal study, we evaluated 12 × 12-mm swept-source optical coherence tomography angiography centered on the macula at baseline and last available follow-up visit for (1) IRMA changes during follow-up, defined as (a) stable, (b) regressed, (c) obliterated, and (d) progressed; and the (2) development of new neovascularization (NV) and their origins. Competing-risk survival analysis was used to assess the factors associated with these changes. Results: In total, 195 eyes from 131 participants with diabetic retinopathy were included. Stable, regressed, obliterated, and progressed IRMA were observed in 65.1%, 12.8%, 11.3%, and 19% of eyes with diabetic retinopathy, respectively. Anti-VEGF injections during the follow-up periods and a slower increase of foveal avascular zone were associated with IRMA regression (P < 0.001 and P = 0.039). Obliterated IRMA were correlated with previous panretinal photocoagulation (P < 0.001) and a lower deep capillary plexus vessel density at baseline (P = 0.007), as well as with follow-up anti-VEGF injections (P = 0.025). A higher baseline ischemia index (ISI) and panretinal photocoagulation during the follow-up periods were associated with IRMA progression (P = 0.049 and P < 0.001). A faster increase in ISI predicted the development of NV elsewhere (NVE) from veins (P < 0.001). No significant factors were found to be associated with NVE originating from IRMA. Conclusions: Changes in IRMA closely correlated with the severity of retinal ischemia and treatment. Notably, our study confirmed the potential, yet relatively rare, development of NVE from IRMA in a large cohort; however, the risk factors associated with this transformation require further exploration.


Assuntos
Retinopatia Diabética , Angiofluoresceinografia , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/diagnóstico , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Vasos Retinianos/patologia , Vasos Retinianos/diagnóstico por imagem , Angiofluoresceinografia/métodos , Seguimentos , Idoso , Neovascularização Retiniana/diagnóstico , Neovascularização Retiniana/diagnóstico por imagem , Acuidade Visual , Microvasos/patologia , Microvasos/diagnóstico por imagem , Fundo de Olho , Progressão da Doença , Estudos Longitudinais , Adulto
7.
Invest Ophthalmol Vis Sci ; 65(8): 10, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958972

RESUMO

Purpose: Retinopathy of prematurity (ROP) results from postnatal hyperoxia exposure in premature infants and is characterized by aberrant neovascularization of retinal blood vessels. Epithelial membrane protein-2 (EMP2) regulates hypoxia-inducible factor (HIF)-induced vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line and genetic knock-out of Emp2 in a murine oxygen-induced retinopathy (OIR) model attenuates neovascularization. We hypothesize that EMP2 blockade via intravitreal injection protects against neovascularization. Methods: Ex vivo choroid sprouting assay was performed, comparing media and human IgG controls versus anti-EMP2 antibody (Ab) treatment. In vivo, eyes from wild-type (WT) mice exposed to hyperoxia from postnatal (P) days 7 to 12 were treated with P12 intravitreal injections of control IgG or anti-EMP2 Abs. Neovascularization was assessed at P17 by flat mount imaging. Local and systemic effects of anti-EMP2 Ab treatment were assessed. Results: Choroid sprouts treated with 30 µg/mL of anti-EMP2 Ab demonstrated a 48% reduction in vessel growth compared to control IgG-treated sprouts. Compared to IgG-treated controls, WT OIR mice treated with 4 µg/g of intravitreal anti-EMP2 Ab demonstrated a 42% reduction in neovascularization. They demonstrated down-regulation of retinal gene expression in pathways related to vasculature development and up-regulation in genes related to fatty acid oxidation and tricarboxylic acid cycle respiratory electron transport, compared to controls. Anti-EMP2 Ab-treated OIR mice did not exhibit gross retinal histologic abnormalities, vision transduction abnormalities, or weight loss. Conclusions: Our results suggest that EMP2 blockade could be a local and specific treatment modality for retinal neovascularization in oxygen-induced retinopathies, without systemic adverse effects.


Assuntos
Oxigênio , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Modelos Animais de Doenças , Hiperóxia/complicações , Injeções Intravítreas , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Sci Rep ; 14(1): 15647, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977744

RESUMO

This study aimed to determine whether the state of retinal vascularization after anti-vascular endothelial growth factor (anti-VEGF) injection can help predict the risk of reactivated retinopathy of prematurity (ROP) requiring treatment and whether repeated ranibizumab injection will be effective in such cases. We retrospectively reviewed 24 infants (43 eyes) who received ranibizumab monotherapy between January 2021 and December 2022. All eyes were classified as having non-retreated ROP or retreated ROP. The state of ROP at the time of treatment, the time required for resolution of plus disease, and the extent of vascularization at 4 and 8 weeks after treatment were analyzed. Extent of temporal retinal vascularization was measured with serial fundus images using disc-fovea distance (DF) unit and disc diameter (DD). Reactivated ROP requiring treatment occurred in six infants (25.0%) and ten eyes (23.3%) after ranibizumab treatment. The mean retreatment interval was 9.0 ± 3.3 weeks (range 4-16). In the retreated ROP group, the time required for the resolution of plus disease after primary injection was longer compared to the control group (13.3 days vs 5.2 days), with a mean ROP regression time of 3.4 weeks. All eyes in the retreated ROP showed retinal vascularization < 0.5 DF from the original site at 4 weeks after injection. In 90% of cases with retreated ROP, the extent of vascularization at 8 weeks after injection was within 1 DF from the original ROP site, and all cases showed reactivation in the posterior Zone II area. The extent of retinal neovascularization in the retreated group was an average of 0.7 DD (vs 1.7 DD) and 1.3 DD (vs 3.3 DD) at 4 and 8 weeks after injection, respectively. After ranibizumab retreatment, only one reactivated case with vitreous traction progressed to focal retinal detachment, while all other cases regressed with peripheral vascular development. The continuation of delayed retinal blood vessel development after ≥ 8 weeks may indicate a high likelihood of reactivated ROP requiring treatment. In the absence of vitreous traction, ranibizumab reinjection is likely to be effective in treating reactivated ROP requiring treatment.


Assuntos
Inibidores da Angiogênese , Ranibizumab , Retinopatia da Prematuridade , Humanos , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Ranibizumab/administração & dosagem , Ranibizumab/uso terapêutico , Masculino , Feminino , Recém-Nascido , Estudos Retrospectivos , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Resultado do Tratamento , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Injeções Intravítreas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Lactente , Recém-Nascido Prematuro
9.
Retina ; 44(7): 1217-1223, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900579

RESUMO

PURPOSE: To describe the progression from outer retinal neovascularization (ORNV) to exudative subretinal new vessels (SRNVs) in idiopathic macular telangiectasia type 2. METHODS: A total of 135 patients (270 eyes) imaged with optical coherence tomography angiography were included. MAIN OUTCOME MEASURES: Ellipsoid zone loss, outer retinal hyperreflectivity, ORNV, and SRNVs. Outer retinal neovascularization was defined as a flow signal passing through the outer plexiform layer, with or without vertical linear outer retinal hyperreflectivity on the optical coherence tomography B-scan. Subretinal new vessels were defined as an abnormal capillary network with a peripheral anastomotic arcade seen on en face optical coherence tomography angiography and a convex hyperreflectivity at the retinal pigment epithelium. RESULTS: Subretinal new vessels were observed in 38/270 eyes (14%). Subretinal new vessels were at a fibrotic stage in 24/38 eyes and at an exudative stage in 6/38 eyes, and a progression from ORNV to SRNVs was documented in 8/38 eyes. All cases showed an ellipsoid zone loss. In seven eyes (2.5%), SRNVs were also associated with subepithelial neovascularization. No retinochoroidal anastomosis was detected. The visual acuity dropped when SRNVs were present. CONCLUSION: In this case series, SRNVs were found in 14% of eyes. In all cases, they were associated with an ellipsoid zone loss and with outer retinal hyperreflectivity. A progression from ORNV to SRNVs was observed.


Assuntos
Angiofluoresceinografia , Neovascularização Retiniana , Telangiectasia Retiniana , Vasos Retinianos , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Tomografia de Coerência Óptica/métodos , Feminino , Masculino , Neovascularização Retiniana/diagnóstico , Neovascularização Retiniana/etiologia , Angiofluoresceinografia/métodos , Idoso , Pessoa de Meia-Idade , Telangiectasia Retiniana/diagnóstico , Telangiectasia Retiniana/complicações , Vasos Retinianos/patologia , Vasos Retinianos/diagnóstico por imagem , Estudos Retrospectivos , Fundo de Olho , Progressão da Doença , Epitélio Pigmentado da Retina/patologia , Idoso de 80 Anos ou mais , Adulto
10.
Sci Rep ; 14(1): 13399, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862630

RESUMO

This retrospective observational study aimed to investigate the difference in 4-year outcomes of ranibizumab or aflibercept therapy for macular neovascularization (MNV) with high myopia between pathologic myopia (PM) and non-PM. This study was conducted at Kyoto University Hospital and included consecutive treatment-naïve eyes with active myopic MNV, in which a single intravitreal ranibizumab or aflibercept injection was administered, followed by a pro re nata (PRN) regimen for 4 years. Based on the META-PM study classification, eyes were assigned to the non-PM and PM groups. This study analyzed 118 eyes of 118 patients (non-PM group, 19 eyes; PM group, 99 eyes). Baseline, 1-year, and 2-year best-corrected visual acuity (BCVA) were significantly better in the non-PM group (P = 0.02, 0.01, and 0.02, respectively); however, the 3-year and 4-year BCVA were not. The 4-year BCVA course was similar in both groups. However, the total number of injections over 4 years was significantly higher in the non-PM than in the PM group (4.6 ± 2.6 vs. 2.9 ± 2.6, P = 0.001). Four-year BCVA significantly correlated only with baseline BCVA in both non-PM (P = 0.047, ß = 0.46) and PM groups (P < 0.001, ß = 0.59). In conclusion, over the 4-year observation period, the BCVA course after anti-VEGF therapy for myopic MNV was similar in the eyes with non-PM and those with PM; however, more additional injections in a PRN regimen were required in the eyes with non-PM compared to those with PM. Thus, more frequent and careful follow-up is required for the eyes with non-PM compared with those with PM to maintain long-term BCVA.


Assuntos
Inibidores da Angiogênese , Miopia Degenerativa , Ranibizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Humanos , Masculino , Feminino , Ranibizumab/administração & dosagem , Ranibizumab/uso terapêutico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Idoso , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Estudos Retrospectivos , Resultado do Tratamento , Pessoa de Meia-Idade , Miopia Degenerativa/tratamento farmacológico , Miopia Degenerativa/complicações , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Injeções Intravítreas , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia
11.
BMC Ophthalmol ; 24(1): 267, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907191

RESUMO

OBJECTIVE: Diabetic retinopathy (DR) is a common complication of diabetes, and recent findings have shown that long noncoding RNAs (lncRNAs) may be involved in its pathogenesis. Through bioinformatics analysis, we found that lncRNA ATP2B2-IT2 may be involved in this process. This study primarily investigated the expression of the lncRNA ATP2B2-IT2 in human retinal microvascular endothelial cells (HRMECs) under high-glucose conditions and its effects on HRMEC proliferation, migration, and neovascularization. METHODS: We used RT‒PCR to assess the expression levels of lncRNA ATP2B2-IT2 and vascular endothelial growth factor (VEGF) in HRMECs under normal glucose (5.5 mmol/L) and high glucose (30 mmol/L) conditions. HRMECs were subsequently divided into four groups: the normal glucose (NG), high glucose (HG), high glucose with lncRNA ATP2B2-IT2 silencing (HG + si-lncRNA ATP2B2-IT2), and high glucose with silencing control (HG + si-NC) groups. The expression levels of the lncRNA ATP2B2-IT2 and VEGF in each group were determined using RT‒PCR. Thereafter, cell proliferation, migration, and neovascularization were assessed using CCK-8, Transwell, and tube formation assays, respectively. RESULTS: RT‒PCR revealed that the expression levels of the lncRNA ATP2B2-IT2 and VEGF were greater in the HG group than in the NG group (P < 0.05). After silencing of the lncRNA ATP2B2-IT2, the expression of VEGF decreased significantly (P < 0.05). Subsequent CCK-8, Transwell, and tube formation assays demonstrated that compared to those in the NG group, the HRMECs in the HG group exhibited significantly increased proliferation, migration, and neovascularization (P < 0.05). However, after silencing of the lncRNA ATP2B2-IT2, the proliferation, migration, and neovascularization of HRMECs were significantly decreased in the HG + si-lncRNA ATP2B2-IT2 group compared to those in the HG group (P < 0.05). CONCLUSION: LncRNA ATP2B2-IT2 may promote the proliferation, migration and neovascularization of HRMECs under high-glucose conditions.


Assuntos
Movimento Celular , Proliferação de Células , Retinopatia Diabética , RNA Longo não Codificante , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , RNA Longo não Codificante/genética , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Cultivadas , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Regulação da Expressão Gênica , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
12.
Biol Res ; 57(1): 43, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915069

RESUMO

BACKGROUND: Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease occurring in the retina of premature infants and is the main cause of childhood blindness. Nowadays anti-VEGF and retinal photocoagulation are mainstream treatments for ROP, but they develop a variety of complications. Hydrogen (H2) is widely considered as a useful neuroprotective and antioxidative therapeutic method for hypoxic-ischemic disease without toxic effects. However, whether H2 provides physiological angiogenesis promotion, neovascularization suppression and glial protection in the progression of ROP is largely unknown.This study aims to investigate the effects of H2 on retinal angiogenesis, neovascularization and neuroglial dysfunction in the retinas of oxygen-induced retinopathy (OIR) mice. METHODS: In this study, mice that were seven days old and either wild-type (WT) or Nrf2-deficient (Nrf2-/-) were exposed to 75% oxygen for 5 days and then returned to normal air conditions. Different stages of hydrogen gas (H2) inhalation were administered. Vascular obliteration, neovascularization, and blood vessel leakage were analyzed and compared. To count the number of neovascularization endothelial nuclei, routine HE staining of retinal sections was conducted. Immunohistochemistry was performed using DyLight 594 labeled GSL I-isolectin B4 (IB4), as well as primary antibodies against proliferating cell nuclear antigen (PCNA), glial fibrillary acidic protein (GFAP), and Iba-1. Western blots were used to measure the expression of NF-E2-related factor 2 (Nrf2), vascular endothelial growth factor (VEGF), Notch1, Dll4, and HIF-1α. Additionally, the expression of target genes such as NQO1, HO-1, Notch1, Hey1, Hey2, and Dll4 was measured. Human umbilical vein endothelial cells (HUVECs) treated with H2 under hypoxia were used as an in vitro model. RT-PCR was used to evaluate the mRNA expression of Nrf2, Notch/Dll4, and the target genes. The expression of reactive oxygen species (ROS) was observed using immunofluorescence staining. RESULTS: Our results indicate that 3-4% H2 does not disturb retinal physiological angiogenesis, but ameliorates vaso-obliteration and neovascularization in OIR mice. Moreover, H2 prevents the decreased density and reverses the morphologic and functional changes in retinal astrocytes caused by oxygen-induced injury. In addition, H2 inhalation reduces microglial activation, especially in the area of neovascularization in OIR mice. H2 plays a protective role in vascular regeneration by promoting Nrf2 activation and suppressing the Dll4-induced Notch signaling pathway in vivo. Also, H2 promotes the proliferation of HUVECs under hypoxia by negatively regulating the Dll4/Notch pathway and reducing ROS levels through Nrf2 pathway aligning with our findings in vivo.Moreover, the retinal oxygen-sensing mechanisms (HIF-1α/VEGF) are also involved in hydrogen-mediated retinal revascularization and neovascularization suppression. CONCLUSIONS: Collectively, our results indicate that H2 could be a promising therapeutic agent for POR treatment and that its beneficial effect in human ROP might involve the activation of the Nrf2-Notch axis as well as HIF-1α/VEGF pathways.


Assuntos
Modelos Animais de Doenças , Hidrogênio , Neuroglia , Oxigênio , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Hidrogênio/farmacologia , Neovascularização Retiniana/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Camundongos , Retinopatia da Prematuridade/tratamento farmacológico , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Animais Recém-Nascidos , Regeneração/efeitos dos fármacos , Imuno-Histoquímica , Vasos Retinianos/efeitos dos fármacos
13.
J Nanobiotechnology ; 22(1): 354, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902775

RESUMO

Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Neovascularização Patológica/tratamento farmacológico , Fundo de Olho , Pontos Quânticos/química , Nanopartículas Multifuncionais/química , Neovascularização Retiniana/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/química
14.
Angiogenesis ; 27(3): 423-440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38709389

RESUMO

BACKGROUND: Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS: We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS: ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION: These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.


Assuntos
Oxigênio , Retinopatia da Prematuridade , Animais , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Hiperóxia/patologia , Hiperóxia/complicações , Retina/patologia , Retina/metabolismo , Retina/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Camundongos Transgênicos , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Microglia/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos
15.
Immunology ; 173(1): 141-151, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38804253

RESUMO

Retinopathy of prematurity (ROP) is a retinal disease-causing retinal neovascularization that can lead to blindness. Oxygen-induced retinopathy (OIR) is a widely used ROP animal model. Icariin (ICA) has anti-oxidative and anti-inflammation properties; however, whether ICA has a regulatory effect on OIR remains unclear. In this study, ICA alleviated pathological neovascularization, microglial activation and blood-retina barrier (BRB) damage in vivo. Further results indicated that endothelial cell tube formation, migration and proliferation were restored by ICA treatment in vitro. Proteomic microarrays and molecular mimicry revealed that ICA can directly bind to hexokinase 2 (HK2) and decrease HK2 protein expression in vivo and in vitro. In addition, ICA inhibited the AKT/mTOR/HIF1α pathway activation. The effects of ICA on pathological neovascularization, microglial activation and BRB damage disappeared after HK2 overexpression in vivo. Similarly, the endothelial cell function was revised after HK2 overexpression. HK2 overexpression reversed ICA-induced AKT/mTOR/HIF1α pathway inhibition in vivo and in vitro. Therefore, ICA prevented pathological angiogenesis in OIR in an HK2-dependent manner, implicating ICA as a potential therapeutic agent for ROP.


Assuntos
Flavonoides , Hexoquinase , Microglia , Oxigênio , Neovascularização Retiniana , Retinopatia da Prematuridade , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
16.
Nat Commun ; 15(1): 4097, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755144

RESUMO

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Fatores de Transcrição Forkhead , Neovascularização Retiniana , Animais , Masculino , Camundongos , Angiogênese , Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
BMC Pediatr ; 24(1): 301, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704544

RESUMO

BACKGROUND: We present a patient with retinopathy of prematurity (ROP) who developed worsening plus disease after complete regression of stage 3 ROP. The use of fundus fluorescein angiography (FFA) aided the visualization of occult neovascularization that caused the disease progression. CASE PRESENTATION: The patient was at high risk for ROP due to low birth weight of 690 g and gestational age of 25 weeks. After the diagnosis of stage 3 ROP in zone I without plus disease, she was treated initially with bilateral intravitreal bevacizumab (IVB) and followed by laser photocoagulation 5 weeks later. Despite the resolution of ROP stage, the plus disease worsened. Neither systemic risk factors nor skip laser areas were observed. Hence, FFA was performed and subsequently identified occult neovascularization with active leakage. Additional IVB and laser treatment in the capillary dropout area inside vascularized retina were added. The plus disease improved but mild arteriolar tortuosity persisted. CONCLUSIONS: Worsening of plus disease after completion of laser ablation and IVB with complete regression of stage 3 ROP is rare. Systemic risk factors such as continuous oxygen therapy and cardiovascular disease should be ruled out. FFA aided in identifying occult neovascularization and prompted further treatment.


Assuntos
Inibidores da Angiogênese , Bevacizumab , Angiofluoresceinografia , Injeções Intravítreas , Fotocoagulação a Laser , Neovascularização Retiniana , Retinopatia da Prematuridade , Humanos , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Recém-Nascido , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Feminino , Fotocoagulação a Laser/métodos , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Terapia Combinada
18.
Biochem Biophys Res Commun ; 720: 150065, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749188

RESUMO

Neovascular eye diseases, including proliferative diabetic retinopathy and retinopathy of prematurity, is a major cause of blindness. Laser ablation and intravitreal anti-VEGF injection have shown their limitations in treatment of retinal neovascularization. Identification of a new therapeutic strategies is in urgent need. Our study aims to assess the effects of Cryptotanshinone (CPT), a natural compound derived from Salvia miltiorrhiza Bunge, in retina neovascularization and explore its potential mechanism. Our study demonstrated that CPT did not cause retina tissue toxicity at the tested concentrations. Intravitreal injections of CPT reduced pathological angiogenesis and promoted physical angiogenesis in oxygen-induced retinopathy (OIR) model. CPT improve visual function in OIR mice and reduced cell apoptosis. Moreover, we also revealed that CPT diminishes the expression of inflammatory cytokines in the OIR retina. In vitro, the administration of CPT effectively inhibited endothelial cells proliferation, migration, sprouting, and tube formation induced by the stimulation of human retinal vascular endothelial cells (HRVECs) with VEGF165. Mechanistically, CPT blocking the phosphorylation of VEGFR2 and downstream targeting pathway. After all, the findings demonstrated that CPT exhibits potent anti-angiogenic and anti-inflammatory effects in OIR mice, and it has therapeutic potential for the treatment of neovascular retinal diseases.


Assuntos
Injeções Intravítreas , Camundongos Endogâmicos C57BL , Fenantrenos , Neovascularização Retiniana , Animais , Fenantrenos/farmacologia , Fenantrenos/administração & dosagem , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Neovascularização Retiniana/metabolismo , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia
19.
BMC Ophthalmol ; 24(1): 224, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807066

RESUMO

BACKGROUND: Macular retinoschisis (MRS) and myopic macular neovascularization (mMNV) are both potentially blinding complications of high myopia. In this case report, we highlight the progression of MRS after intravitreal anti-vascular endothelial growth factor (anti-VEGF) treatment for mMNV, as well as an extensive review of the literature on this topic. CASE DESCRIPTION: A 49-year-old woman presented with two weeks of recent onset blurring and metamorphopsia in her right eye. She had high myopia in both eyes (right eye - 20/60 with - 16D, left eye - 20/20 with - 13D). Slit-lamp ophthalmoscopy found a normal anterior segment in both eyes. On fundus examination, features of pathological myopia with posterior staphyloma and peripapillary atrophy were observed in both eyes. An active mMNV, as well as intraretinal fluid, minimal perifoveal inner and outer MRS, and focal posterior vitreous traction along the inferotemporal retinal arcade, were detected on optical coherence tomography (OCT) of the right eye. The patient received an intravitreal injection of Aflibercept (2 mg/0.05 ml). RESULTS: OCT scans at two- and four-month follow-up visits revealed regressed mMNV with a taut epiretinal membrane, progressive worsening of outer MRS, and the development of multiple perifoveal retinal detachment inferior to the fovea. Pars plana vitrectomy surgery was performed for the progressive MRS with good anatomical (resolved MRS) and functional outcome (maintained visual acuity at 20/60) at the last one-month post-surgery visit. CONCLUSION: Intravitreal anti-VEGF injections for mMNV can cause vitreoretinal interface changes, exacerbating MRS and causing visual deterioration. Vitrectomy for MRS could be one of several treatment options.


Assuntos
Injeções Intravítreas , Miopia Degenerativa , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Retinosquise , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Feminino , Pessoa de Meia-Idade , Retinosquise/diagnóstico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/efeitos adversos , Miopia Degenerativa/complicações , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/administração & dosagem , Progressão da Doença , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/diagnóstico , Neovascularização Retiniana/induzido quimicamente , Angiofluoresceinografia
20.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770916

RESUMO

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Assuntos
Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Prolina Dioxigenases do Fator Induzível por Hipóxia , Receptores Notch , Neovascularização Retiniana , Transdução de Sinais , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Vasos Retinianos/metabolismo , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...