Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.365
Filtrar
1.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692791

RESUMO

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Assuntos
Antibacterianos , Carbono , Cobre , Neurotransmissores , Carbono/química , Antibacterianos/análise , Antibacterianos/urina , Antibacterianos/sangue , Neurotransmissores/urina , Neurotransmissores/análise , Neurotransmissores/sangue , Porosidade , Cobre/química , Humanos , Nanosferas/química , Colorimetria/métodos , Compostos Férricos/química , Materiais Biomiméticos/química , Animais , Técnicas Biossensoriais/métodos , Cloranfenicol/análise , Cloranfenicol/urina , Limite de Detecção
2.
J Inherit Metab Dis ; 47(3): 409-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747202
3.
Zool Res ; 45(3): 679-690, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766749

RESUMO

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Assuntos
Anestésicos Inalatórios , Camundongos Endogâmicos C57BL , Neurotransmissores , Propofol , Sevoflurano , Sevoflurano/farmacologia , Animais , Propofol/farmacologia , Neurotransmissores/metabolismo , Camundongos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
4.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758791

RESUMO

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas do Tecido Nervoso , Neurotransmissores , Receptor EphB2 , Proteínas SNARE , Transmissão Sináptica , Proteínas SNARE/metabolismo , Animais , Neurotransmissores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Receptor EphB2/metabolismo , Receptor EphB2/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ligação Proteica , Humanos , Camundongos , Ratos
5.
ACS Sens ; 9(5): 2684-2694, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38693685

RESUMO

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Assuntos
Compostos de Cádmio , Dopamina , Técnicas Eletroquímicas , Nanoestruturas , Neurotransmissores , Sulfetos , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Dopamina/análise , Dopamina/sangue , Nanoestruturas/química , Neurotransmissores/análise , Neurotransmissores/sangue , Humanos , Sulfetos/química , Processos Fotoquímicos , Saliva/química , Teoria da Densidade Funcional , Técnicas Biossensoriais/métodos , Semicondutores , Microeletrodos
6.
Plant Physiol Biochem ; 211: 108601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696867

RESUMO

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.


Assuntos
Neurotransmissores , Estresse Salino , Neurotransmissores/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Tolerância ao Sal , Fenômenos Fisiológicos Vegetais , Transdução de Sinais
7.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791143

RESUMO

In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.


Assuntos
Vesículas Extracelulares , Neurônios , Transdução de Sinais , Sinapses , Transmissão Sináptica , Humanos , Vesículas Extracelulares/metabolismo , Animais , Neurônios/metabolismo , Sinapses/metabolismo , Exocitose , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo
8.
Nano Lett ; 24(21): 6353-6361, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757814

RESUMO

Polydopamine (PDA)-derived melanin-like materials exhibit significant photothermal conversion owing to their broad-spectrum light absorption. However, their low near-infrared (NIR) absorption and inadequate hydrophilicity compromise their utilization of solar energy. Herein, we developed metal-loaded poly(norepinephrine) nanoparticles (PNE NPs) by predoping metal ions (Fe3+, Mn3+, Co2+, Ca2+, Ga3+, and Mg2+) with norepinephrine, a neuron-derived biomimetic molecule, to address the limitations of PDA. The chelation between catechol and metal ions induces a ligand-to-metal charge transfer (LMCT) through the formation of donor-acceptor pairs, modulating the light absorption behavior and reducing the band gap. Under 1 sun illumination, the Fe-loaded PNE coated wood evaporator achieved a high seawater evaporation rate and efficiency of 1.75 kg m-2 h-1 and 92.4%, respectively, owing to the superior hydrophilicity and photothermal performance of PNE. Therefore, this study offers a comprehensive exploration of the role of metal ions in enhancing the photothermal properties of synthetic melanins.


Assuntos
Melaninas , Norepinefrina , Melaninas/química , Norepinefrina/química , Polimerização/efeitos da radiação , Polímeros/química , Neurotransmissores/química , Indóis/química , Oxirredução , Metais/química , Nanopartículas/química
9.
J Trace Elem Med Biol ; 84: 127447, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733832

RESUMO

OBJECTIVE: The pathogenesis of GDM and T2DM are closely related to various metals in vivo, and changes in the concentration of these metal exposures can lead to neuropathy through the DNA damage pathway caused by the accumulation of ROS. METHOD: Urine samples were analyzed for heavy metals and trace elements by ICP-MS, neurotransmitter metabolites by HPLC, 8-OH-dG by HPLC-MS and metabolomics by UPLC-MS. RESULT: Cd and Hg were risk factors for T2DM. There was a positive correlation between 8-OH-dG and neurotransmitter metabolites in both two populations. For GDM, the metabolite with the largest down-regulation effect was desloratadine and the largest up-regulation effect was D-glycine. That tyrosine and carbon metabolites were upregulated in the GDM population and downregulated in the T2DM population. CONCLUSION: The BMI, urinary Cd and Hg endo-exposure levels correlated with elevated blood glucose, and the latter may cause changes in the DNA damage marker 8-OH-dG in both study populations and trigger common responses to neurological alterations changes in the neurotransmitter. Tyrosine, carbonin metabolites, alanine, aspartate, and glutamate were signature metabolites that were altered in both study populations. These indicators and markers have clinical implications for monitoring and prevention of neurological injury in patients with GDM and T2DM.


Assuntos
Neurotransmissores , Humanos , Feminino , Neurotransmissores/urina , Neurotransmissores/metabolismo , Adulto , Gravidez , Pessoa de Meia-Idade , Cádmio/urina , 8-Hidroxi-2'-Desoxiguanosina/urina , Oligoelementos/urina , Cromatografia Líquida de Alta Pressão
10.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729112

RESUMO

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Assuntos
Drosophila melanogaster , Microscopia Eletrônica , Neurotransmissores , Sinapses , Animais , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Microscopia Eletrônica/métodos , Redes Neurais de Computação , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismo
11.
J Phys Chem Lett ; 15(22): 5862-5867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38804506

RESUMO

An artificial tactile receptor is crucial for e-skin in next-generation robots, mimicking the mechanical sensing, signal encoding, and preprocessing functionalities of human skin. In the neural network, pressure signals are encoded in spike patterns and efficiently transmitted, exhibiting low power consumption and robust tolerance for bit error rates. Here, we introduce a highly sensitive artificial tactile receptor system integrating a pressure sensor, axon-hillock circuit, and neurotransmitter release device to achieve pressure signal coding with patterned spikes and controlled neurotransmitter release. Owing to the heightened sensitivity of the axon-hillock circuit to pressure-mediated current signals, the artificial tactile receptor achieves a detection limit of 10 Pa that surpasses the human tactile receptors, with a wide response range from 10 to 5 × 105 Pa. Benefiting from the appreciable pressure-responsive performance, the potential application of an artificial tactile receptor in robotic tactile perception has been demonstrated, encompassing tasks such as finger touch and human pulse detection.


Assuntos
Pressão , Tato , Humanos , Robótica , Receptores Artificiais/química , Receptores Artificiais/metabolismo , Neurotransmissores/química
12.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740347

RESUMO

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Imagem Multimodal/métodos
13.
Anim Sci J ; 95(1): e13953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783533

RESUMO

The safety of Jatropha curcas L. cake (JCC) in animal feed remains under scrutiny, despite the advent of low phorbol ester (PE) variants. This study investigates the impact of low PE JCC on swine health when used as a protein feed. Pigs were fed a 5% JCC diet with a PE concentration of 0.98 mg/kg, which surprisingly still induced toxicity. Symptoms included depression, decreased food intake, increased diarrhea, along with hypothalamus and colon lesions. The toxicity was associated with a decrease in antioxidant enzymes, an increase in inflammatory cytokines in the hypothalamus, plasma, and colon, and a rise in pro-inflammatory colon microbes and metabolites. Disturbances in neurotransmitters further suggest that this toxicity is related to disruption of the microbiota-gut-brain axis, indicating that JCC's toxic elements are not solely due to PE. The sensitivity of pigs to JCC underscores the need for thorough detoxification prior to its use as feed. These findings significantly contribute to the discourse on the safety of low PE JCC in animal feed, highlighting implications for both the feed industry and public health.


Assuntos
Ração Animal , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Jatropha , Ésteres de Forbol , Animais , Suínos , Ésteres de Forbol/efeitos adversos , Eixo Encéfalo-Intestino/fisiologia , Dieta/veterinária , Ingestão de Alimentos , Citocinas/metabolismo , Colo/metabolismo , Hipotálamo/metabolismo , Depressão/metabolismo , Neurotransmissores/metabolismo
14.
Sci Adv ; 10(18): eadk7257, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701208

RESUMO

Neuromodulators have been shown to alter the temporal profile of short-term synaptic plasticity (STP); however, the computational function of this neuromodulation remains unexplored. Here, we propose that the neuromodulation of STP provides a general mechanism to scale neural dynamics and motor outputs in time and space. We trained recurrent neural networks that incorporated STP to produce complex motor trajectories-handwritten digits-with different temporal (speed) and spatial (size) scales. Neuromodulation of STP produced temporal and spatial scaling of the learned dynamics and enhanced temporal or spatial generalization compared to standard training of the synaptic weights in the absence of STP. The model also accounted for the results of two experimental studies involving flexible sensorimotor timing. Neuromodulation of STP provides a unified and biologically plausible mechanism to control the temporal and spatial scales of neural dynamics and sensorimotor behaviors.


Assuntos
Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Humanos , Modelos Neurológicos , Neurotransmissores/metabolismo , Animais , Aprendizagem/fisiologia , Redes Neurais de Computação
15.
G Ital Nefrol ; 41(2)2024 Apr 29.
Artigo em Italiano | MEDLINE | ID: mdl-38695225

RESUMO

Patients affected by heart failure (HF) with reduced ejection fraction (HFrEF) are prone to experience episodes of worsening symptoms and signs despite continued therapy, termed "worsening heart failure" (WHF). Although guideline-directed medical therapy is well established, worsening of chronic heart failure accounts for almost 50% of all hospital admissions for HF with consequent higher risk of death and hospitalization than patients with "stable" HF. New drugs are emerging as cornerstones to reduce residual risk of both cardiovascular mortality and readmission for heart failure. The following review will debate about emerging definition of WHF in light of the recent clinical consensus released by the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) and the new therapeutic strategies in cardiorenal patients.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Progressão da Doença , Guias de Prática Clínica como Assunto , Neurotransmissores/uso terapêutico
16.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona , Microscopia Crioeletrônica , Glicina/metabolismo , Neurotransmissores , Mamíferos/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(16): e2321447121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593076

RESUMO

The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.


Assuntos
Fusão de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Simulação de Dinâmica Molecular , Proteínas R-SNARE , Sintaxina 1 , Neurotransmissores , Lipídeos
18.
Neurology ; 102(9): e209300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630946

RESUMO

BACKGROUND AND OBJECTIVES: Biochemical testing of CSF for neurotransmitter metabolites and their cofactors is often used in the diagnostic evaluation of infants with neurologic disorders but requires an invasive, labor-intensive procedure with many potential sources of error. Our aim was to determine the diagnostic yield of CSF testing for biogenic amines (serotonin, norepinephrine, epinephrine, and dopamine) and their cofactors in identifying inborn errors of neurotransmitter metabolism among infants. METHODS: We evaluated all infants aged 1 year or younger who underwent CSF biogenic amine neurotransmitter (CSFNT) testing at Children's Hospital of Philadelphia (CHOP) and Boston Children's Hospital (BCH) between 2008 and 2017 in this cross-sectional study. The primary outcome was the proportion of individuals who received a diagnostic result from CSFNT testing. Secondary assessments included the proportion of infants who obtained a diagnostic result from other types of diagnostic testing. RESULTS: The cohort included 323 individuals (191 from CHOP and 232 from BCH). The median age at presentation was 110 days (range 36-193). The most common presenting features were seizures (71%), hypotonia (47%), and developmental delay (43%). The diagnostic yield of CSFNT testing was zero. When CSF pyridoxal-5-phosphate level was assayed with CSFNT testing, 1 patient had a diagnostic result. An etiologic diagnosis was identified in 163 patients (50%) of the cohort, with genetic testing having the highest yield (120 individuals, 37%). DISCUSSION: Our findings support the case for deimplementation of CSFNT testing as a standard diagnostic test of etiology in infants aged 1 year or younger presenting with neurologic disorders.


Assuntos
Aminas Biogênicas , Dopamina , Criança , Lactente , Humanos , Estudos Transversais , Dopamina/metabolismo , Convulsões , Neurotransmissores
19.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557486

RESUMO

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Transdução de Sinais , Encéfalo , Neurotransmissores
20.
ACS Nano ; 18(15): 10596-10608, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557034

RESUMO

Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 µm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.


Assuntos
Dopamina , Estruturas Metalorgânicas , Ratos , Animais , Dopamina/análise , Estruturas Metalorgânicas/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA