Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.218
Filtrar
1.
Ecology ; 105(8): e4361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009507

RESUMO

In many regions, the climate is changing faster during winter than during the other seasons, and a loss of snow cover combined with increased temperature variability can expose overwintering organisms to harmful conditions. Understanding how species respond to these changes during critical developmental times, such as seed germination, helps us assess the ecological implications of winter climate change. To address this concern, we measured the breaking of seed dormancy and cold tolerance of temperate grassland species in the lab and field. In the lab, we ran germination trials testing the tolerance of 17 species to an extreme cold event. In the field, we deployed seeds of two species within a snow manipulation experiment at three locations and measured germination success biweekly from seeds subjected to ambient and reduced snow cover from winter into spring. From lab trials, cold tolerance varied among species, with seed germination decreasing <10%-100% following extreme cold events. Cold tolerance was related to seed traits, specifically less round seeds, seeds that required cold stratification, and seeds that mature later in the season tended to be more impacted by extreme cold temperatures. This variation in seed cold tolerance may contribute to altered community composition with continued winter climate change. In the field, germination increased through late winter, coinciding with the accumulation of days where temperatures were favorable for cold stratification. Through spring, germination success decreased as warm temperatures accumulated. Collectively, species-specific seed cold tolerances and mortality rates may contribute to compositional changes in grasslands under continued winter climate change.


Assuntos
Germinação , Estações do Ano , Sementes , Germinação/fisiologia , Sementes/fisiologia , Mudança Climática , Temperatura , Fatores de Tempo , Temperatura Baixa , Neve
2.
Sci Total Environ ; 948: 174684, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39002576

RESUMO

The present work extends the scope of prior studies through analysis, modelling and simulation of the As, Cd, Co, Cu, Fe Mn, Mo, Ni and Zn release from Gentoo (Pygoscelis papua) and Chinstrap (Pygoscelis antarcticus) penguin guano to the Southern Ocean seawater and to Antarctic snow meltwater. Laboratory experimental results have been modelled considering kinetic processes between water and guano using two element pools in the guano compartment; its application allows us to interpret behaviours and predict release concentrations of dissolved trace elements from guano which are potentially useful for incorporation as elements source into biogeochemical models applied in the Southern Ocean. Variations in quantities and release patterns depending on the type of guano and aqueous medium in contact have been identified. The release percentages from the guano to the aqueous medium, once the steady state has been reached, vary depending on the water medium and guano type in the ranges of 100-2.9 % for Mo; 91.5-68.6 % for Ni; 81.8-22.8 % As; 52.0-43.9 % Cu; 26.9-7.4 % Mn; 24.9-5.4 for Co; 4.4-3.2 % for Zn and 0.94-0.51 % for Fe. Considering a penguin population of 774,000 Gentoo and 8,000,000 Chinstrap, the estimated annual mass released to the both seawater and freshwater would be ≈18,500 kg for Cu, ≈1710 kg for Zn, ≈1944 kg for Fe, ≈1640 kg for Mn, ≈499 kg for As, ≈289 kg for Ni, ≈155 kg for Mo, ≈36.7 kg for Cd and ≈8.1 kg for Co. These contributions can be locally significant both in promoting phytoplankton growth and in their role as inhibitors of primary productivity.


Assuntos
Monitoramento Ambiental , Água do Mar , Neve , Spheniscidae , Oligoelementos , Poluentes Químicos da Água , Água do Mar/química , Oligoelementos/análise , Animais , Regiões Antárticas , Poluentes Químicos da Água/análise , Neve/química , Cinética
3.
Sci Total Environ ; 948: 174891, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047817

RESUMO

Climate warming is altering snowpack permanence in alpine tundra, modifying shrub growth and distribution. Plant acclimation to snowpack changes depends on the capability to guarantee growth and carbon storage, suggesting that the content of non-structural carbohydrates (NSC) in plant organs can be a key trait to depict the plant response under different snow regimes. To test this hypothesis, we designed a 3-years long manipulative experiment aimed at evaluating the effect of snow melt timing (i.e., early, control, and late) on NSC content in needles, bark and wood of Juniperus communis L. growing at high elevation in the Alps. Starch evidenced a general decrease from late spring to summer in control and early melting, while starch was low but stable in plants subjected to a late snow melt. Leaves, bark and wood have different level of soluble NSC changing during growing season: in bark, sugars content decreased significantly in late summer, while there was no seasonal effect in needles and wood. Soluble NSC and starch were differently related with the plant growth, when considering different tissues and snow treatment. In leaf and bark we observed a starch depletion in control and early melting plants, consistently to a higher growth (i.e., twig elongation), while in late snow melt, we did not find any significant relationship between growth and NSC concentration. Our findings confirmed that snowpack duration affects the onset of the growing season promoting a change in carbon allocation in plant organs and, between bark and wood in twigs. Finally, our results suggest that plants, at this elevation, could take advantage from an early snow melt caused by climate warming, most likely due to photosynthetic activity by maintaining the level of reserves and enhancing the carbon investment for growth.


Assuntos
Juniperus , Neve , Tundra , Juniperus/crescimento & desenvolvimento , Juniperus/fisiologia , Estações do Ano , Carboidratos/análise , Mudança Climática
4.
Mar Pollut Bull ; 205: 116626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959570

RESUMO

This study aims to investigate the interactions between marine oil snow (MOS) formation and soot particles derived from two distinct oils: condensate and heavy oil. Experimental findings demonstrate that the properties of oil droplets and soot particles play a key role in MOS formation. Peak MOS formation is observed within the initial days for condensate, while for heavy oil, peak formation occurs at a later stage. Furthermore, the addition of oils and soot particles influences the final concentrations of polycyclic aromatic hydrocarbons (PAHs) in MOS. Remarkably, the ranking order of PAHs with different rings in various MOS samples remains consistent: 4- > 3- > 5- > 2- > 6-ring. Specific diagnostic ratios such as Phe/Ant, Ant/(Ant + Phe), BaA/(Chr + BaA), and LMW/HMW effectively differentiate petrogenic and pyrogenic sources of PAHs in MOS. And stable ratios like Flu/(Pyr + Flu), InP/(InP + BghiP), and BaF/BkF are identified for source analysis of soot MOS.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fuligem , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Petróleo , Poluição por Petróleo/análise , Neve/química
5.
An Acad Bras Cienc ; 96(suppl 2): e20230704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39016361

RESUMO

This work investigated the annual variations in dry snow (DSRZ) and wet snow radar zones (WSRZ) in the north of the Antarctic Peninsula between 2015-2023. A specific code for snow zone detection on Sentinel-1 images was created on Google Earth Engine by combining the CryoSat-2 digital elevation model and air temperature data from ERA5. Regions with backscatter coefficients (σ°) values exceeding -6.5 dB were considered the extent of surface melt occurrence, and the dry snow line was considered to coincide with the -11 °C isotherm of the average annual air temperature. The annual variation in WSRZ exhibited moderate correlations with annual average air temperature, total precipitation, and the sum of annual degree-days. However, statistical tests indicated low determination coefficients and no significant trend values in DSRZ behavior with atmospheric variables. The results of reducing DSRZ area for 2019/2020 and 2020/2021 compared to 2018/2018 indicated the upward in dry zone line in this AP region. The methodology demonstrated its efficacy for both quantitative and qualitative analyses of data obtained in digital processing environments, allowing for the large-scale spatial and temporal variations monitoring and for the understanding changes in glacier mass loss.


Assuntos
Computação em Nuvem , Radar , Neve , Regiões Antárticas , Estações do Ano , Monitoramento Ambiental/métodos , Temperatura
6.
Sci Total Environ ; 946: 174359, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955268

RESUMO

Mountain protection forests can prevent natural hazards by reducing their onset and propagation probabilities. In fact, individual trees act as natural barriers against hydrogeomorphic events. However, assessing the structural strength of trees against these hazards is challenging, especially in a context of climate change due to the intensification of extreme events and changes in forest dynamics. Here, we focus on the mechanical analyses of two of the most common tree species across the Pyrenees (Abies alba Mill. and Fagus sylvatica L.) growing in two different areas (Spain and France), and affected by recurrent snow avalanche and rockfall events. We first performed 53 pulling test on mature trees, where the root-plate stiffness and the modulus of elasticity of the stems were evaluated. To further analyse the impact of forest management and climate on protective forests, we yielded information on tree growth using dendroecology techniques. Then, we assessed structure and neighbourhood characteristics for each target tree to account for the surrounding forest structure. Finally, using linear and structured equation models we tested if the mechanical capacity of the trees is determined either by functional traits (e.g. species, tree growth, diameter and height) or forest structural traits (e.g. tree density, tree structure and slenderness) or both. Our results suggest that the forest neighbourhood influences tree mechanical capacity through two pathways, including both functional and structural traits. The individual stiffness parameter of trees is influenced by their functional traits, while their structural traits are more closely related with changes in the modulus of elasticity. Both species exhibit varying levels of dominance in different locations, which is related to their resilience to the diverse natural hazards they confront. Our findings provide relevant insights to anticipating management strategies for forests that serve as a protective barrier against natural hazards in the context of a changing climate.


Assuntos
Mudança Climática , Florestas , Espanha , França , Árvores , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Agricultura Florestal/métodos , Fagus/crescimento & desenvolvimento , Neve
7.
Sci Total Environ ; 949: 175066, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079633

RESUMO

Snow cover provides a thermally stable and humid soil environment and thereby regulates soil microbial communities and biogeochemical cycling. A warmer world with large reductions in snow cover and earlier spring snowmelt may disrupt this stability and associated ecosystem functioning. Yet, little is known about the response of soil microbial communities to decreased snowpack and potential carry-over effects beyond the snow cover period. Herein, we tested this response by conducting a snowpack manipulation experiment (control, addition, and removal) in a temperate forest. Our results showed that fungi were more sensitive to changes in snowpack. Thicker snowpack increased the diversity of fungi, but had weak effects on the diversity of bacteria in winter. Thickening snow cover promoted the ratio of fungi to bacteria abundance across the year, and such relative increase in fungi abundance was largely driven by Basidiomycota phyla (Agaricomycetes class). Increased snowpack decreased soil nitrate concentration, and produced carry-over biogeochemical effects evidenced by increased summer ß-1,4-glucosidase and N-acetyl-ß-glucosaminidase activities. On a seasonal scale, microbial biomass peaked at both winter and summer; winter microbial community was fungi dominated, while bacteria dominated in summer. The abundances of bacterial phyla had greater seasonal variation than fungal phyla. Specifically, Actinobacteria had greater dominance in winter than in summer, while Acidobacteria, Proteobacteria, and Verrucomicrobia had greater abundance in summer than in winter. Microbial high yield-resource acquisition-stress tolerance life history strategies showed significant seasonal tradeoffs, i.e., resource acquisition and stress tolerance strategies dominated in summer, while high yield strategy dominated in winter. Overall, our findings underline that climate-induced reductions in snow cover can disrupt soil biogeochemical cycling also beyond the snow cover period due to shifts in soil microbial community structure and life history strategies.


Assuntos
Florestas , Microbiota , Estações do Ano , Neve , Microbiologia do Solo , Bactérias , Fungos , Solo/química
8.
Chemosphere ; 362: 142565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871187

RESUMO

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.


Assuntos
Chuva , Neve , Temperatura , Neve/química , Chuva/química , Adsorção , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Monitoramento Ambiental/métodos , Água/química
9.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38941446

RESUMO

Polar regions harbor a diversity of cold-adapted (cryophilic) algae, which can be categorized into psychrophilic (obligate cryophilic) and cryotrophic (nonobligate cryophilic) snow algae. Both can accumulate significant biomasses on glacier and snow habitats and play major roles in global climate dynamics. Despite their significance, genomic studies on these organisms remain scarce, hindering our understanding of their evolutionary history and adaptive mechanisms in the face of climate change. Here, we present the draft genome assembly and annotation of the psychrophilic snow algal strain CCCryo 101-99 (cf. Sphaerocystis sp.). The draft haploid genome assembly is 122.5 Mb in length and is represented by 664 contigs with an N50 of 0.86 Mb, a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 92.9% (n = 1,519), a maximum contig length of 5.3 Mb, and a guanine-cystosine (GC) content of 53.1%. In total, 28.98% of the genome (35.5 Mb) contains repetitive elements. We identified 417 noncoding RNAs and annotated the chloroplast genome. The predicted proteome comprises 14,805 genes with a BUSCO completeness of 97.8%. Our preliminary analyses reveal a genome with a higher repeat content compared with mesophilic chlorophyte relatives, alongside enrichment in gene families associated with photosynthesis and flagella functions. Our current data will facilitate future comparative studies, improving our understanding of the likely response of polar algae to a warming climate as well as their evolutionary trajectories in permanently cold environments.


Assuntos
Anotação de Sequência Molecular , Filogenia , Neve/microbiologia
10.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1275-1282, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886426

RESUMO

During the snowmelt period, the external erosive forces are dominated by freeze-thaw cycles and snowmelt runoff. These forces may affect soil structure and aggregate stability, thereby influencing snowmelt erosion. The process of snowmelt runoff can lead to the breakdown of aggregates during their transportation. However, few studies examined the effects of freeze-thaw cycles on the breakdown of aggregates during transportation. Focusing on 5-7 and 3-5 mm soil aggregates of typical black soil region in Northeast China, we analyzed the composition of water-stable aggregates, mean weight diameter (MWD), normalized mean weight diameter (NMWD), as well as breakdown rate of soil aggregates (BR) under different freeze-thaw cycles (0, 1, 5, 10, 15 and 20 times) and different transport distances (5, 10, 15, 20, 25 and 30 m). We further investigated the contribution (CT) of both freeze-thaw cycles and transport distances to BR. The results showed that: 1) After freeze-thaw cycles, the 5-7 and 3-5 mm aggregates were mainly composed of particles with a diameter of 0.5-1 mm. With increasing frequency of freeze-thaw cycles, the MWD generally showed a downward trend. Moreover, under the same number of freeze-thaw cycles, the NMWD of 3-5 mm aggregates was higher than that of 5-7 mm aggregates. 2) As the transport distance increased, the BR of 5-7and 3-5 mm aggregates gradually increased. Compared that under control group, the BR under one freeze-thaw cycle increased by 59.7%, 32.2%, 13.7%, 6.2%, 13.4%, 7.5%, and 60.0%, 39.0%, 18.4%, 13.0%, 6.3%, 6.1% at the condition of 5, 10, 15, 20, 25 and 30 m transport distances, respectively. However, with increasing frequency of freeze-thaw cycles, the BR increased slowly. 3) The breakdown of soil aggregates was mainly influenced by the transport distance (CT=54.6%) and freeze-thaw cycles (CT=26.2%). Freeze-thaw cycles primarily altered the stability of soil aggregates, which in turn affected the BR. Therefore, during the snowmelt period, freeze-thaw cycles reduced the stability of soil aggregates, leading to severe breakdown of soil aggregates during snowmelt runoff process. This made the soil more susceptible to migration with snowmelt runoff, which triggered soil erosion. Therefore, more attention should be paid on the prevention of soil erosion during snowmelt period.


Assuntos
Congelamento , Solo , Meios de Transporte , Solo/química , China , Erosão do Solo/prevenção & controle , Neve
11.
Ann Agric Environ Med ; 31(2): 205-211, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940104

RESUMO

INTRODUCTION AND OBJECTIVE: Snow cover serves as a unique indicator of environmental pollution in both urban and rural areas. As a seasonal cover, it accumulates various pollutants emitted into the atmosphere, thus providing insight into air pollution types and the relative contributions of different pollution sources. The aim of the study is to analyze the distribution of trace elements in snow cover to assess the anthropogenic influence on pollution levels, and better understand ecological threats. MATERIAL AND METHODS: The study was conducted in rural areas around the village of Wólka in the Lublin Province of eastern Poland, and in urban districts of the city of Lublin, capital of the Province. Samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry, the Enrichment Factor (EF), and ecological risk indices (RI), were calculated to evaluate the contamination and potential ecological risks posed by the metals. RESULTS: The findings indicate higher concentrations of metals like sodium and iron in urban areas, likely due to road salt use and industrial activity, respectively. Enrichment factors showed significant anthropogenic contributions, particularly for metals like sodium, zinc, and cadmium, which had EF values substantially above natural levels. The potential ecological risk assessment highlighted a considerable ecological threat in urban areas compared to rural settings, primarily due to higher concentrations of metals. CONCLUSIONS: The variation in metal concentrations between urban and rural snow covers reflects the impact of human activities on local environments. Urban areas showed higher pollution levels, suggesting the need for targeted pollution control policies to mitigate the adverse ecological impacts. This study underscores the importance of continuous monitoring and comprehensive risk assessments to effectively manage environmental pollution.


Assuntos
Monitoramento Ambiental , Metais , Neve , Neve/química , Polônia , Monitoramento Ambiental/métodos , Medição de Risco , Metais/análise , Humanos , Poluentes Atmosféricos/análise , Cidades , População Rural
12.
Environ Sci Technol ; 58(26): 11718-11726, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889109

RESUMO

Mountaintop removal coal mining is a source of downstream pollution. Here, we show that mountaintop removal coal mining also pollutes ecosystems downwind. We sampled regional snowpack near the end of winter along a transect of sites located 3-60 km downwind of coal mining in the Elk River valley of British Columbia, Canada. Vast quantities of polycyclic aromatic compounds (PACs), a toxic class of organic contaminants, are emitted and transported atmospherically far from emission sources. Summed PAC (ΣPAC) snowpack concentrations ranged from 29-94,866 ng/L. Snowpack ΣPAC loads, which account for variable snowpack depth, ranged from <10 µg/m2 at sites >50 km southeast of the mines to >1000 µg/m2 at sites in the Elk River valley near mining operations, with one site >15,000 µg/m2. Outside of the Elk River valley, snowpack ΣPAC loads exhibited a clear spatial pattern decreasing away from the mines. The compositional fingerprint of this PAC pollution matches closely with Elk River valley coal. Beyond our study region, modeling results suggest a depositional footprint extending across western Canada and the northwestern United States. These findings carry important implications for receiving ecosystems and for communities located close to mountaintop removal coal mines exposed to air pollution elevated in PACs.


Assuntos
Minas de Carvão , Neve , Colúmbia Britânica , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
13.
Environ Pollut ; 356: 124333, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848960

RESUMO

17ß-estradiol is a naturally occurring estrogen, and livestock manure applied to agricultural fields is a major source to the environment. Liquid swine manure is widely applied to agricultural fields in the Canadian Prairies, a region where the majority of the annual runoff occurs during a brief snowmelt period over frozen soil. Transport of estrogens from manure amendments to soil during this important hydrological period is not well understood but is critical to mitigating the snowmelt-driven offsite transport of estrogens. This study quantified the concentration and load of 17ß-estradiol in snowmelt from an agricultural field with a history of manure application under manure application methods: no manure applied, manure applied on the sub-surface, and on the surface, using a laboratory simulation study with flooded intact soil cores and a field study during snowmelt. A higher concentration of 17ß-estradiol was in the laboratory simulation than in the field (mean laboratory pore water = 1.65 ± 1.2 µg/L; mean laboratory flood water = 0.488 ± 0.58 µg/L; and mean field snowmelt = 0.0619 ± 0.048 µg/L). There were no significant differences among manure application methods for 17ß-estradiol concentration. Laboratory pore water concentrations significantly increased over time, corresponding with changes in pH. In contrast, there was no significant change in the field snowmelt concentrations of 17ß-estradiol over time. However, for both laboratory simulation experiments and field-based snowmelt experiments, mean concentrations of 17ß-estradiol were higher with subsurface than surface-applied manure, and the cumulative load of 17ß-estradiol was significantly higher in the sub-surface than in surface applied. The mean cumulative load from the field study across all treatments (6.91 ± 3.7 ng/m2) approximates the magnitude of 17ß-estradiol that could be mobilized from manured fields. The sub-surface application of manure seems to increase the persistence of 17ß-estradiol in soil, thus enhancing the potential loss to snowmelt runoff.


Assuntos
Estradiol , Esterco , Neve , Esterco/análise , Estradiol/análise , Neve/química , Animais , Monitoramento Ambiental , Agricultura , Solo/química , Poluentes do Solo/análise , Suínos , Poluentes Químicos da Água/análise
14.
Ann Bot ; 134(2): 283-294, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38742700

RESUMO

BACKGROUND AND AIMS: Reduced snow cover and increased air temperature variability are predicted to expose overwintering herbaceous plants to more severe freezing in some northern temperate regions. Legumes are a key functional group that may exhibit lower freezing tolerance than other species in these regions, but this trend has been observed only for non-native legumes. Our aim was to confirm if this trend is restricted to non-native legumes or whether native legumes in these regions also exhibit low freezing tolerance. METHODS: First, we transplanted legumes (five non-native species and four native species) into either an old field (non-native) or a prairie (native) and used snow removal to expose the plots to increased soil freezing. Second, we grew plants in mesocosms (old field) and pots (prairie species) and exposed them in controlled environment chambers to a range of freezing treatments (control, 0, -5 or -10 °C) in winter or spring. We assessed freezing responses by comparing differences in biomass, cover and nodulation between freezing (or snow removal) treatments and controls. KEY RESULTS: Among legume species, lower freezing tolerance was positively correlated with a lower proportion of nodulated plants and active nodules, and under controlled conditions, freezing-induced reductions in above-ground biomass were lower on average in native legumes than in non-native legumes. Nevertheless, both non-native and native legumes (except Desmodium canadense) exhibited greater reductions in biomass in response to increased freezing than their non-leguminous neighbours, both in controlled environments and in the field. CONCLUSIONS: These results demonstrate that both native and non-native legumes exhibit low freezing tolerance relative to other herbaceous species in northern temperate plant communities. By reducing legume biomass and nodulation, increased soil freezing could reduce nitrogen inputs into these systems.


Assuntos
Fabaceae , Congelamento , Fabaceae/fisiologia , Fabaceae/crescimento & desenvolvimento , Biomassa , Estações do Ano , Solo , Aclimatação/fisiologia , Nodulação/fisiologia , Neve
15.
Environ Res ; 255: 119150, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763282

RESUMO

The coverage of accumulated snow plays a significant role in inducing changes in both microbial activity and environmental factors within freeze-thaw soil systems. This study aimed to analyze the impact of snow cover on the dynamics of archeal communities in freeze-thaw soil. Furthermore, it seeks to investigate the role of fertilization in freeze-thaw soil. Four treatments were established based on snow cover and fertilization:No snow and no fertilizer (CK-N), snow cover without fertilizer (X-N), fertilizer without snow cover (T-N), and both fertilizer and snow cover (T-X). The research findings indicated that after snow cover treatment, the carbon, nitrogen, and phosphorus content in freeze-thaw soil exhibit periodic fluctuations. Snow covered effectively altered the community composition of bacteria and archaea in the soil, with a greater impact on archaeal communities than on bacterial communities. Snow covered improves the stability of archaeal communities in freeze-thaw soil. Additionally, the arrival of snow also enhanced the correlation between archaea and environmental factors, with the key archaeal phyla involved being Nanoarchaeota and Crenarchaeota. Further research showed that the application of organic fertilizers also had some impact on freeze-thaw soil, but this impact was smaller compared to snow cover. In summary, the arrival of snow could alter the archaeal community and protect nutrient elements in freeze-thaw soil, reducing their loss, and its effect is more pronounced compared to the application of organic fertilizers.


Assuntos
Archaea , Fertilizantes , Congelamento , Neve , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Nitrogênio/análise
16.
Environ Sci Pollut Res Int ; 31(25): 37196-37214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764085

RESUMO

The transport and deposition of atmospheric pollutants in the Himalayas have a adverse impact on the climate, cryosphere, ecosystem, and monsoon patterns. Unfortunately, there is a insufficiency of data on trace element concentrations and behaviors in the high-altitude Himalayan region, leading to limited research in this area. This study presents a comprehensive and detailed comprehension of trace element deposition, its spatial distribution, seasonal variations, and anthropogenic signals in the high-altitude Kashmir region of the Western Himalayas. Our investigation involved the analysis of 10 trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in glacier ice, snow pits, surface snow, and rainwater collected at various sites including Kolahoi, Thajwas, Pahalgam (Greater Himalayan ranges), and Kongdori and Shopian (Pir Panjal Ranges) during 2021. The study reveals distinct ranges of concentrations for the trace elements at different sampling sites. Our analysis of trace element concentration depth profiles in snow pits reveals seasonal fluctuations during the deposition year. The highest concentrations were found in the autumn (below 20 cm) and summer (top layer), compared to the winter concentration (10-20 cm). The high enrichment factors (EFs) suggest the severity of human-induced trace metal deposition in the western Himalayan region, relative to surrounding regions. Surprisingly, the concentrations and EFs of trace elements showed seasonal contradictions, with lower concentration values and higher EFs during the non-monsoon season and vice versa. A source apportionment analysis using the positive matrix factorization (PMF) technique identified five sources of trace element deposition in the region, including crustal sources (32.33%), coal combustion (15.62%), biomass burning (17.63%), traffic emission (18.8%), and industrial sources (15.6%). Additionally, the study incorporated backward trajectories coupled with δ18O using the NOAA HYSPLIT model to estimate moisture sources in the region, which suggests atmospheric pollutants predominately deposited from the large-scale atmospheric circulation from westerlies (75%) during non-monsoon season. These findings underscore the urgent need for enhanced monitoring and research efforts in the future.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Estações do Ano , Oligoelementos , Oligoelementos/análise , Poluentes Atmosféricos/análise , Neve/química , Índia , Humanos , Himalaia
17.
J Phycol ; 60(3): 724-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698553

RESUMO

Chlainomonas (Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. No Chlainomonas species have been successfully cultured in the laboratory, but diverse cell types have been observed from many field-collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017-2023), we observed seasonal blooms dominated by a Chlainomonas species from late spring through the summer months on a snow-on-lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley Lake Chlainomonas is distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in other Chlainomonas species, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles.


Assuntos
Clorófitas , Neve , Clorófitas/fisiologia , Clorófitas/crescimento & desenvolvimento , Washington , Estações do Ano , Estágios do Ciclo de Vida , Lagos
18.
Ecol Evol Physiol ; 97(1): 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717368

RESUMO

AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.


Assuntos
Hibernação , Sciuridae , Estações do Ano , Neve , Animais , Sciuridae/fisiologia , Hibernação/fisiologia , Feminino , Masculino , Torpor/fisiologia
20.
Nature ; 629(8014): 1075-1081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38811711

RESUMO

Climate warming induces shifts from snow to rain in cold regions1, altering snowpack dynamics with consequent impacts on streamflow that raise challenges to many aspects of ecosystem services2-4. A straightforward conceptual model states that as the fraction of precipitation falling as snow (snowfall fraction) declines, less solid water is stored over the winter and both snowmelt and streamflow shift earlier in season. Yet the responses of streamflow patterns to shifts in snowfall fraction remain uncertain5-9. Here we show that as snowfall fraction declines, the timing of the centre of streamflow mass may be advanced or delayed. Our results, based on analysis of 1950-2020 streamflow measurements across 3,049 snow-affected catchments over the Northern Hemisphere, show that mean snowfall fraction modulates the seasonal response to reductions in snowfall fraction. Specifically, temporal changes in streamflow timing with declining snowfall fraction reveal a gradient from earlier streamflow in snow-rich catchments to delayed streamflow in less snowy catchments. Furthermore, interannual variability of streamflow timing and seasonal variation increase as snowfall fraction decreases across both space and time. Our findings revise the 'less snow equals earlier streamflow' heuristic and instead point towards a complex evolution of seasonal streamflow regimes in a snow-dwindling world.


Assuntos
Aquecimento Global , Chuva , Estações do Ano , Neve , Ecossistema , Rios , Fatores de Tempo , Movimentos da Água , Aquecimento Global/estatística & dados numéricos , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...