Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.203
Filtrar
1.
Sci Rep ; 14(1): 21556, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285198

RESUMO

Leaf senescence represents the final stage of leaf development, involving transcription factors (TFs)-mediated genetic reprogramming events. The timing of crop leaf senescence has a major influence on the yield and quality of crop in agricultural production. As important regulator of plant growth, the significance of TFs in the regulation of leaf senescence have been highlighted in various plant species by recent advances in genetics. However, studies on underlying molecular mechanisms are still not adequately explained. In this study, for analyzing the regulation of TFs on senescence of tobacco leaves, we combined gene differential expression analysis with weighted gene co-expression network analysis (WGCNA) to analyze the time-series gene expression profiles in senescing tobacco leaf. Among 3517 TF genes expressed in tobacco leaves, we identified 21, 35, and 183 TFs that were associated with early, middle, and late stages of tobacco leaf senescence, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results reveal that these senescence response TFs are correlated with several biological pathways such as plant hormone signal transduction, ubiquitin mediated proteolysis and MAPK signaling pathway, indicating the roles of TFs in regulating leaf senescence. Our results provide implications for future studies of the potential regulatory mechanisms of TFs involved in senescence of tobacco leaves.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Folhas de Planta , Senescência Vegetal , Fatores de Transcrição , Nicotiana/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Senescência Vegetal/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ontologia Genética , Transcriptoma
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273315

RESUMO

ADP-ribosylation (ADPRylation) is a mechanism which post-translationally modifies proteins in eukaryotes in order to regulate a broad range of biological processes including programmed cell death, cell signaling, DNA repair, and responses to biotic and abiotic stresses. Poly(ADP-ribosyl) polymerases (PARPs) play a key role in the process of ADPRylation, which modifies target proteins by attaching ADP-ribose molecules. Here, we investigated whether and how PARP1 and PARylation modulate responses of Nicotiana benthamiana plants to methyl viologen (MV)-induced oxidative stress. It was found that the burst of reactive oxygen species (ROS), cell death, and loss of tissue viability invoked by MV in N. benthamiana leaves was significantly delayed by both the RNA silencing of the PARP1 gene and by applying the pharmacological inhibitor 3-aminobenzamide (3AB) to inhibit PARylation activity. This in turn reduced the accumulation of PARylated proteins and significantly increased the gene expression of major ROS scavenging enzymes including SOD (NbMnSOD; mitochondrial manganese SOD), CAT (NbCAT2), GR (NbGR), and APX (NbAPX5), and inhibited cell death. This mechanism may be part of a broader network that regulates plant sensitivity to oxidative stress through various genetically programmed pathways.


Assuntos
Nicotiana , Estresse Oxidativo , Paraquat , Espécies Reativas de Oxigênio , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Paraquat/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Poli ADP Ribosilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Mol Plant Pathol ; 25(9): e70008, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290152

RESUMO

Antiviral responses induced by double-stranded RNA (dsRNA) include RNA interference (RNAi) and pattern-triggered immunity (PTI), but their relative contributions to antiviral defence are not well understood. We aimed at testing the impact of exogenous applied dsRNA on both layers of defence against potato virus X expressing GFP (PVX-GFP) in Nicotiana benthamiana. Co-inoculation of PVX-GFP with either sequence-specific (RNAi) or nonspecific dsRNA (PTI) showed that nonspecific dsRNA reduced virus accumulation in both inoculated and systemic leaves. However, nonspecific dsRNA was a poor inducer of antiviral immunity compared to a sequence-specific dsRNA capable of triggering the RNAi response, and plants became susceptible to systemic infection. Studies with a PVX mutant unable to move from cell to cell indicated that the interference with PVX-GFP triggered by nonspecific dsRNA operated at the single-cell level. Next, we performed RNA-seq analysis to examine similarities and differences in the transcriptome triggered by dsRNA alone or in combination with viruses harbouring sequences targeted or not by dsRNA. Enrichment analysis showed an over-representation of plant-pathogen signalling pathways, such as calcium, ethylene and MAPK signalling, which are typical of antimicrobial PTI. Moreover, the transcriptomic response to the virus targeted by dsRNA had a greater impact on defence than the non-targeted virus, highlighting qualitative differences between sequence-specific RNAi and nonspecific PTI responses. Together, these results further our understanding of plant antiviral defence, particularly the contribution of nonspecific dsRNA-mediated PTI. We envisage that both sequence-specific RNAi and nonspecific PTI pathways may be triggered via topical application of dsRNA, contributing cumulatively to plant protection against viruses.


Assuntos
Nicotiana , Doenças das Plantas , Imunidade Vegetal , Potexvirus , Interferência de RNA , RNA de Cadeia Dupla , Nicotiana/virologia , Nicotiana/imunologia , Nicotiana/genética , Imunidade Vegetal/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Reconhecimento da Imunidade Inata
4.
Plant Cell Rep ; 43(10): 235, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39299972

RESUMO

KEY MESSAGE: This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G. superba, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone. The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in G. superba. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway. GsDBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine. After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in G. superba, and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production.


Assuntos
Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Fenilalanina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Acetatos/metabolismo , Acetatos/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aldeídos/metabolismo
5.
Physiol Plant ; 176(5): e14513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262029

RESUMO

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Assuntos
Defensinas , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Withania , Withania/genética , Withania/fisiologia , Withania/metabolismo , Withania/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Defensinas/genética , Defensinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Alternaria/fisiologia , Secas , Plântula/genética , Plântula/fisiologia , Plântula/efeitos dos fármacos , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia
6.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273413

RESUMO

Agropyron mongolicum Keng is a diploid perennial grass of triticeae in gramineae. It has strong drought resistance and developed roots that can effectively fix the soil and prevent soil erosion. GDSL lipase or esterases/lipase has a variety of functions, mainly focusing on plant abiotic stress response. In this study, a GDSL gene from A. mongolicum, designated as AmGDSL1, was successfully cloned and isolated. The subcellular localization of the AmGDSL1 gene (pCAMBIA1302-AmGDSL1-EGFP) results showed that the AmGDSL1 protein of A. mongolicum was only localized in the cytoplasm. When transferred into tobacco (Nicotiana benthamiana), the heterologous expression of AmGDSL1 led to enhanced drought tolerance. Under drought stress, AmGDSL1 overexpressing plants showed fewer wilting leaves, longer roots, and larger root surface area. These overexpression lines possessed higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and proline (PRO) activities. At the same time, the malondialdehyde (MDA) content was lower than that in wild-type (WT) tobacco. These findings shed light on the molecular mechanisms involved in the GDSL gene's role in drought resistance, contributing to the discovery and utilization of drought-resistant genes in A. mongolicum for enhancing crop drought resistance.


Assuntos
Agropyron , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Agropyron/genética , Agropyron/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Secas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Lipase/metabolismo , Lipase/genética
7.
Mol Biol Rep ; 51(1): 962, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235644

RESUMO

The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H2O2-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.


Assuntos
Morte Celular , Proteínas Fúngicas , Filogenia , Doenças das Plantas , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/genética , Basidiomycota/patogenicidade , Basidiomycota/metabolismo , Basidiomycota/genética , Puccinia/patogenicidade , Puccinia/metabolismo , Domínios Proteicos , Simulação de Acoplamento Molecular , Cebolas/microbiologia , Cebolas/metabolismo , Cebolas/genética
8.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126014

RESUMO

Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Proteínas de Plantas , Caules de Planta , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paeonia/genética , Paeonia/crescimento & desenvolvimento , Paeonia/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Xilema/genética , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clonagem Molecular , Filogenia
9.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201331

RESUMO

PYR/PYL/RCAR proteins are abscisic acid (ABA) receptors that play a crucial role in plant responses to abiotic stresses. However, there have been no research reports on potato PYL so far. In this study, a potato PYL gene named StPYL16 was identified based on transcriptome data under drought stress. Molecular characteristics analysis revealed that the StPYL16 protein possesses an extremely conserved PYL family domain. The tissue expression results indicated that the StPYL16 is predominantly expressed at high levels in the underground parts, particularly in tubers. Abiotic stress response showed that StPYL16 has a significant response to drought treatment. Further research on the promoter showed that drought stress could enhance the activation activity of the StPYL16 promoter on the reporter gene. Then, transient and stable expression of StPYL16 in tobacco enhanced the drought resistance of transgenic plants, resulting in improved plant height, stem thickness, and root development. In addition, compared with wild-type plants, StPYL16 transgenic tobacco exhibited lower malondialdehyde (MDA) content, higher proline accumulation, and stronger superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. Meanwhile, StPYL16 also up-regulated the expression levels of stress-related genes (NtSOD, NtCAT, NtPOD, NtRD29A, NtLEA5, and NtP5CS) in transgenic plants under drought treatment. These findings indicated that the StPYL16 gene plays a positive regulatory role in potato responses to drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
10.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201361

RESUMO

Plant recognition of pathogen-associated molecular patterns (PAMPs) is pivotal in triggering immune responses, highlighting their potential as inducers of plant immunity. However, the number of PAMPs identified and applied in such contexts remains limited. In this study, we characterize a novel PAMP, designated Ss4368, which is derived from Scleromitrula shiraiana. Ss4368 is specifically distributed among a few fungal genera, including Botrytis, Monilinia, and Botryotinia. The transient expression of Ss4368 elicits cell death in a range of plant species. The signaling peptides, three conserved motifs, and cysteine residues (C46, C88, C112, C130, and C148) within Ss4368 are crucial for inducing robust cell death. Additionally, these signaling peptides are essential for the protein's localization to the apoplast. The cell death induced by Ss4368 and its homologous protein, Bc4368, is independent of the SUPPRESSOR OF BIR1-1 (SOBIR1), BRI1-ASSOCIATED KINASE-1 (BAK1), and salicylic acid (SA) pathways. Furthermore, the immune responses triggered by Ss4368 and Bc4368 significantly enhance the resistance of Nicotiana benthamiana to Phytophthora capsici. Therefore, we propose that Ss4368, as a novel PAMP, holds the potential for developing strategies to enhance plant resistance against P. capsici.


Assuntos
Morte Celular , Resistência à Doença , Nicotiana , Moléculas com Motivos Associados a Patógenos , Phytophthora , Doenças das Plantas , Imunidade Vegetal , Phytophthora/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Nicotiana/microbiologia , Nicotiana/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Células Vegetais/microbiologia
11.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205205

RESUMO

East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam's severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection.


Assuntos
Mutação , Doenças das Plantas , Potyvirus , Proteínas Virais , Proteção Cruzada , Cisteína Endopeptidases , Nicotiana/virologia , Nicotiana/genética , Passiflora/virologia , Passiflora/genética , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Potyvirus/genética , Deleção de Sequência , Taiwan , Vietnã , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
N Biotechnol ; 83: 142-154, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39142626

RESUMO

Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Nicotiana , Proteínas Recombinantes de Fusão , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Humanos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/metabolismo , Plantas Geneticamente Modificadas
13.
PLoS Pathog ; 20(8): e1012510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39208401

RESUMO

Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.


Assuntos
Ácidos Indolacéticos , Doenças das Plantas , Fatores de Transcrição , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/virologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tospovirus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/virologia , Arabidopsis/metabolismo , Arabidopsis/genética
14.
Int J Biol Macromol ; 278(Pt 1): 134691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142483

RESUMO

Pathogenesis-related protein 1 (PR-1) is an antimicrobial protein involved in systemic acquired resistance (SAR) in plants, but its regulatory role and interactions with other pathways remain unclear. In this study, we functionally characterize WsPR-1 gene of Withania somnifera in Nicotiana tabacum to elucidate its role in plant defense, growth, and development. Interestingly, transgenic tobacco plants with increased levels of cytokinin (CK) and decreased gibberellins (GAs) exhibited stunted shoot growth, an underdeveloped root system, modified leaf morphology, reduced seed pod production, and delayed leaf senescence. Transcriptional analysis revealed that WsPR-1 overexpression downregulated the GA 20-oxidase (GA20ox) gene involved in GA biosynthesis while upregulating GA 2-oxidase (GA2ox), a GA catabolic enzyme. Moreover, transcript levels of FRUITFULL (FUL) and LEAFY (NFL2) flowering genes exhibited a decrease in WsPR-1 plants, which could explain the delayed flowering and reduced seed pod development in transgenic plants. Confocal microscopy confirmed increased lignin deposition in stem cross-sections of WsPR-1 transgenic plants, supported by gene expression analysis and lignin content quantification. Additionally, our findings also suggest the involvement of Knotted1-like homeobox (KNOX) gene in enhancing cytokinin levels. This study highlights PR-1's regulatory role in plant growth and development, with potential to boost crop yields and enhance resilience.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Transdução de Sinais , Citocininas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
15.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125947

RESUMO

Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.


Assuntos
Antocianinas , Fagopyrum , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Fatores de Transcrição , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/efeitos da radiação , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento
16.
Physiol Plant ; 176(4): e14446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092508

RESUMO

Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.


Assuntos
Resistência à Seca , Medicago sativa , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência à Seca/genética , Resistência à Seca/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago sativa/genética , Medicago sativa/fisiologia , Medicago sativa/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Estresse Fisiológico/genética
17.
Nat Commun ; 15(1): 6512, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095395

RESUMO

Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.


Assuntos
Aegilops , Ascomicetos , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Aegilops/genética , Aegilops/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Nicotiana/genética , Nicotiana/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
18.
New Phytol ; 243(6): 2311-2331, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091140

RESUMO

Chloroplasts play a crucial role in plant defense against pathogens, making them primary targets for pathogen effectors that suppress host immunity. This study characterizes the Plasmopara viticola CRN-like effector, PvCRN20, which interacts with DEG5 in the cytoplasm but not with its interacting protein, DEG8, which is located in the chloroplast. By transiently overexpressing in tobacco leaves, we show that PvCRN20 could inhibit INF1- and Bax-triggered cell death. Constitutive expression of PvCRN20 suppresses the accumulation of reactive oxygen species (ROS) and promotes pathogen colonization. PvCRN20 reduces DEG5 entry into chloroplasts, thereby disrupting DEG5 and DEG8 interactions in chloroplasts. Overexpression of VvDEG5 and VvDEG8 induces ROS accumulation and enhances grapevine resistance to P. viticola, whereas knockout of VvDEG8 represses ROS production and promotes P. viticola colonization. Consistently, ectopic expression of VvDEG5 and VvDEG8 in tobacco promotes chloroplast-derived ROS accumulation, whereas co-expression of PvCRN20 counteracted this promotion by VvDEG5. Therefore, DEG5 is essential for the virulence function of PvCRN20. Although PvCRN20 is located in both the nucleus and cytoplasm, only cytoplasmic PvCRN20 suppresses plant immunity and promotes pathogen infection. Our results reveal that PvCRN20 dampens plant defenses by repressing the chloroplast import of DEG5, thus reducing host ROS accumulation and facilitating pathogen colonization.


Assuntos
Cloroplastos , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Transporte Proteico , Espécies Reativas de Oxigênio , Vitis , Cloroplastos/metabolismo , Vitis/microbiologia , Vitis/genética , Vitis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Regulação da Expressão Gênica de Plantas , Oomicetos/patogenicidade , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Resistência à Doença/genética
19.
J Agric Food Chem ; 72(33): 18507-18519, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39113497

RESUMO

Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.


Assuntos
Botrytis , Genômica , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Peptídeos/imunologia , Peptídeos/química , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Capsicum/imunologia , Capsicum/genética , Capsicum/microbiologia , Capsicum/química
20.
Nat Commun ; 15(1): 6905, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134523

RESUMO

Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Triticum , Ubiquitina-Proteína Ligases , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Cloroplastos/metabolismo , Resistência à Doença/genética , Nicotiana/metabolismo , Nicotiana/genética , Fotossíntese , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Triticum/citologia , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...