Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Redox Biol ; 75: 103300, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142179

RESUMO

Glyoxalase I (GLO1) is the primary enzyme for detoxification of the reactive dicarbonyl methylglyoxal (MG). Loss of GLO1 promotes accumulation of MG resulting in a recapitulation of diabetic phenotypes. We previously demonstrated attenuated GLO1 protein in skeletal muscle from individuals with type 2 diabetes (T2D). However, whether GLO1 attenuation occurs prior to T2D and the mechanisms regulating GLO1 abundance in skeletal muscle are unknown. GLO1 expression and activity were determined in skeletal muscle tissue biopsies from 15 lean healthy individuals (LH, BMI: 22.4 ± 0.7) and 5 individuals with obesity (OB, BMI: 32.4 ± 1.3). GLO1 protein was attenuated by 26 ± 0.3 % in OB compared to LH skeletal muscle (p = 0.019). Similar reductions for GLO1 activity were observed (p = 0.102). NRF2 and Keap1 expression were equivocal between groups despite a 2-fold elevation in GLO1 transcripts in OB skeletal muscle (p = 0.008). GLO1 knock-down (KD) in human immortalized myotubes promoted downregulation of muscle contraction and organization proteins indicating the importance of GLO1 expression for skeletal muscle function. SIRT1 KD had no effect on GLO1 protein or activity whereas, SIRT2 KD attenuated GLO1 protein by 28 ± 0.29 % (p < 0.0001) and GLO1 activity by 42 ± 0.12 % (p = 0.0150). KD of NAMPT also resulted in attenuation of GLO1 protein (28 ± 0.069 %, p = 0.003), activity (67 ± 0.09 %, p = 0.011) and transcripts (50 ± 0.13 %, p = 0.049). Neither the provision of the NAD+ precursors NR nor NMN were able to prevent this attenuation in GLO1 protein. However, NR did augment GLO1 specific activity (p = 0.022 vs NAMPT KD). These perturbations did not alter GLO1 acetylation status. SIRT1, SIRT2 and NAMPT protein levels were all equivocal in skeletal muscle tissue biopsies from individuals with obesity and lean individuals. These data implicate NAD+-dependent regulation of GLO1 in skeletal muscle independent of altered GLO1 acetylation and provide rationale for exploring NR supplementation to rescue attenuated GLO1 abundance and activity in conditions such as obesity.


Assuntos
Citocinas , Lactoilglutationa Liase , Músculo Esquelético , Nicotinamida Fosforribosiltransferase , Obesidade , Sirtuína 2 , Humanos , Músculo Esquelético/metabolismo , Lactoilglutationa Liase/metabolismo , Lactoilglutationa Liase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Sirtuína 2/metabolismo , Sirtuína 2/genética , Citocinas/metabolismo , Masculino , Obesidade/metabolismo , Obesidade/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Feminino , Adulto , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Sirtuína 1/metabolismo , Sirtuína 1/genética
2.
J Am Heart Assoc ; 13(14): e034764, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979813

RESUMO

BACKGROUND: Long noncoding RNA (lncRNA) and mRNA profiles in leukocytes have shown potential as biomarkers for acute ischemic stroke (AIS). This study aimed to identify altered lncRNA and target mRNA profiles in peripheral blood leukocytes as biomarkers and to assess the diagnostic value and association with AIS prognosis. METHODS AND RESULTS: Differentially expressed lncRNAs (DElncRNAs) and differentially expressed target mRNAs (DEmRNAs) were screened by RNA sequencing in the discovery set, which consisted of 10 patients with AIS and 20 controls. Validation sets consisted of a multicenter (311 AIS versus 303 controls) and a nested case-control study (351 AIS versus 352 controls). The discriminative value of DElncRNAs and DEmRNAs added to the traditional risk factors was estimated with the area under the curve. NAMPT-AS, FARP1-AS1, FTH1, and NAMPT were identified in the multicenter case-control study (P<0.05). LncRNA NAMPT-AS was associated with cis-target mRNA NAMPT and trans-target mRNA FTH1 in all validation sets (P<0.001). Similarly, AIS cases exhibited upregulated lncRNA FARP-AS1 and FTH1 expression (P<0.001) in the nested case-control study (P<0.001). Furthermore, lncRNA FARP1-AS1 expression was upregulated in AIS patients at discharge with an unfavorable outcome (P<0.001). Positive correlations were found between NAMPT expression level and NIHSS scores of AIS patients (P<0.05). Adding 2 lncRNAs and 2 target mRNAs to the traditional risk factor model improved area under the curve by 22.8% and 5.2% in the multicenter and the nested case-control studies, respectively. CONCLUSIONS: lncRNA NAMPT-AS and FARP1-AS1 have potential as diagnostic biomarkers for AIS and exhibit good performance when combined with target mRNA NAMPT and FTH1.


Assuntos
Biomarcadores , AVC Isquêmico , Leucócitos , RNA Longo não Codificante , RNA Mensageiro , Humanos , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Masculino , Feminino , AVC Isquêmico/genética , AVC Isquêmico/diagnóstico , AVC Isquêmico/sangue , RNA Mensageiro/sangue , RNA Mensageiro/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , Prognóstico , Leucócitos/metabolismo , Idoso , Biomarcadores/sangue , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/sangue , Citocinas/sangue , Citocinas/genética , Reprodutibilidade dos Testes
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000126

RESUMO

Chronic Hepatitis B virus (CHB) infection is a global health challenge, causing damage ranging from hepatitis to cirrhosis and hepatocellular carcinoma. In our study, single-cell RNA sequencing (scRNA-seq) analysis was performed in livers from mice models with chronic inflammation induced by CHB infection and we found that endothelial cells (ECs) exhibited the largest number of differentially expressed genes (DEGs) among all ten cell types. NF-κB signaling was activated in ECs to induce cell dysfunction and subsequent hepatic inflammation, which might be mediated by the interaction of macrophage-derived and cholangiocyte-derived VISFATIN/Nampt signaling. Moreover, we divided ECs into three subclusters, including periportal ECs (EC_Z1), midzonal ECs (EC_Z2), and pericentral ECs (EC_Z3) according to hepatic zonation. Functional analysis suggested that pericentral ECs and midzonal ECs, instead of periportal ECs, were more vulnerable to HBV infection, as the VISFATIN/Nampt- NF-κB axis was mainly altered in these two subpopulations. Interestingly, pericentral ECs showed increasing communication with macrophages and cholangiocytes via the Nampt-Insr and Nampt-Itga5/Itgb1 axis upon CHB infection, which contribute to angiogenesis and vascular capillarization. Additionally, ECs, especially pericentral ECs, showed a close connection with nature killer (NK) cells and T cells via the Cxcl6-Cxcr6 axis, which is involved in shaping the microenvironment in CHB mice livers. Thus, our study described the heterogeneity and functional alterations of three subclusters in ECs. We revealed the potential role of VISFATIN/Nampt signaling in modulating ECs characteristics and related hepatic inflammation, and EC-derived chemokine Cxcl16 in shaping NK and T cell recruitment, providing key insights into the multifunctionality of ECs in CHB-associated pathologies.


Assuntos
Células Endoteliais , Hepatite B Crônica , Análise de Célula Única , Animais , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Análise de Sequência de RNA , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Transdução de Sinais , Fígado/metabolismo , Fígado/virologia , Fígado/patologia , NF-kappa B/metabolismo , Masculino , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
4.
Nat Commun ; 15(1): 5638, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965263

RESUMO

Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.


Assuntos
Citocina TWEAK , Regulação Neoplásica da Expressão Gênica , Nicotinamida Fosforribosiltransferase , Transdução de Sinais , Receptor de TWEAK , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Feminino , Citocina TWEAK/metabolismo , Citocina TWEAK/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Animais , Linhagem Celular Tumoral , Camundongos , Metástase Neoplásica , Citocinas/metabolismo , Elementos Facilitadores Genéticos/genética
5.
Biochem Biophys Res Commun ; 728: 150346, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972085

RESUMO

Tissue-specific deficiency of nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD+)-salvage pathway, causes a decrease of NAD+ in the tissue, resulting in functional abnormalities. The NAD+-salvage pathway is drastically activated in the mammary gland during lactation, but the significance of this has not been established. To investigate the impact of NAD+ perturbation in the mammary gland, we generated two new lines of mammary gland epithelial-cell-specific Nampt-knockout mice (MGKO). LC-MS/MS analyses confirmed that the levels of NAD+ and its precursor nicotinamide mononucleotide (NMN) were significantly increased in lactating mammary glands. We found that murine milk contained a remarkably high level of NMN. MGKO exhibited a significant decrease in tissue NAD+ and milk NMN levels in the mammary gland during lactation periods. Despite the decline in NAD+ levels, the mammary glands of MGKO appeared to develop normally. Transcriptome analysis revealed that the gene profiles of MGKO were indistinguishable from those of their wild-type counterparts, except for Nampt. Although the NMN levels in milk from MGKO were decreased, the metabolomic profile of milk was otherwise unaltered. The mammary gland also contains adipocytes, but adipocyte-specific deficiency of Nampt did not affect mammary gland NAD+ metabolism or mammary gland development. These results demonstrate that the NAD+ -salvage pathway is activated in mammary epithelial cells during lactation and suggest that this activation is required for production of milk NMN rather than mammary gland development. Our MGKO mice could be a suitable model for exploring the potential roles of NMN in milk.


Assuntos
Células Epiteliais , Lactação , Glândulas Mamárias Animais , Camundongos Knockout , Leite , Mononucleotídeo de Nicotinamida , Nicotinamida Fosforribosiltransferase , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Mononucleotídeo de Nicotinamida/metabolismo , Glândulas Mamárias Animais/metabolismo , Feminino , Células Epiteliais/metabolismo , Leite/metabolismo , Camundongos , Lactação/metabolismo , Citocinas/metabolismo , NAD/metabolismo , Camundongos Endogâmicos C57BL
6.
Am J Physiol Renal Physiol ; 327(3): F450-F462, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38961841

RESUMO

HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.NEW & NOTEWORTHY The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.


Assuntos
Nefropatia Associada a AIDS , Camundongos Transgênicos , NAD , Niacinamida , Compostos de Piridínio , Sirtuína 3 , Animais , NAD/metabolismo , Nefropatia Associada a AIDS/metabolismo , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Sirtuína 3/deficiência , Modelos Animais de Doenças , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Progressão da Doença , Metabolômica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Rim/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
7.
ACS Synth Biol ; 13(8): 2425-2435, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39023319

RESUMO

Nicotinamide mononucleotide (NMN) serves as a precursor for NAD+ synthesis and has been shown to have positive effects on the human body. Previous research has predominantly focused on the nicotinamide phosphoribosyltransferase-mediated route (NadV-mediated route) for NMN biosynthesis. In this study, we have explored the de novo NMN biosynthesis route as an alternative pathway to enhance NMN production. Initially, we systematically engineered Escherichia coli to enhance its capacity for NMN synthesis and accumulation, resulting in a remarkable over 100-fold increase in NMN yield. Subsequently, we progressively enhanced the de novo NMN biosynthesis route to further augment NMN production. We screened and identified the crucial role of MazG in catalyzing the enzymatic cleavage of NAD+ to NMN. And the de novo NMN biosynthesis route was optimized and integrated with the NadV-mediated NMN biosynthetic pathways, leading to an intracellular concentration of 844.10 ± 17.40 µM NMN. Furthermore, the introduction of two transporters enhanced the uptake of NAM and the excretion of NMN, resulting in NMN production of 1293.73 ± 61.38 µM. Finally, by engineering an E. coli strain with optimized PRPP synthetase, we achieved the highest NMN production, reaching 3067.98 ± 27.25 µM after 24 h of fermentation at the shake flask level. In addition to constructing an efficient E. coli cell factory for NMN production, our findings provide new insights into understanding the NAD+ salvage pathway and its role in energy metabolism within E. coli.


Assuntos
Escherichia coli , Engenharia Metabólica , NAD , Mononucleotídeo de Nicotinamida , Escherichia coli/metabolismo , Escherichia coli/genética , Mononucleotídeo de Nicotinamida/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Vias Biossintéticas/genética
8.
Redox Biol ; 75: 103274, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059204

RESUMO

BACKGROUND & AIMS: Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) has long been recognized as an adipokine. However, the exact role of eNAMPT in alcoholic liver disease (ALD) and its relevance to brown adipose tissue (BAT) remain largely unknown. This study aimed to evaluate the impact of eNAMPT on liver function and the underlying mechanisms involved in BAT-Liver communication. METHODS: Serum eNAMPT levels were detected in the serum of both ALD patients and mice. Chronic and binge ethanol feeding was used to induce alcoholic liver injury in mice. An eNAMPT antibody, a coculture model of brown adipocytes and hepatocytes, and BAT-specific Nampt knockdown mice were used to investigate the role of eNAMPT in ALD. RESULTS: Serum eNAMPT levels are elevated in ALD patients and are significantly positively correlated with the liver injury index. In ALD mice, neutralizing eNAMPT reduced the elevated levels of circulating eNAMPT induced by ethanol and attenuated liver injury. In vitro experiments revealed that eNAMPT induced hepatocyte ferroptosis through the TLR4-dependent mitochondrial ROS-induced ferritinophagy pathway. Furthermore, ethanol stimulated eNAMPT secretion from brown adipocytes but not from other adipocytes. In the coculture model, ethanol-induced release of eNAMPT from brown adipocytes promoted hepatocyte ferroptosis. In BAT-specific Nampt-knockdown mice, ethanol-induced eNAMPT secretion was significantly reduced, and alcoholic liver injury were attenuated. These effects can be reversed by intraperitoneal injection of eNAMPT. CONCLUSION: Inhibition of ethanol-induced eNAMPT secretion from BAT attenuates liver injury and ferroptosis. Our study reveals a previously uncharacterized critical role of eNAMPT-mediated BAT-Liver communication in ALD and highlights its potential as a therapeutic target.


Assuntos
Tecido Adiposo Marrom , Etanol , Ferroptose , Hepatopatias Alcoólicas , Fígado , Nicotinamida Fosforribosiltransferase , Animais , Camundongos , Ferroptose/efeitos dos fármacos , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/etiologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Citocinas
9.
Rev Assoc Med Bras (1992) ; 70(7): e20230188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045924

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease is a chronic liver disease and a growing global epidemic. The aim of this study was to investigate the association between a visfatin gene (NAMPT) variant and nonalcoholic fatty liver disease, owing to the connection between this disease and insulin resistance, obesity, inflammation, and oxidative stress, and the role of visfatin in these metabolic disorders. METHODS: In the present case-control study, we enrolled 312 genetically unrelated individuals, including 154 patients with biopsy-proven nonalcoholic fatty liver disease and 158 controls. The rs2058539 polymorphism of NAMPT gene was genotyped using the PCR-RFLP method. RESULTS: Genotype and allele distributions of NAMPT gene rs2058539 polymorphism conformed to the Hardy-Weinberg equilibrium both in the case and control groups (p>0.05). The distribution of NAMPT rs2058539 genotypes and alleles differed significantly between the cases with nonalcoholic fatty liver disease and controls. The "CC" genotype of the NAMPT rs2058539 compared with "AA" genotype was associated with a 2.5-fold increased risk of nonalcoholic fatty liver disease after adjustment for confounding factors [p=0.034; odds ratio (OR)=2.52, 95% confidence interval (CI)=1.36-4.37]. Moreover, the NAMPT rs2058539 "C" allele was significantly overrepresented in the nonalcoholic fatty liver disease patients than controls (p=0.022; OR=1.77, 95%CI=1.14-2.31). CONCLUSION: Our findings indicated for the first time that the NAMPT rs2058539 "CC" genotype is a marker of increased nonalcoholic fatty liver disease susceptibility; however, it needs to be supported by further investigations in other populations.


Assuntos
Citocinas , Predisposição Genética para Doença , Genótipo , Nicotinamida Fosforribosiltransferase , Hepatopatia Gordurosa não Alcoólica , Polimorfismo de Nucleotídeo Único , Humanos , Nicotinamida Fosforribosiltransferase/genética , Hepatopatia Gordurosa não Alcoólica/genética , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Predisposição Genética para Doença/genética , Citocinas/genética , Frequência do Gene/genética , Alelos , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase
10.
Life Sci ; 352: 122850, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901687

RESUMO

AIMS: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Nicotinamide phosphoribosyl-transferase (NAMPT) was found to be over-expressed in several cancers including CRC. NAMPT-Antisense (NAMPT-AS) is a novel long non-coding RNA (lncRNA) recently reported to be associated with triple negative breast cancer. However, its role in CRC has not been investigated. This study was designed to explore the role of lncRNA NAMPT-AS in CRC, and to investigate its circulating serum exosomal levels in subjects with/without CRC. MAIN METHODS: We analyzed CRC patients' data in The Cancer Genome Atlas (TCGA). LncRNA NAMPT-AS and NAMPT mRNA levels were measured in serum exosomes isolated from CRC patients and healthy control subjects and were also measured in CRC-tissues using qRT-PCR. Serum NAMPT protein levels were measured by ELISA, and immunohistochemical analyses were done for NAMPT and Ki67 in CRC tissues. KEY FINDINGS: Serum exosomal NAMPT-AS levels were found to be significantly higher in CRC patients compared to control subjects and significantly positively correlated with serum exosomal NAMPT mRNA and circulating NAMPT protein. Tissue NAMPT-AS was found to be significantly positively associated with tissue and serum exosomal NAMPT levels. Higher serum exosomal NAMPT-AS levels were found to be associated with higher susceptibility for CRC. Gene-ontology results and survival analysis of TCGA-data showed a potential classification of CRC samples based on NAMPT-AS levels and association of NAMPT-AS upregulation with poor CRC prognosis and survival. SIGNIFICANCE: These results portray NAMPT-AS as a novel potential diagnostic/prognostic biomarker and key molecular mediator in CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Citocinas , Exossomos , Nicotinamida Fosforribosiltransferase , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Nicotinamida Fosforribosiltransferase/sangue , Nicotinamida Fosforribosiltransferase/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Feminino , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Masculino , Prognóstico , Exossomos/genética , Exossomos/metabolismo , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/genética , Idoso , Regulação Neoplásica da Expressão Gênica
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167288, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38862096

RESUMO

AD is the abbreviation for Alzheimer's Disease, which is a neurodegenerative disorder that features progressive dysfunction in cognition. Previous research has reported that mitophagy impairment and mitochondrial dysfunction have been crucial factors in the AD's pathogenesis. More recently, literature has emerged which offers findings suggesting that the nicotinamide adenine dinucleotide (short for NAD+) augmentation eliminates the defective mitochondria and restores mitophagy. Meanwhile, as an enzyme which is rate-limiting, the Nicotinamide phosphoribosyltransferase, or NAMPT, is part of the salvage pathway of NAD+ synthesis. Therefore, the aim of the research project has been to produce proof for how the NAMPT-NAD +-silent information-regulated transcription factors1/3 (short for SIRT1/3) axis function in mediating mitophagy in APP/PS1 mice aged six months. The results revealed that the NAMPT-NAD+-SIRT1/3 axis in the APP/PS1 mice's hippocampus was considerably declined. Surprisingly, P7C3 (an NAMPT activator) noticeably promoted the NAD+-SIRT1/3 axis, improved mitochondrial structure and function, enhanced mitophagy activity along with the ability of learning and memory. While FK866 (an NAMPT inhibitor) reversed the decreased NAD+-SIRT1/3 axis, and even exacerbated Aß plaque deposition level in the APP/PS1 mice's hippocampus. The findings observed in this study indicate two main points: avoiding downregulation of the NAMPT activity can prevent AD-related mitophagy impairment; on the other hand, NAMPT characterizes a potential therapeutic intervention regarding AD pathogenesis.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Mitofagia , NAD , Nicotinamida Fosforribosiltransferase , Sirtuína 1 , Animais , Masculino , Camundongos , Acrilamidas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Citocinas/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Piperidinas , Sirtuína 1/metabolismo , Sirtuína 1/genética , Sirtuína 3/metabolismo , Sirtuína 3/genética
12.
Sci Rep ; 14(1): 14780, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926439

RESUMO

Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.


Assuntos
Corpo Lúteo , Nicotinamida Fosforribosiltransferase , Animais , Corpo Lúteo/metabolismo , Corpo Lúteo/efeitos dos fármacos , Feminino , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Ciclo Estral/metabolismo , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Progesterona/metabolismo , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Dinoprosta/metabolismo
13.
Reprod Domest Anim ; 59(5): e14624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798196

RESUMO

The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.


Assuntos
Adipocinas , Corpo Lúteo , Hormônio Liberador de Gonadotropina , Folículo Ovariano , Ovulação , Animais , Feminino , Bovinos/fisiologia , Corpo Lúteo/metabolismo , Corpo Lúteo/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Adipocinas/metabolismo , Adipocinas/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo
14.
Biochem Biophys Res Commun ; 718: 149931, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723415

RESUMO

Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.


Assuntos
Herpesvirus Humano 1 , Nicotinamida Fosforribosiltransferase , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Terapia Viral Oncolítica/métodos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Herpesvirus Humano 1/genética , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Feminino
15.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791180

RESUMO

Chondrosarcoma is a malignant bone tumor that arises from abnormalities in cartilaginous tissue and is associated with lung metastases. Lymphangiogenesis plays an essential role in cancer metastasis. Visfatin is an adipokine reported to enhance tumor metastasis, but its relationship with VEGF-D generation and lymphangiogenesis in chondrosarcoma remains undetermined. Our results from clinical samples reveal that VEGF-D levels are markedly higher in chondrosarcoma patients than in normal individuals. Visfatin stimulation promotes VEGF-D-dependent lymphatic endothelial cell lymphangiogenesis. We also found that visfatin induces VEGF-D production by activating HIF-1α and reducing miR-2277-3p generation through the Raf/MEK/ERK signaling cascade. Importantly, visfatin controls chondrosarcoma-related lymphangiogenesis in vivo. Therefore, visfatin is a promising target in the treatment of chondrosarcoma lymphangiogenesis.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linfangiogênese , MicroRNAs , Nicotinamida Fosforribosiltransferase , Fator D de Crescimento do Endotélio Vascular , Humanos , Condrossarcoma/metabolismo , Condrossarcoma/genética , Condrossarcoma/patologia , Linfangiogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos , Citocinas/metabolismo , Masculino , Feminino , Sistema de Sinalização das MAP Quinases
16.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722405

RESUMO

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Assuntos
Nicotinamida Fosforribosiltransferase , Síndrome do Ovário Policístico , Reprodução , Feminino , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Reprodução/fisiologia , Reprodução/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Animais , Ovário/metabolismo , Útero/metabolismo , Citocinas/metabolismo , Gravidez , Adipocinas/metabolismo
17.
Am J Physiol Endocrinol Metab ; 327(1): E81-E88, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809511

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a universal coenzyme regulating cellular energy metabolism in many cell types. Recent studies have demonstrated the close relationships between defective NAD+ metabolism and aging and age-associated metabolic diseases. The major purpose of the present study was to test the hypothesis that NAD+ biosynthesis, mediated by a rate-limiting NAD+ biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT), is essential for maintaining normal adipose tissue function and whole body metabolic health during the aging process. To this end, we provided in-depth and comprehensive metabolic assessments for female adipocyte-specific Nampt knockout (ANKO) mice during aging. We first evaluated body fat mass in young (≤4-mo-old), middle aged (10-14-mo-old), and old (≥18-mo-old) mice. Intriguingly, adipocyte-specific Nampt deletion protected against age-induced obesity without changing energy balance. However, data obtained from the hyperinsulinemic-euglycemic clamp procedure (HECP) demonstrated that, despite the lean phenotype, old ANKO mice had severe insulin resistance in skeletal muscle, heart, and white adipose tissue (WAT). Old ANKO mice also exhibited hyperinsulinemia and hypoadiponectinemia. Mechanistically, loss of Nampt caused marked decreases in WAT gene expression of lipogenic targets of peroxisome proliferator-activated receptor gamma (PPAR-γ) in an age-dependent manner. In addition, administration of a PPAR-γ agonist rosiglitazone restored fat mass and improved metabolic abnormalities in old ANKO mice. In conclusion, these findings highlight the importance of the NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue, and whole body metabolic function in female mice during aging.NEW & NOTEWORTHY Defective NAD+ metabolism is associated with aging and age-associated metabolic diseases. In the present study, we provided in-depth metabolic assessments in female mice with adipocyte-specific inactivation of a key NAD+ biosynthetic enzyme NAMPT and revealed an unexpected role of adipose tissue NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue and whole body metabolic health during the aging process.


Assuntos
Adipócitos , Envelhecimento , NAD , Nicotinamida Fosforribosiltransferase , Animais , Feminino , Camundongos , Adipócitos/metabolismo , Envelhecimento/metabolismo , Citocinas/metabolismo , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Obesidade/metabolismo , Obesidade/genética , Fenótipo , PPAR gama/metabolismo , PPAR gama/genética
18.
Hereditas ; 161(1): 14, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685093

RESUMO

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS: Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS: Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.


Assuntos
Hematopoese , Nicotinamida Fosforribosiltransferase , Peixe-Zebra , Animais , Peixe-Zebra/genética , Nicotinamida Fosforribosiltransferase/genética , Hematopoese/genética , Mutação , Proteínas de Peixe-Zebra/genética , Fenótipo , Sistemas CRISPR-Cas , NAD/metabolismo , Técnicas de Silenciamento de Genes , Morfolinos/genética
19.
Clin Exp Nephrol ; 28(7): 599-607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587753

RESUMO

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.


Assuntos
Albuminúria , Claudina-1 , Nefropatias Diabéticas , Epigênese Genética , NAD , Sirtuína 1 , Inibidor Tecidual de Metaloproteinase-1 , Animais , Humanos , Albuminúria/genética , Claudina-1/genética , Claudina-1/metabolismo , Citocinas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética
20.
Adv Biol (Weinh) ; 8(5): e2400028, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463014

RESUMO

Emerging evidence has implicated nicotinamide adenine dinucleotide (NAD+) metabolism in various inflammatory diseases. In the study, the role of NAD+ metabolism in Complete Freund's Adjuvant (CFA)-evoked inflammatory pain and the underlying mechanisms are investigated. The study demonstrated that CFA induced upregulation of nicotinamide phosphoribosyltransferase (NAMPT) in dorsal root ganglia (DRG) without significant changes in the spinal cord. Inhibition of NAMPT expression by intrathecal injection of NAMPT siRNA alleviated CFA-induced pain-like behavior, decreased NAD+ contents in DRG, and lowered poly-(ADP-ribose) polymerase 1 (PARP1) activity levels. These effects are all reversed by the supplement of nicotinamide mononucleotide (NMN). Inhibition of PARP1 expression by intrathecal injection of PARP1 siRNA alleviated CFA-induced pain-like behavior, while elevated NAD+ levels of DRG. The analgesic effect of inhibiting NAMPT/NAD+/PARP1 axis can be attributed to the downregulation of the NF-κB/IL-1ß inflammatory pathway. Double immunofluorescence staining showed that the expression of NAMPT/NAD+/PARP1 axis is restricted to DRG neurons. In conclusion, PARP1 activation in response to CFA stimulation, fueled by NAMPT-derived NAD+, mediates CFA-induced inflammatory pain through NF-κB/IL-1ß inflammatory pathway.


Assuntos
Gânglios Espinais , NAD , Nicotinamida Fosforribosiltransferase , Poli(ADP-Ribose) Polimerase-1 , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Masculino , Camundongos , Adjuvante de Freund , Inflamação/metabolismo , Citocinas/metabolismo , Dor/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...