Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.615
Filtrar
1.
Food Res Int ; 194: 114877, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232515

RESUMO

Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.


Assuntos
Desinfetantes , Desinfecção , Peróxido de Hidrogênio , Norovirus , Inativação de Vírus , Água , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Inativação de Vírus/efeitos dos fármacos , Animais , Camundongos , Água/química , Desinfetantes/farmacologia , Desinfecção/métodos , Gases em Plasma/farmacologia , Radical Hidroxila/metabolismo , Nitratos/farmacologia , Concentração de Íons de Hidrogênio
2.
Plant Physiol Biochem ; 215: 108976, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094482

RESUMO

Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size. The mRNA sequencing performed on both roots and leaves of genotype TRPO0040 indicated that the transcriptomic signature in leaves under combined stress conditions largely overlapped that of the low N treatment, whereas root transcriptomes were highly sensitive to salt stress. Differentially expressed genes were functionally interpreted using GO and KEGG enrichment analysis, which confirmed the stress and the tissue-specific changes. We also disclosed a set of genes underlying the specific response to combined conditions, including ribosome components and nitrate transporters, in leaves, and several genes involved in transport and response to stress in roots. Altogether, our results provide a comprehensive understanding of above- and below-ground physiological and molecular responses of tomato to salt stress and low N treatment, alone or in combination.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitratos , Raízes de Plantas , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Estresse Salino/genética , Estresse Fisiológico/genética
3.
PeerJ ; 12: e17726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011375

RESUMO

Background: A balanced supply of nitrogen is essential for spinach, supporting both optimal growth and appropriate nitrate (NO3 -) levels for improved storage quality. Thus, choosing the correct nitrogen fertilizer type and application rate is key for successful spinach cultivation. This study investigated the effects of different nitrogen (N) fertilizer type and application rates on the growth, nitrate content, and storage quality of spinach plants. Methods: Four fertilizer types were applied at five N doses (25, 50, 200, and 400 mg N kg-1) to plants grown in plastic pots at a greenhouse. The fertilizer types used in the experiment were ammonium sulphate (AS), slow-release ammonium sulphate (SRAS), calcium nitrate (CN), and yeast residue (YR). Spinach parameters like Soil Plant Analysis Development (SPAD) values (chlorophyll content), plant height, and fresh weight were measured. Nitrate content in leaves was analyzed after storage periods simulating post-harvest handling (0, 5, and 10 days). Results: The application of nitrogen fertilizer significantly influenced spinach growth parameters and nitrate content. The YRx400 treatment yielded the largest leaves (10.3 ± 0.5 cm long, 5.3 ± 0.2 cm wide). SPAD values increased with higher N doses for AS, SRAS, and CN fertilizers, with AS×400 (58.1 ± 0.8) and SRAS×400 (62.0 ± 5.8) reaching the highest values. YR treatments showed a moderate SPAD increase. Fresh weight response depended on fertilizer type, N dose, and storage period. While fresh weight increased in all fertilizers till 200 mg kg-1 dose, a decrease was observed at the highest dose for AS and CN. SRAS exhibited a more gradual increase in fresh weight with increasing nitrogen dose, without the negative impact seen at the highest dose in AS and CN. Nitrate content in spinach leaves varied by fertilizer type, dose, and storage day. CNx400 resulted in the highest NO3 - content (4,395 mg kg-1) at harvest (Day 0), exceeding the European Union's safety limit. This level decreased over 10 days of storage but remained above the limit for CN on Days 0 and 5. SRAS and YR fertilizers generally had lower NO3 - concentrations throughout the experiment. Storage at +4 °C significantly affected NO3 - content. While levels remained relatively stable during the first 5 days, a substantial decrease was observed by Day 10 for all fertilizers and doses, providing insights into the spinach's nitrate content over a 10-day storage period. Conclusion: For rapid early growth and potentially higher yields, AS may be suitable at moderate doses (200 mg kg-1). SRAS offers a more balanced approach, promoting sustained growth while potentially reducing NO3 - accumulation compared to AS. Yeast residue, with its slow nitrogen release and consistently low NO3 - levels, could be a viable option for organic spinach production.


Assuntos
Fertilizantes , Nitratos , Nitrogênio , Spinacia oleracea , Fertilizantes/análise , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Nitratos/administração & dosagem , Nitratos/farmacologia , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento
4.
Biomed Pharmacother ; 177: 117154, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018868

RESUMO

This study investigates the antiplatelet properties of tomato pulp to combat cardiovascular diseases. Notably, it examines the formation of nitrated fatty acids (NO2-FA) in tomato pomace, renowned for its potential antiplatelet effects. Through diverse assays, including tandem mass spectrometry, microplate-based platelet aggregation, and flow cytometry, the research identifies NO2-OA, NO2-LA, and NO2-LnA as pivotal antiplatelet compounds. It demonstrates the concentration-dependent antiplatelet effects of nitrated tomato pomace against thrombin receptor activator peptide 6 (TRAP-6) and collagen-induced platelet activation, alongside the modulation of platelet activation markers. Additionally, synergistic effects were observed with nitrated tomato pomace extracts. The findings suggest therapeutic potential for NO2-FA derived from tomato pomace in preventing blood clot formation, with nitrated extracts exhibiting superior efficacy compared to non-nitrated ones. This research highlights the promising role of natural products, such as tomato pomace, in mitigating cardiovascular risks and proposes novel strategies for population health enhancement and cardiovascular disease management.


Assuntos
Ácidos Graxos , Extratos Vegetais , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Solanum lycopersicum , Solanum lycopersicum/química , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Agregação Plaquetária/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Nitratos/farmacologia , Ativação Plaquetária/efeitos dos fármacos
5.
Arch Oral Biol ; 167: 106053, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029289

RESUMO

OBJECTIVE: To investigate the accumulation of cerium-nitrate and samarium-nitrate on dentin without or with smear-layer and to test their antibacterial activity. DESIGN: 24 dentin-enamel slices were cut from 24 extracted molars. 12 slices underwent smear-layer creation (320 grit, 200 g, 5 s), the other 12 smear-layer removal (20 % EDTA, 300 s). Slices were halved to 48 semilunar-shaped specimens. One specimen per tooth was treated with either Ce(NO3)3 (50 wt% aqueous solution; pH = 1.29; n = 6) or Sm(NO3)3 (50 wt% aqueous solution; pH = 1.88; n = 6). The other specimen served as control (A. demin). After water rinsing, elemental composition (Ce, Sm, Ca, P, O, N, Na, Mg, C) was measured (EDX; EDAX Octane-Elect, APEX v2.5, low-vacuum) in dentin. Atomic percent (At%), Ca/P- and Ca/N-ratios were calculated and analyzed non-parametrically (α = 0.05, error rates method). Additionally, antibacterial activity (2 min exposure) of Ce(NO3)3 and Sm(NO3)3 against Streptococcus mutans, Actinomyces naeslundii, Schaalia odontolytica, and Enterococcus faecalis was determined (colony forming units) after anaerobic incubation at 37 °C for 24 h (control: 0.2 % CHX). RESULTS: At% (median) of Ce and Sm were as follows: Ce(NO3)3 3.4 and 0.9 At%Ce with and without smear-layer, respectively; Sm(NO3)3 2.4 and 1.3 At%Sm with and without smear-layer, respectively. Ce(NO3)3 and Sm(NO3)3-application significantly decreased Ca/P-ratios (1.22 - 1.45; p ≤ 0.02) compared to controls (1.47 - 1.63). With smear-layer, significantly higher Ca/N-ratios (5.1 - 29.3) could be detected across all groups (p ≤ 0.004) compared to specimens without smear-layer (0.37 - 0.48). Ce(NO3)3 and Sm(NO3)3 showed reduction rates of up to ≥ 5 log10 steps for S. mutans, A. naeslundii, and S. odontolytica. CONCLUSIONS: Cerium and samarium nitrate showed accumulation on dentin and certain antibacterial activity and could therefore be identified as potential compounds to treat and prevent dentin and root caries and dentin hypersensitivity.


Assuntos
Cério , Dentina , Nitratos , Samário , Cério/farmacologia , Dentina/efeitos dos fármacos , Humanos , Nitratos/farmacologia , Samário/farmacologia , Camada de Esfregaço , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Técnicas In Vitro , Dente Molar
6.
J Nutr ; 154(9): 2696-2706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019159

RESUMO

BACKGROUND: Green leafy vegetables (GLV) contain inorganic nitrate, an anion with potential prebiotic effects on the oral microbiome. However, it remains unclear whether GLV and pharmacological supplementation [potassium nitrate (PN)] with a nitrate salt induce similar effects on the oral microbiome. OBJECTIVES: This study aimed to compare the effect of GLV with PN supplementation on the oral microbiome composition and salivary biomarkers in individuals with high blood pressure. METHODS: Seventy individuals were randomly allocated to 3 different groups to follow a 5-wk dietary intervention. Group 1 consumed 300 mg/d of nitrate in form of GLV. Group 2 consumed pills with 300 mg/d of PN and low-nitrate vegetables. Group 3 consumed pills with potassium chloride (placebo: PLAC) and low-nitrate vegetables. The oral microbiome composition and salivary biomarkers of oral health were analyzed before and after the dietary intervention. RESULTS: The GLV and PN groups showed similar microbial changes, probably nitrate-dependent, including an increase in the abundance of Neisseria, Capnocytophaga, Campylobacter species, and a decrease in Veillonella, Megasphaera, Actinomyces, and Eubacterium species after the treatment. Increased abundance of Rothia species, and reduced abundance of Streptococcus, Prevotella, Actinomyces, and Mogibacterium species were observed in the GLV group, which could be nitrate-independent. GLV and PN treatments increased salivary pH, but only GLV treatment showed an increase in the salivary buffering capacity and a reduction of lactate. CONCLUSION: The combination of nitrate-dependent and nitrate-independent microbial changes in the GLV group has a stronger effect to potentially improve oral health biomarkers compared with PN.


Assuntos
Biomarcadores , Hipertensão , Microbiota , Boca , Nitratos , Saliva , Humanos , Nitratos/administração & dosagem , Nitratos/farmacologia , Saliva/microbiologia , Saliva/química , Masculino , Feminino , Pessoa de Meia-Idade , Microbiota/efeitos dos fármacos , Boca/microbiologia , Suplementos Nutricionais , Adulto , Verduras , Dieta , Compostos de Potássio
7.
Planta ; 260(2): 53, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009858

RESUMO

MAIN CONCLUSION: NH4+ is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO3-) or ammonium (NH4+). Although the significance of a balanced supply of NO3- and NH4+ for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO3- as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH4Cl by roots or leaves. The NH4+ treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH4+-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)3 and higher root release of H+, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH4+ application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH4+ at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH4+ appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.


Assuntos
Compostos de Amônio , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Ferro , Raízes de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Compostos de Amônio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais , Deficiências de Ferro , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrogênio/metabolismo
8.
Plant Cell Environ ; 47(11): 4227-4245, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38950037

RESUMO

Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.


Assuntos
Arabidopsis , Núcleo Celular , Citoplasma , Regulação da Expressão Gênica de Plantas , Nitratos , Raízes de Plantas , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nitrato Redutase/metabolismo , Nitrato Redutase/genética
9.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926658

RESUMO

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Assuntos
Antioxidantes , Daucus carota , Germinação , Nitratos , Compostos de Potássio , Plântula , Sementes , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos dos fármacos , Daucus carota/fisiologia , Compostos de Potássio/farmacologia , Germinação/efeitos dos fármacos , Temperatura Alta
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 757-764, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708510

RESUMO

OBJECTIVE: To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS: K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS: The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION: The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.


Assuntos
Klebsiella pneumoniae , Nitrato Redutase , Nitratos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Nitrato Redutase/metabolismo , Nitrato Redutase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Intestinos/microbiologia , Regulação Bacteriana da Expressão Gênica , Anaerobiose , Técnicas de Inativação de Genes
11.
Eur J Nutr ; 63(6): 2379-2387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38809323

RESUMO

PURPOSE: Dietary nitrate (NO3-) supplementation enhances muscle blood flow and metabolic efficiency in hypoxia, however, its efficacy on neuromuscular function and specifically, the effect on motor unit (MU) activity is less clear. We investigated whether NO3- supplementation affected MU activity following a 3 min sustained ischemic contraction and whether this is influenced by blood flow restriction (BFR) during the recovery period. METHOD: In a randomized, double-blinded, cross-over design, 14 males (mean ± SD, 25 ± 6 years) completed two trials following 5 days of supplementation with NO3--rich (NIT) or NO3--depleted (PLA) beetroot juice to modify plasma nitrite (NO2-) concentration (482 ± 92 vs. 198 ± 48 nmol·L-1, p < 0.001). Intramuscular electromyography was used to assess MU potential (MUP) size (duration and area) and mean firing rates (MUFR) during a 3 min submaximal (25% MVC) isometric contraction with BFR. These variables were also assessed during a 90 s recovery period with the first half completed with, and the second half completed without, BFR. RESULTS: The change in MUP area and MUFR, did not differ between conditions (all p > 0.05), but NIT elicited a reduction in MUP recovery time during brief isometric contractions (p < 0.001), and during recoveries with (p = 0.002) and without (p = 0.012) BFR. CONCLUSION: These novel observations improve understanding of the effects of NO3- on the recovery of neuromuscular function post-exercise and might have implications for recovery of muscle contractile function. TRIAL REGISTRATION: The study was registered on clinicaltrials.gov with ID of NCT05993715 on August 08, 2023.


Assuntos
Estudos Cross-Over , Suplementos Nutricionais , Eletromiografia , Músculo Esquelético , Nitratos , Humanos , Masculino , Método Duplo-Cego , Nitratos/administração & dosagem , Nitratos/farmacologia , Nitratos/sangue , Adulto , Adulto Jovem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Contração Muscular/efeitos dos fármacos , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Sucos de Frutas e Vegetais , Beta vulgaris/química , Isquemia/fisiopatologia , Fluxo Sanguíneo Regional/efeitos dos fármacos
12.
Plant Physiol Biochem ; 212: 108717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761542

RESUMO

Chloride (Cl-) is traditionally categorized as an antagonist of nitrate (NO3-) because Cl- hinders plant NO3- transport and accumulation. However, we have recently defined Cl- as a beneficial macronutrient for higher plants, due to specific functions that lead to more efficient use of water, nitrogen (N) and CO2 under optimal N and water supply. When accumulated in leaves at macronutrient levels, Cl- promotes growth through osmotic, physiological, metabolic, anatomical and cellular changes that improve plant performance under optimal NO3- nutrition. Nitrate over-fertilization in agriculture can adversely affect crop yield and nature, while its deficiency limits plant growth. To study the relationship between Cl- nutrition and NO3- availability, we have characterized different physiological responses such as growth and yield, N-use efficiency, water status, photosynthesis, leaf anatomy, pigments and antioxidants in tomato plants treated with or without 5 mM Cl- salts and increasing NO3- treatments (3-15 mM). First, we have demonstrated that 5 mM Cl- application can reduce the use of NO3- in the nutrient solution by up to half without detriment to plant growth and yield in tomato and other horticultural plants. Second, Cl- application reduced stress symptoms and improved plant growth under low-NO3- conditions. The Cl--dependent resistance to low-N stress resulted from: more efficient use of the available NO3-; improved plant osmotic and water status regulation; improved stomatal conductance and photosynthetic rate; and better antioxidant response. We proposed that beneficial Cl- levels increase the crop ability to grow better with lower NO3- requirements and withstand N deficiency, promoting a more sustainable and resilient agriculture.


Assuntos
Cloretos , Nitratos , Nitrogênio , Folhas de Planta , Solanum lycopersicum , Estresse Fisiológico , Nitratos/metabolismo , Nitratos/farmacologia , Cloretos/metabolismo , Nitrogênio/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Antioxidantes/metabolismo
13.
Mar Drugs ; 22(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786613

RESUMO

Porphyra sensu lato has economic importance for food and pharmaceutical industries due to its significant physiological activities resulting from its bioactive compounds (BACs). This study aimed to determine the optimal nitrate dosage required in short-term cultivation to achieve substantial BAC production. A nitrate experiment using varied concentrations (0 to 6.5 mM) revealed optimal nitrate uptake at 0.5 mM in the first two days and at 3 and 5 mM in the last five days. Polyphenols and carbohydrates showed no differences between treatments, while soluble proteins peaked at 1.5 and 3 mM. Total mycosporine-like amino acids (MAAs) were highest in algae incubated at 5 and 6.5 mM, and the highest antioxidant activity was observed in the 5 mM, potentially related to the MAAs amount. Total carbon and sulfur did not differ between treatments, while nitrogen decreased at higher nitrate. This discovery highlights the nuanced role of nitrate in algal physiology, suggesting that biological and chemical responses to nitrate supplementation can optimize an organism's health and its commercially significant bioactive potential. Furthermore, given its ability to absorb high doses of nitrate, this alga can be cultivated in eutrophic zones or even in out-/indoor tanks, becoming an excellent option for integrated multi-trophic aquaculture (IMTA) and bioremediation.


Assuntos
Antioxidantes , Biodegradação Ambiental , Nitratos , Porphyra , Nitratos/metabolismo , Nitratos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Porphyra/metabolismo , Cosmecêuticos , Aminoácidos/metabolismo
14.
Nitric Oxide ; 148: 23-33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697467

RESUMO

Dietary nitrate (NO3-) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2-]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3-, NO2-, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3- supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3--rich beetroot juice (BR) (∼12.8 mmol NO3-) and NO3--depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5-3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (-2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0-30 ms (39 ± 57 N m s-1, P = 0.03) and 0-50 ms (79 ± 99 N m s-1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2-] was correlated with lower diastolic BP (r = -0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3-] was correlated with greater RTD at 0-30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3-] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3- ingestion in humans.


Assuntos
Biomarcadores , Pressão Sanguínea , Estudos Cross-Over , Suplementos Nutricionais , Nitratos , Óxido Nítrico , Humanos , Nitratos/administração & dosagem , Nitratos/farmacologia , Nitratos/sangue , Masculino , Biomarcadores/sangue , Feminino , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue , Adulto , Método Duplo-Cego , Pressão Sanguínea/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Adulto Jovem , Beta vulgaris/química , Nitritos/sangue
15.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612462

RESUMO

An increase in the level of nitric oxide (NO) plays a key role in regulating the human cardiovascular system (lowering blood pressure, improving blood flow), glycemic control in type 2 diabetes, and may help enhance exercise capacity in healthy individuals (including athletes). This molecule is formed by endogenous enzymatic synthesis and the intake of inorganic nitrate (NO3-) from dietary sources. Although one of the most well-known natural sources of NO3- in the daily diet is beetroot (Beta vulgaris), this review also explores other plant sources of NO3- with comparable concentrations that could serve as ergogenic aids, supporting exercise performance or recovery in healthy individuals. The results of the analysis demonstrate that red spinach (Amaranthus spp.) and green spinach (Spinacia oleracea) are alternative natural sources rich in dietary NO3-. The outcomes of the collected studies showed that consumption of selected alternative sources of inorganic NO3- could support physical condition. Red spinach and green spinach have been shown to improve exercise performance or accelerate recovery after physical exertion in healthy subjects (including athletes).


Assuntos
Celosia , Diabetes Mellitus Tipo 2 , Nitratos , Humanos , Nitratos/farmacologia , Exercício Físico , Controle Glicêmico , Óxido Nítrico , Suplementos Nutricionais
16.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602592

RESUMO

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Assuntos
Nitratos , Setaria (Planta) , Espécies Reativas de Oxigênio , Nitratos/farmacologia , Setaria (Planta)/genética , Peróxido de Hidrogênio , Cloreto de Sódio , Oxigênio , Transdução de Sinais , Perfilação da Expressão Gênica , Nitrogênio
17.
J Inorg Biochem ; 256: 112554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613885

RESUMO

Six terpyridine­nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.


Assuntos
Antineoplásicos , Complexos de Coordenação , Níquel , Piridinas , Humanos , Níquel/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Piridinas/química , Piridinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Nitratos/química , Nitratos/farmacologia , Cristalografia por Raios X
18.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542677

RESUMO

This study examined the effect of creatine nitrate and caffeine alone and combined on exercise performance and cognitive function in resistance-trained athletes. In a double-blind, randomized crossover trial, twelve resistance-trained male athletes were supplemented with 7 days of creatine nitrate (5 g/day), caffeine (400 mg/day), and a combination of creatine nitrate and caffeine. The study involved twelve resistance-trained male athletes who initially provided a blood sample for comprehensive safety analysis, including tests for key enzymes and a lipid profile, and then performed standardized resistance exercises-bench and leg press at 70% 1RM-and a Wingate anaerobic power test. Cognitive function and cardiovascular responses were also examined forty-five minutes after supplementation. Creatine nitrate and caffeine that were co-ingested significantly enhanced cognitive function, as indicated by improved scores in the Stroop Word-Color Interference test (p = 0.04; effect size = 0.163). Co-ingestion was more effective than caffeine alone in enhancing cognitive performance. In contrast, no significant enhancements in exercise performance were observed. The co-ingestion of creatine nitrate and caffeine improved cognitive function, particularly in cognitive interference tasks, without altering short-term exercise performance. Furthermore, no adverse events were reported. Overall, the co-ingestion of creatine nitrate and caffeine appears to enhance cognition without any reported side effects for up to seven days.


Assuntos
Cafeína , Nitratos , Humanos , Masculino , Cafeína/farmacologia , Cognição , Creatina/farmacologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Exercício Físico , Nitratos/farmacologia
19.
Plant Physiol Biochem ; 210: 108569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552261

RESUMO

Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.


Assuntos
Cobre , Nitratos , Plantas Tolerantes a Sal , Cobre/metabolismo , Cobre/toxicidade , Nitratos/metabolismo , Nitratos/farmacologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aizoaceae/metabolismo , Aizoaceae/efeitos dos fármacos , Aizoaceae/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
20.
Sci Rep ; 14(1): 2764, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308017

RESUMO

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Antioxidantes/metabolismo , Nitratos/farmacologia , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Prolina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...