Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.179
Filtrar
1.
J Environ Sci (China) ; 148: 437-450, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095178

RESUMO

For environmental applications, it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer. Here, a novel Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method, with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers, and unstable structure. These materials were characterized by XRD, FT-IR, SEM, TEM UV-Vis/DRS, and XPS to verify the structure and stability of the heterostructure. The pristine LDH, g-C3N4, and Ag/g-C3N4/CoNi-LDH composite were investigated as photocatalysts for water remediation, an environmentally motivated process. Specifically, the photocatalytic degradation of tetracycline was studied as a model reaction. The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon. The influence of several experimental parameters such as catalyst loading, pH, and tetracycline concentration were evaluated. The current study provides important data for water treatment and similar environmental protection applications.


Assuntos
Nanocompostos , Fotólise , Prata , Poluentes Químicos da Água , Purificação da Água , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Prata/química , Catálise , Nitrilas/química , Compostos de Nitrogênio/química , Adsorção , Grafite
2.
J Environ Sci (China) ; 149: 188-199, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181633

RESUMO

Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments. Numerous strategies have been devised to facilitate the generation of reactive oxygen species (ROS) within photocatalysts, ultimately leading to the eradication of bacteria. However, the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured, and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited. Herein, graphitic carbon nitride (g-C3N4) is chemically protonated to expose more sharp edges. PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production. Meanwhile, the sharp edges on the protonated g-C3N4 facilitate the physical disruption of cell walls for further promoting oxidative damage. Protonated C3N4 demonstrated superior bactericidal performance than that of pristine g-C3N4, effectively eliminating Escherichia coli within 40 minutes under irradiation. This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.


Assuntos
Desinfecção , Nitrilas , Nitrilas/química , Desinfecção/métodos , Catálise , Escherichia coli/efeitos dos fármacos , Espécies Reativas de Oxigênio , Grafite/química , Esterilização/métodos , Compostos de Nitrogênio/química
3.
J Environ Sci (China) ; 149: 512-523, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181663

RESUMO

Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.


Assuntos
Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxigênio/química , Catálise , Manganês/química , Compostos Benzidrílicos/química , Nitrilas/química , Adsorção , Espécies Reativas de Oxigênio , Recuperação e Remediação Ambiental/métodos , Fenóis/química
4.
Skinmed ; 22(4): 288-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39285571

RESUMO

Ruxolitinib cream 1.5% was first approved by the US Food and Drug Administration (FDA) in 2011. Opzelura™ cream was introduced by Incyte Dermatology in 2021 for the short-term and non-continuous chronic treatment of mild to moderate atopic dermatitis (AD) in non-immunocompromised patients aged ≥12 years, whose clinical manifestations are not controlled with prescribed topical therapies, such as topical corticosteroids, topical calcineurin inhibitors, or topical phosphodiesterase-4 ( PDE4) inhibitors, or when such therapies are not advisable. Ruxolitinib is a Janus kinase (JAK) inhibitor that addresses inflammation in AD. It selectively inhibits JAK1 and JAK2, blocking JAK and activating signal transducer and activator of transcription (STAT), thereby interrupting the cytokine pathways responsible for cutaneous inflammation. The targeted downstream cytokines include Interleukin- 4 (IL-4), IL-13, IL-31, and cytokine thymic stromal lymphopoietin (TSLP), which play pivotal roles in the itching and inflammation experienced by AD patients. Ruxolitinib cream is directly applied as a thin layer over AD lesions twice daily up to 20% body surface area (BSA) using no more than 60 g per week. It can be used for up to 8 weeks on delicate or thin skin surfaces.


Assuntos
Dermatite Atópica , Nitrilas , Pirazóis , Pirimidinas , Humanos , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Pirazóis/administração & dosagem , Nitrilas/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Creme para a Pele , Administração Cutânea , Citocinas/metabolismo
5.
Nat Commun ; 15(1): 7999, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294134

RESUMO

We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n = 15). All patients received remdesivir and some also received nirmatrelvir-ritonavir (n = 3) or therapeutic monoclonal antibodies (n = 4). Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient sequentially treated with nirmatrelvir-ritonavir and remdesivir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Farmacorresistência Viral , Hospedeiro Imunocomprometido , Mutação , Ritonavir , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Animais , Alanina/análogos & derivados , Alanina/uso terapêutico , Alanina/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/farmacologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Humanos , COVID-19/virologia , Feminino , Farmacorresistência Viral/genética , Masculino , Pessoa de Meia-Idade , Ritonavir/uso terapêutico , Ritonavir/farmacologia , Idoso , Mesocricetus , Adulto , Cricetinae , Leucina , Lactamas , Prolina , Nitrilas , RNA-Polimerase RNA-Dependente de Coronavírus
6.
Sci Total Environ ; 952: 176022, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39236830

RESUMO

Pyrethroid insecticides are widely detected in aquatic ecosystems due to their extensive use in agriculture and horticulture, which could pose a potential risk to aquatic non-target organisms. While previous ecotoxicological studies have been conducted mainly with standard tests and local species under temperate conditions, scarce information is available on the effects of pyrethroid insecticides on communities and ecosystems under (sub-)tropical conditions. A single application of lambda-cyhalothrin at concentrations of 0, 9, 30, and 100 ng/L was evaluated in outdoor mesocosms under sub-tropical conditions. Lambda-cyhalothrin was found to dissipate rapidly in the water column, with only 11 % and 7 % of the remaining dose measured at 1 and 3 days after application, respectively. Lambda-cyhalothrin concentrations disappeared considerably faster from the water compartment compared to temperate conditions. Consistent decreases in abundance were observed for Lecane lunaris at the medium and higher treatments (NOEC = 9 ng/L) and at the highest treatment (NOEC = 30 ng/L) for Keratella tropica. On the contrary, two taxa belonging to Cladocera (i.e., Ceriodaphnia sp. and Diaphanosoma sp.) showed the most prominent increase in abundance related to the lambda-cyhalothrin treatments. At the community level, a consistent no observed effect concentrations (NOECs) of 9 ng/L could be calculated for the zooplankton community. A marginal significant overall treatment related effect was observed for the macroinvertebrate community. The results of species sensitivity distribution (SSD) analysis based on results of acute toxicity experiments conducted alongside the mesocosm experiment and obtained from the literature indicated that macroinvertebrates from temperate regions may be generally more sensitive than their counterparts in (sub-)tropical regions. Overall, these findings suggest that environmentally relevant concentrations of the pyrethroid insecticide lambda-cyhalothrin may lead to different ecological outcomes in freshwater ecosystems in the (sub-)tropics relative to temperate regions.


Assuntos
Ecossistema , Água Doce , Inseticidas , Nitrilas , Piretrinas , Poluentes Químicos da Água , Piretrinas/toxicidade , Nitrilas/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental
7.
ACS Appl Bio Mater ; 7(9): 6306-6312, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39236263

RESUMO

Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.


Assuntos
Materiais Biocompatíveis , Grafite , Raios Infravermelhos , Teste de Materiais , Compostos de Nitrogênio , Tamanho da Partícula , Espécies Reativas de Oxigênio , Grafite/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Compostos de Nitrogênio/química , Materiais Biocompatíveis/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Fotoquimioterapia , Nitrilas/química
9.
Proc Natl Acad Sci U S A ; 121(37): e2404175121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236245

RESUMO

We generated SARS-CoV-2 variants resistant to three SARS-CoV-2 main protease (Mpro) inhibitors (nirmatrelvir, TKB245, and 5h), by propagating the ancestral SARS-CoV-2WK521WT in VeroE6TMPRSS2 cells with increasing concentrations of each inhibitor and examined their structural and virologic profiles. A predominant E166V-carrying variant (SARS-CoV-2WK521E166V), which emerged when passaged with nirmatrelvir and TKB245, proved to be resistant to the two inhibitors. A recombinant SARS-CoV-2E166V was resistant to nirmatrelvir and TKB245, but sensitive to 5h. X-ray structural study showed that the dimerization of Mpro was severely hindered by E166V substitution due to the disruption of the presumed dimerization-initiating Ser1'-Glu166 interactions. TKB245 stayed bound to MproE166V, whereas nirmatrelvir failed. Native mass spectrometry confirmed that nirmatrelvir and TKB245 promoted the dimerization of Mpro, and compromised the enzymatic activity; the Ki values of recombinant MproE166V for nirmatrelvir and TKB245 were 117±3 and 17.1±1.9 µM, respectively, indicating that TKB245 has a greater (by a factor of 6.8) binding affinity to MproE166V than nirmatrelvir. SARS-CoV-2WK521WT selected with 5h acquired A191T substitution in Mpro (SARS-CoV-2WK521A191T) and better replicated in the presence of 5h, than SARS-CoV-2WK521WT. However, no significant enzymatic or structural changes in MproA191T were observed. The replicability of SARS-CoV-2WK521E166V proved to be compromised compared to SARS-CoV-2WK521WT but predominated over SARS-CoV-2WK521WT in the presence of nirmatrelvir. The replicability of SARS-CoV-2WK521A191T surpassed that of SARS-CoV-2WK521WT in the absence of 5h, confirming that A191T confers enhanced viral fitness. The present data should shed light on the understanding of the mechanism of SARS-CoV-2's drug resistance acquisition and the development of resistance-repellant COVID-19 therapeutics.


Assuntos
Proteases 3C de Coronavírus , Farmacorresistência Viral , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos , Chlorocebus aethiops , Animais , Farmacorresistência Viral/genética , Células Vero , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , COVID-19/virologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Cristalografia por Raios X , Lactamas , Leucina , Nitrilas , Prolina
11.
PLoS Pathog ; 20(9): e1012522, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259728

RESUMO

Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available protease inhibitors (nirmatrelvir and ensitrelvir) with cell-based, biochemical and SARS-CoV-2 replicon assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease inhibitor resistance mechanisms and show the relevance of specific mutations, thereby informing treatment decisions.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Farmacorresistência Viral , Mutação , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Humanos , Farmacorresistência Viral/genética , Inibidores de Proteases/farmacologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , COVID-19/virologia , Leucina/análogos & derivados , Leucina/genética , Leucina/farmacologia , Animais , Betacoronavirus/genética , Betacoronavirus/efeitos dos fármacos , Vesiculovirus/genética , Vesiculovirus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Lactamas , Nitrilas , Prolina
12.
Pestic Biochem Physiol ; 204: 106061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277377

RESUMO

Aphis gossypii Glover is one of the most agriculturally important phloem-feeding economic pests, causing tremendous loss in crop yield annually. The hormesis is an important cause of A. gossypii resistance formation, population resurgence, and re-outbreak. However, whether the hormesises induced by different insecticides interact mutually remain largely unclear. In the study, four-generation A. gossypii experiment found that the 24-h sublethal-dose (LC20) sulfoxaflor treatment on G0 significantly increased the net reproductive rate (R0) and fecundity of G1 and G2 generation A. gossypii, but it did not significantly affect the fecundity of G3 and G4 individuals. Transcriptomic analyses revealed that the insecticide-induced significant up-regulation of pathways ribosome, energy metabolism, and the DNA replication and reparation might be responsible for the enhancement of fecundity in G1 and G2 A. gossypii. Notably, G0 exposure to LC20 sulfoxaflor followed by G1 exposure to LC30 deltamethrin resulted in a stronger reproductive stimulation than sulfoxaflor or deltamethrin exposure alone. Our findings provide valuable reference for optimizing sulfoxaflor application in integrated pest management strategies.


Assuntos
Afídeos , Hormese , Inseticidas , Piridinas , Reprodução , Compostos de Enxofre , Animais , Compostos de Enxofre/toxicidade , Compostos de Enxofre/farmacologia , Reprodução/efeitos dos fármacos , Afídeos/efeitos dos fármacos , Afídeos/genética , Hormese/efeitos dos fármacos , Piridinas/toxicidade , Piridinas/farmacologia , Inseticidas/toxicidade , Inseticidas/farmacologia , Piretrinas/toxicidade , Nitrilas/toxicidade , Nitrilas/farmacologia , Fertilidade/efeitos dos fármacos
13.
Pestic Biochem Physiol ; 204: 106075, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277388

RESUMO

Currently, the primary strategy for tick control relies on chemical agents. Pyrethrins, which are botanically derived compounds, have demonstrated efficacy in controlling ticks without posing a risk to human or animal health. However, research into pyrethrins' metabolic mechanisms remains sparse. Cystatin, as a reversible binding inhibitor of cysteine protease, may be involved in the initiation of pyrethrin detoxification of Haemaphysalis doenitzi. In this study, two novel cystatins were cloned, HDcyst-3 and HDcyst-4, the relative expression of which was highest in the Malpighian tubules compared with the tick midguts, salivary glands, and ovaries. Prokaryotic expression and in vitro studies revealed that cystatins effectively inhibit the enzymatic activities of cathepsins B and S. RNAi results showed that the reduction of cystatins significantly decreased the engorgement weight, egg mass weight, and egg hatching rate of adult female ticks, and prolonged feeding time by two days. The control rate of rHDcyst-3 and rHDcyst-4 protein vaccination against female adults were 55.9% and 63.2%, respectively. In addition, the tick immersion test showed that cypermethrin and λ-cyhalothrin had significant acaricidal effects against adult unfed H. doenitzi. The qPCR result indicated that compared with the control group, the expression of HDcyst-3 and HDcyst-4 was markedly decreased in the sublethal cypermethrin and λ-cyhalothrin group at LC50. Enzyme activity showed that cypermethrin and λ-cyhalothrin could significantly induce the activities of glutathione S-transferase (GST), carboxylesterase (CarE), and acetylcholinesterase (AchE). The aforementioned results provided indirect evidence that cystatin plays an important role in pyrethrin detoxification and provides a theoretical basis for future acaricide experiments and pest management.


Assuntos
Cistatinas , Nitrilas , Piretrinas , Piretrinas/farmacologia , Animais , Nitrilas/farmacologia , Cistatinas/metabolismo , Cistatinas/genética , Feminino , Ixodidae/efeitos dos fármacos , Ixodidae/genética , Ixodidae/metabolismo , Acaricidas/farmacologia , Resistência a Medicamentos
14.
Pestic Biochem Physiol ; 204: 106100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277408

RESUMO

Synthetic pyrethroids are widely used insecticides which may cause chronic diseases in non-target organisms upon long-term exposure. Microbial degradation offers a reliable method to remove them from the environment. This study focused on Brevibacillus parabrevis BCP-09 and its enzymes for degrading pyrethroids. The predicted deltamethrin-degrading genes phnA and mhpC were used to construct recombinant plasmids. These plasmids, introduced into Escherichia coli BL21(DE3) cells and induced with L-arabinose. The results indicated that the intracellular crude enzyme efficiently degraded deltamethrin by 98.8 %, ß-cypermethrin by 94.84 %, and cyfluthrin by 73.52 % within 24 h. The hydrolytic enzyme MhpC possesses a catalytic triad Ser/His/Asp and a typical "Gly-X-Ser-X-Gly" conservative sequence of the esterase family. Co-cultivation of induced E. coli PhnA and E. coli MhpC resulted in degradation rates of 41.44 ± 3.55 % and 60.30 ± 4.55 %, respectively, for deltamethrin after 7 d. This study states that the degrading enzymes from B. parabrevis BCP-09 are an effective method for the degradation of pyrethroids, providing available enzyme resources for food safety and environmental protection.


Assuntos
Brevibacillus , Nitrilas , Piretrinas , Piretrinas/metabolismo , Brevibacillus/metabolismo , Brevibacillus/genética , Nitrilas/metabolismo , Inseticidas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Biodegradação Ambiental , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plasmídeos/genética
15.
Pestic Biochem Physiol ; 204: 106107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277411

RESUMO

The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.


Assuntos
Nitrilas , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/fisiologia , Varroidae/efeitos dos fármacos , Nitrilas/toxicidade , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Fungicidas Industriais/toxicidade
16.
Pestic Biochem Physiol ; 204: 106072, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277417

RESUMO

The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement. Therefore, the behaviour of pyrasulfotole and 2,4-D applied to the growing point of susceptible and resistant R. raphanistrum seedlings was assessed, along with the effect of bromoxynil on pyrasulfotole translocation. The small amount of herbicide directly contacting the growing point after spraying was sufficient to induce herbicide symptoms, and there was no enhancement of translocation away from the growing point in either pyrasulfotole- or 2,4-D-resistant populations. Bromoxynil had a slightly inhibitory effect on pyrasulfotole translocation in some populations, somewhat negating the minor differences observed among populations when pyrasulfotole was applied alone. Resistance to pyrasulfotole could not explained by enhanced metabolism or vacuolar sequestration of the herbicide. Overall, differential translocation in either the treated leaves or apical meristems does not appear to be a major determinant of resistance to pyrasulfotole or 2,4-D.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Resistência a Herbicidas , Herbicidas , Raphanus , Herbicidas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Raphanus/efeitos dos fármacos , Raphanus/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Pironas/farmacologia , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Isoxazóis , Nitrilas , Sulfonas
17.
J Clin Invest ; 134(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286977

RESUMO

BACKGROUNDMetastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3ß-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODSOur prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTSPatients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSIONThese data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDINGNational Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.


Assuntos
Complexos Multienzimáticos , Progesterona Redutase , Neoplasias da Próstata , Esteroide Isomerases , Masculino , Humanos , Progesterona Redutase/genética , Progesterona Redutase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Esteroide Isomerases/genética , Idoso , Complexos Multienzimáticos/genética , Pessoa de Meia-Idade , Antagonistas de Androgênios/uso terapêutico , Benzamidas , Metástase Neoplásica , Nitrilas , Feniltioidantoína/uso terapêutico , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Taxa de Sobrevida , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/metabolismo
18.
Methods Enzymol ; 704: 143-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300646

RESUMO

The isonitrile group is a compact, electron-rich moiety coveted for its commonplace as a building block and bioorthogonal functionality in synthetic chemistry and chemical biology. Hundreds of natural products containing an isonitrile group with intriguing bioactive properties have been isolated from diverse organisms. Our recent discovery of a conserved biosynthetic gene cluster in some Actinobacteria species highlighted a novel enzymatic pathway to isonitrile formation involving a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase. Here, we focus this chapter on recent advances in understanding and probing the biosynthetic machinery for isonitrile synthesis by non-heme iron(II) and α-ketoglutarate-dependent dioxygenases. We will begin by describing how to harness isonitrile enzymatic machinery through heterologous expression, purification, synthetic strategies, and in vitro biochemical/kinetic characterization. We will then describe a generalizable strategy to probe the mechanism for isonitrile formation by combining various spectroscopic methods. The chapter will also cover strategies to study other enzyme homologs by implementing coupled assays using biosynthetic pathway enzymes. We will conclude this chapter by addressing current challenges and future directions in understanding and engineering isonitrile synthesis.


Assuntos
Nitrilas , Nitrilas/metabolismo , Nitrilas/química , Ácidos Cetoglutáricos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Família Multigênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ferro/metabolismo , Ferro/química , Vias Biossintéticas , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Cinética , Actinobacteria/enzimologia , Actinobacteria/genética , Actinobacteria/metabolismo
20.
Int J Biol Sci ; 20(11): 4314-4340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247818

RESUMO

Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated ß-galactosidase (SA-ß-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-ß-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.


Assuntos
Cardiomiopatias , Senescência Celular , Janus Quinase 2 , Miócitos Cardíacos , Nitrilas , Pirazóis , Pirimidinas , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Cardiomiopatias/metabolismo , Cardiomiopatias/tratamento farmacológico , Nitrilas/uso terapêutico , Nitrilas/farmacologia , Ratos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Sepse/tratamento farmacológico , Ratos Sprague-Dawley , Lipopolissacarídeos , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...