Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.256
Filtrar
1.
Sci Rep ; 14(1): 15709, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977768

RESUMO

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Assuntos
Captana , Sinergismo Farmacológico , Fungicidas Industriais , Inseticidas , Tiametoxam , Animais , Tiametoxam/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/toxicidade , Fungicidas Industriais/toxicidade , Captana/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Nitrocompostos/toxicidade
2.
Sci Total Environ ; 944: 173845, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871314

RESUMO

Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.


Assuntos
Mudança Climática , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Poluentes do Solo/toxicidade , Solo/química , Adaptação Fisiológica , Imidazóis/toxicidade
3.
Sci Total Environ ; 944: 174014, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38880156

RESUMO

The threat of neonicotinoids to insect pollinators, particularly honeybees (Apis mellifera), is a global concern, but the risk of chiral neonicotinoids to insect larvae remains poorly understood. In the current study, we evaluated the acute and chronic toxicity of dinotefuran enantiomers to honeybee larvae in vitro and explored the mechanism of toxicity. The results showed that the acute median lethal dose (LD50) of S-dinotefuran to honeybee larvae was 30.0 µg/larva after oral exposure for 72 h, which was more toxic than rac-dinotefuran (92.7 µg/larva) and R-dinotefuran (183.6 µg/larva). Although the acute toxicity of the three forms of dinotefuran to larvae was lower than that to adults, chronic exposure significantly reduced larval survival, larval weight, and weight of newly emerged adults. Analysis of gene expression and hormone titer indicated that dinotefuran affects larval growth and development by interfering with nutrient digestion and absorption and the molting system. Analysis of hemolymph metabolome further revealed that disturbances in the neuroactive ligand-receptor interaction pathway and energy metabolism are the key mechanisms of dinotefuran toxicity to bee larvae. In addition, melatonin and vitellogenin are used by larvae to cope with dinotefuran-induced oxidative stress. Our results contribute to a comprehensive understanding of dinotefuran damage to bees and provide new insights into the mechanism of enantioselective toxicity of insecticides to insect larvae.


Assuntos
Guanidinas , Inseticidas , Larva , Neonicotinoides , Nitrocompostos , Animais , Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Larva/efeitos dos fármacos , Guanidinas/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Estereoisomerismo , Dose Letal Mediana
4.
Ecotoxicol Environ Saf ; 280: 116561, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850706

RESUMO

Imidacloprid (IMI), a commonly utilized neonicotinoid insecticide, has been identified to adversely impact glucose homeostasis. Pregnant women are believed to be more sensitive to toxins than non-pregnant women, and the impact of IMI exposure on gestational hyperglycemia remain unclear. To explore the impact, pregnant mice fed a high-fat diet were exposed to different doses (0.06, 0.6, 6 mg/kg bw/day) of IMI by gavage. Glucose homeostasis-related parameters were measured. The glucose homeostasis influenced by IMI treatment was explored through integrating gut microbiota, metabolomic and transcriptomic analysis. Results showed that IMI-H (6 mg/kg bw/day) exposure notably restricted gestational weight gain and perturbed glucose homeostasis characterized by reduced glucose tolerance and insulin sensitivity, alongside elevated levels of fasting blood glucose and insulin. Multi-omics analysis revealed that IMI-H exposure induced significant changes in the richness and composition of the gut microbiome. The metabolite profiles of serum samples and cecal contents, and transcriptome of liver and ileum were all affected by IMI-H treatment. The altered gut microbiota, metabolites and genes exhibited significant correlations with glucose homeostasis-related parameters. These differential metabolites and genes were implicated in various metabolic pathways including bile secretion, glucagon signaling pathway, lipid metabolism, fatty acid metabolism. Significant correlations were observed between the altered gut microbiota and caecum metabolome as well as liver transcriptome. For example, the abundance of Oscillibacter was strongly correlated with gut microflora-related metabolites (Icosenoic acid, Lysosulfatide, and fluticasone) and liver differential genes (Grin3b, Lifr, and Spta1). Together, IMI exposure resulted in significant changes in microbial composition, along with alterations in certain metabolites and genes associated with metabolic process, which may promote gestational hyperglycemia.


Assuntos
Microbioma Gastrointestinal , Hiperglicemia , Inseticidas , Neonicotinoides , Nitrocompostos , Neonicotinoides/toxicidade , Feminino , Animais , Gravidez , Nitrocompostos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Hiperglicemia/induzido quimicamente , Inseticidas/toxicidade , Glicemia/efeitos dos fármacos , Metabolômica , Transcriptoma/efeitos dos fármacos , Diabetes Gestacional/induzido quimicamente , Dieta Hiperlipídica , Multiômica
5.
Food Chem Toxicol ; 190: 114816, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880465

RESUMO

Imidacloprid (IMI) is one of the top-notch insecticides that adversely affects the body organs including the liver. Malvidin (MAL) is a natural flavonoid which exhibits a wide range of pharmacological properties. This research was designed to evaluate the protective ability of MAL to counteract IMI instigated liver toxicity in rats. Thirty-two rats were divided into four groups including control, IMI (5mg/kg), IMI (5mg/kg) + MAL (10mg/kg) and MAL (10mg/kg) alone treated group. The recommended dosages were administrated through oral gavage for 4 weeks. It was revealed that IMI intoxication disrupted the PI3K/AKT and Nrf-2/Keap-1 pathway. Furthermore, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme-oxygenase-1 (OH-1) and glutathione reductase (GSR) were reduced while upregulating reactive oxygen species (ROS) and malondialdehyde (MDA) levels after IMI treatment. Moreover, IMI poisoning increased the levels of ALT (Alanine aminotransferase), AST (Aspartate transaminase), and ALP (Alkaline phosphatase) while reducing the levels of total proteins and albumin in hepatic tissues of rats. Besides, IMI administration escalated the expressions of Bcl-2-associated protein x (Bax) and cysteine-aspartic acid protease-3 (Caspase-3) while downregulating the expressions of B-cell lymphoma 2 (Bcl-2). Similarly, IMI intoxication, increased the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, IMI disrupted the normal architecture of hepatic tissues. However, MAL treatment remarkably protected the liver tissues via regulating abovementioned disruptions.


Assuntos
Antocianinas , Doença Hepática Induzida por Substâncias e Drogas , Imidazóis , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Fator 2 Relacionado a NF-E2 , NF-kappa B , Neonicotinoides , Nitrocompostos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Neonicotinoides/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nitrocompostos/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Imidazóis/farmacologia , Antocianinas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inseticidas/toxicidade , Ratos Wistar
6.
Environ Toxicol Pharmacol ; 109: 104492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838874

RESUMO

We evaluated whether thymol (THY) (30 mg/kg b.wt) could relieve the adverse effects of the neonicotinoid insecticide imidacloprid (IMD) (22.5 mg/kg b.wt) on the liver in a 56-day oral experiment and the probable underlying mechanisms. THY significantly suppressed the IMD-associated increase in hepatic enzyme leakage. Besides, the IMD-induced dyslipidemia was considerably corrected by THY. Moreover, THY significantly repressed the IMD-induced hepatic oxidative stress, lipid peroxidation, DNA damage, and inflammation. Of note, the Feulgen, mercuric bromophenol blue, and PAS-stained hepatic tissue sections analysis declared that treatment with THY largely rescued the IMD-induced depletion of the DNA, total proteins, and polysaccharides. Moreover, THY treatment did not affect the NF-kB p65 immunoexpression but markedly downregulated the Caspase-3 in the hepatocytes of the THY+IMD-treated group than the IMD-treated group. Conclusively, THY could efficiently protect against IMD-induced hepatotoxicity, probably through protecting cellular macromolecules and antioxidant, antiapoptotic, and anti-inflammatory activities.


Assuntos
Caspase 3 , Dano ao DNA , Inseticidas , Fígado , NF-kappa B , Neonicotinoides , Nitrocompostos , Estresse Oxidativo , Transdução de Sinais , Timol , Animais , Neonicotinoides/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Dano ao DNA/efeitos dos fármacos , Nitrocompostos/toxicidade , Caspase 3/metabolismo , Caspase 3/genética , Masculino , Timol/farmacologia , Timol/toxicidade , Inseticidas/toxicidade , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos Wistar , Ratos , Peroxidação de Lipídeos/efeitos dos fármacos
7.
Sci Total Environ ; 942: 173685, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38825192

RESUMO

Pesticide mixtures are frequently utilized in agriculture, yet their cumulative effects on aquatic organisms remain poorly understood. Aquatic animals can be effective bioindicators and invasive bivalves, owing to their widespread distribution, provide an opportunity to assess these impacts. Glyphosate and imidacloprid, among the most prevalent pesticides globally, are frequently detected in freshwater systems in South America. This study aims to understand the cumulative effects of pesticide mixtures on aquatic organisms, using invasive Corbicula largillierti clams from a natural stream in northwestern Argentina. We conducted 48-hour exposure experiments using two concentrations of imidacloprid (20 and 200 µg L-1 a.i), two concentrations of glyphosate (0.3 and 3 mg L-1 a.i), and two combinations of these pesticides (both at low and high concentrations, respectively), simulating the direct contamination of both pesticides based on their agronomic recipe and observed values in Argentine aquatic environments. Clam metabolism was assessed through the examination of multiple oxidative stress parameters and measuring oxygen consumption rate as a proxy for standard metabolic rate (SMR). Our findings revealed that imidacloprid has a more pronounced effect compared to glyphosate. Imidacloprid significantly decreased clam SMR and cellular levels of reduced glutathione (GSH). However, when both pesticides were present, also cellular glycogen and thiobarbituric acid-reactive substances (TBARS) were affected. Proteins and glutathione S-Transferase (GST) activity were unaffected by either pesticide or their mixture at the assayed concentrations, highlighting the need to test several stress parameters to detect toxicological impacts. Our results indicated additive effects of imidacloprid and glyphosate across all measured parameters. The combination of multiple physiological and cytological biomarkers in invasive bivalves offers significant potential to enhance biomonitoring sensitivity and obtain insights into the origins and cellular mechanisms of chemical impacts. These studies can improve pollution regulatory policies and pesticide management.


Assuntos
Biomarcadores , Corbicula , Glicina , Glifosato , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Glicina/análogos & derivados , Glicina/toxicidade , Biomarcadores/metabolismo , Argentina , Corbicula/efeitos dos fármacos , Herbicidas/toxicidade , Monitoramento Ambiental , Estresse Oxidativo/efeitos dos fármacos , Inseticidas/toxicidade
8.
Chemosphere ; 361: 142511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825249

RESUMO

Environmental ambient temperature significantly impacts the metabolic activities of aquatic ectotherm organisms and influences the fate of various chemicals. Although numerous studies have shown that the acute lethal toxicity of most chemicals increases with increasing temperature, the impact of temperature on chronic effects - encompassing both lethal and sublethal endpoints - has received limited attention. Furthermore, the mechanisms linking temperature and toxicity, potentially unveiled by toxicokinetic-toxicodynamic models (TKTD), remains inadequately explored. This study investigated the effects of environmentally relevant concentrations of the insecticide imidacloprid (IMI) on the growth and survival of the freshwater amphipod Gammarus pulex at two different temperatures. Our experimental design was tailored to fit a TKTD model, specifically the Dynamic Energy Budget (DEB) model. We conducted experiments spanning three and six months, utilizing small G. pulex juveniles. We observed effects endpoints at least five times, employing both destructive and non-destructive methods, crucial for accurate model fittings. Our findings reveal that IMI at environmental concentrations (up to 0.3 µg/L) affects the growth and survival of G. pulex, albeit with limited effects, showing a 10% inhibition compared to the control group. These limited effects, observed in both lethal and sublethal aspects, suggest a different mode of action at low, environmentally-relevant concentrations in long-term exposure (3 months), in contrast to previous studies which applied higher concentrations and found that sublethal effects occurred at significantly lower levels than lethal effects in an acute test setting (4 days). Moreover, after parameterizing the DEB model for various temperatures, we identified a lower threshold for both lethal and sublethal effects at higher temperatures, indicating increased intrinsic sensitivity. Overall, this study contributes to future risk assessments considering temperature as a crucial factor and exemplifies the integration of the DEB model into experimental design for comprehensive toxicity evaluations.


Assuntos
Anfípodes , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Toxicocinética , Imidazóis/toxicidade
9.
Proc Biol Sci ; 291(2024): 20232811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864325

RESUMO

Pesticides have been identified as major drivers of insect biodiversity loss. Thus, the study of their effects on non-pest insect species has attracted a lot of attention in recent decades. In general toxicology, the 'gold standard' to assess the toxicity of a substance is to measure mass-specific LD50 (i.e. median lethal dose per unit body mass). In entomology, reviews attempting to compare these data across all available studies are lacking. To fill this gap in knowledge, we performed a systematic review of the lethality of imidacloprid for adult insects. Imidacloprid is possibly the most extensively studied insecticide in recent times, yet we found that little is comparable across studies, owing to both methodological divergence and missing estimates of body mass. By accounting for body mass whenever possible, we show how imidacloprid sensitivity spans across an apparent range of approximately six orders of magnitude across insect species. Very high variability within species can also be observed owing to differences in exposure methods and observation time. We suggest that a more comparable and comprehensive approach has both biological and economic relevance. Ultimately, this would help to identify differences that could direct research towards preventing non-target species from being negatively affected.


Assuntos
Imidazóis , Insetos , Inseticidas , Neonicotinoides , Nitrocompostos , Especificidade da Espécie , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Insetos/efeitos dos fármacos , Imidazóis/toxicidade , Dose Letal Mediana
10.
Pestic Biochem Physiol ; 202: 105939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879330

RESUMO

The brown planthopper (BPH), Nilaparvata lugens is a devastating agricultural pest of rice, and they have developed resistance to many pesticides. In this study, we assessed the response of BPH nymphs to nitenpyram, imidacloprid, and etofenprox using contact and dietary bioassays, and investigated the underlying functional diversities of BPH glutathione-S-transferase (GST), carboxylesterase (CarE) and cytochrome P450 monooxygenase (P450) against these insecticides. Both contact and ingestion toxicity of nitenpyram to BPH were significantly higher than either imidacloprid or etofenprox. Under the LC50 concentration of each insecticide, they triggered a distinct response for GST, CarE, and P450 activities, and each insecticide induced at least one detoxification enzyme activity. These insecticides almost inhibited the expression of all tested GST, CarE, and P450 genes in contact bioassays but induced the transcriptional levels of these genes in dietary bioassays. Silencing of NlGSTD2 expression had the greatest effect on BPH sensitivity to nitenpyram in contact test and imidacloprid in dietary test. The sensitivities of BPH to insecticide increased the most in the contact test was etofenprox after silencing of NlCE, while the dietary test was nitenpyram. Knockdown of NlCYP408A1 resulted in BPH sensitivities to insecticide increasing the most in the contact test was nitenpyram, while the dietary test was imidacloprid. Taken together, these findings reveal that NlGSTD2, NlCE, and NlCYP408A1 play an indispensable role in the detoxification of the contact and ingestion toxicities of different types of insecticides to BPH, which is of great significance for the development of new strategies for the sucking pest control.


Assuntos
Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Glutationa Transferase , Hemípteros , Inseticidas , Neonicotinoides , Nitrocompostos , Piretrinas , Interferência de RNA , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/farmacologia , Nitrocompostos/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Carboxilesterase/genética , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piretrinas/toxicidade , Piretrinas/farmacologia , Inativação Metabólica , Ninfa/efeitos dos fármacos , Ninfa/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Piridinas/toxicidade , Piridinas/farmacologia
11.
Pestic Biochem Physiol ; 202: 105935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879327

RESUMO

Imidacloprid (IMI) is a contaminant widespread in surface water, causing serious intestinal damage in the common carp. Melatonin (MT), an endogenous indoleamine hormone, plays a crucial role in mitigating pesticide-induced toxicity. Our previous research has demonstrated that MT effectively reduces the production of intestinal microbial-derived signal peptidoglycan (PGN) induced by IMI, thereby alleviating intestinal tight junction injuries in the common carp. In this study, we performed a transcriptomic analysis to explore the effect of MT on the IMI exposure-induced gut damage of the common carp. The results elucidated that the ferroptosis, mitogen-activated protein kinases (MAPKs), and nucleotide oligomerization domain (NOD)-like signaling pathways were significantly associated with IMI exposure and MT treatment. Meanwhile, the exposure to IMI resulted in the formation of pyroptotic bodies and distinct morphological features of ferroptosis, both mitigated with the addition of MT. Immunofluorescence double staining demonstrated that MT abolished the elevated expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin D (GSDMD) induced by IMI, as well as reduced expression of ferritin heavy chains (FTH) and glutathione peroxidase 4 (GPX4) in gut tissues. Subsequently, we found that the exposure to IMI or PGN enhanced the expression of toll-like receptors (TLR) 2 (a direct recognition receptor of PGN) triggering the P38MAPK signaling pathway, thereby aggravating the process of pyroptosis and ferroptosis of cell models. The addition of MT or SB203580 (a P38MAPK inhibitor) significantly reduced pyroptotic cells, and also decreased iron accumulation. Consequently, these results indicate that MT alleviates IMI-induced pyroptosis and ferroptosis in the gut of the common carp through the PGN/TLR2/P38MAPK pathway.


Assuntos
Carpas , Ferroptose , Melatonina , Neonicotinoides , Nitrocompostos , Peptidoglicano , Piroptose , Animais , Carpas/metabolismo , Ferroptose/efeitos dos fármacos , Melatonina/farmacologia , Piroptose/efeitos dos fármacos , Neonicotinoides/farmacologia , Neonicotinoides/toxicidade , Peptidoglicano/farmacologia , Nitrocompostos/toxicidade , Nitrocompostos/farmacologia , Inseticidas/toxicidade , Intestinos/efeitos dos fármacos
12.
J Agric Food Chem ; 72(23): 12956-12966, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820064

RESUMO

Bees, one of the most vital pollinators in the ecosystem and agriculture, are currently threatened by neonicotinoids. To explore the molecular mechanisms of neonicotinoid toxicity to bees, the different binding modes of imidacloprid, thiacloprid, and flupyradifurone with nicotinic acetylcholine receptor (nAChR) α1ß1 and cytochrome P450 9Q3 (CYP9Q3) were studied using homology modeling and molecular dynamics simulations. These mechanisms provided a basis for the design of compounds with a potential low bee toxicity. Consequently, we designed and synthesized a series of triazinone derivatives and assessed their bioassays. Among them, compound 5a not only displayed substantially insecticidal activities against Aphis glycines (LC50 = 4.40 mg/L) and Myzus persicae (LC50 = 6.44 mg/L) but also had low toxicity to Apis mellifera. Two-electrode voltage clamp recordings further confirmed that compound 5a interacted with the M. persicae nAChR α1 subunit but not with the A. mellifera nAChR α1 subunit. This work provides a paradigm for applying molecular toxic mechanisms to the design of compounds with low bee toxicity, thereby aiding the future rational design of eco-friendly nicotinic insecticides.


Assuntos
Proteínas de Insetos , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Abelhas/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/toxicidade , Neonicotinoides/química , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Afídeos/efeitos dos fármacos , Nitrocompostos/química , Nitrocompostos/toxicidade , Desenho de Fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Ligação Proteica , Tiazinas
13.
Sci Total Environ ; 933: 173150, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735312

RESUMO

The intensive and widespread application of pesticides in agroecosystems can lead to the simultaneous exposure of non-target aquatic organisms to insecticides and herbicides. However, the underlying mechanisms through which aquatic organisms undergo metabolic reprogramming to withstand the combined effects of the insecticide imidacloprid (IMI) and herbicide sulfentrazone (SUL) remain poorly elucidated. This study employs metabolomics to investigate the effects of individual and combined exposures to IMI and SUL on zebrafish (Danio rerio), aiming to simulate complex environmental conditions. Metabolomics analysis revealed extensive metabolic reprogramming in larvae induced by the selected agrochemicals. Both individual and combined exposures disrupted nucleotide metabolism, inhibited glycolysis, and led to the accumulation of acetylcholine through the shared modulation of differential metabolites. Notably, individual exposure exhibited a unique mode of action. Larvae exposed to IMI alone showed mitochondrial dysfunction, potentially stemming from interference with the electron transport chain, while SUL-induced disruptions were associated with glycerophospholipid accumulation, marking it as a critical target. Additionally, calculations of the metabolic effect level index indicated antagonistic interactions between SUL and IMI mixtures at an overall metabolic level. The results obtained through investigating the lethal and sub-lethal effects also revealed that the simultaneous application of SUL and IMI may have the potential to diminish acute and developmental toxicity in zebrafish. This study underscores the significance of metabolomics as a valuable and effective strategy for deciphering the toxicity and interactions of agrochemical mixtures.


Assuntos
Inseticidas , Larva , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Herbicidas/toxicidade , Metabolômica
14.
Environ Pollut ; 351: 124111, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710360

RESUMO

Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.


Assuntos
Inseticidas , Locomoção , Neonicotinoides , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Neonicotinoides/toxicidade , Locomoção/efeitos dos fármacos , Inseticidas/toxicidade , Poluentes do Solo/toxicidade , Nitrocompostos/toxicidade , Testes de Toxicidade , Receptores Nicotínicos/metabolismo , Guanidinas/toxicidade , Tiazinas , Tiazóis
15.
Sci Total Environ ; 937: 173421, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788955

RESUMO

The health risks induced by chronic exposure to low concentrations of imidacloprid (IMI) to zebrafish were investigated in this study. The results indicated that the growth of zebrafish was inhibited after being exposed to 10, 100, and 500 µg/L of IMI for 90 days. Moreover, the blood glucose levels in the IMI-exposed groups were significantly higher compared to the control group. Investigation into the development of zebrafish larvae revealed that IMI exposure hindered the development of the liver and pancreatic islets, organs crucial for glucose metabolism. In addition, the IMI-exposed groups exhibited reduced liver glycogen and plasma insulin levels, along with changes in the activity of enzymes and the transcription levels of genes associated with liver glucose metabolism. These findings suggest that IMI induces glycometabolic disorders in zebrafish. The analysis of intestinal flora revealed that several key bacteria associated with an elevated risk of diabetes were significantly altered in IMI-exposed fish. Specifically, a remarkable decrease was found in the abundance of the genera Aeromonas and Shewanella, which have been found closely related to the development of pancreatic islets. This implies that the alteration of key bacteria in the fish gut by IMI, which in turn affects the development of organs such as the pancreatic islets, may be the initial trigger for abnormalities in glucose metabolism. Our results revealed that chronic exposure to low concentrations of IMI led to glycometabolic disorder in fish. Therefore, considering the pervasive existence of IMI residues in the environment, the health hazards posed by low-concentration IMI to fish cannot be overlooked.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Glicemia
16.
Neurochem Res ; 49(8): 2038-2059, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814358

RESUMO

The study objectives are to investigate the ability of capsaicin to revert the toxic effects in glutamate and lipopolysaccharide (LPS)-induced neurotoxicity in Neuro2a (N2a) cells as well as thwarting cognitive impairments, mitochondrial deficits, and oxidative insults induced by 3-nitropropanoic acid (3-NP) in a rodent model of Huntington's disease. In-vitro study with N2a cells was performed through MTT and LDH assay and their biochemical examinations were also performed. 3-NP-administered mice (n = 6) were treated with capsaicin (5, 10, and 20 mg/kg) through the per-oral (p.o.) route for 7 consecutive days. Physiological and behavioral studies were performed in drug-treated mice. After behavioral studies, biochemical parameters were performed for cytokines levels, various oxidative stress parameters, and mitochondrial enzyme complex activities with mitochondrial permeability. N2a cells treated with capsaicin demonstrated neuroprotective effects and reduced neurotoxicity. Based on experimental observation, in an in-vitro study, the effective dose of CAP was 50 µM. Moreover, a 100 µM dose of capsaicin had toxic effects on neuronal cells (N2a cells). On the other hand, the effective dose of 3-NP was 20 mg/kg, (p.o.) in animals (in-vivo). All tested doses of capsaicin upturned the cognitive impairment and motor in-coordination effects induced by 3-NP. 3-NP-injected mice demonstrated substantially increased pro-inflammatory cytokine concentrations, defective mitochondrial complex activity, and augmented oxidative insult. However, capsaicin at different doses reduced oxidative damage and cytokines levels and improved mitochondrial complex activity along with mitochondrial permeability. Furthermore, capsaicin (10 and 20 mg/kg) improved the TNF-α concentration. These findings suggested because of the anti-inflammatory and antioxidant effect, capsaicin can be considered a novel treatment for the management of neurodegenerative disorders by reverting the antioxidant enzyme activity, pro-inflammatory cytokines concentration, and mitochondrial functions.


Assuntos
Capsaicina , Fármacos Neuroprotetores , Nitrocompostos , Propionatos , Animais , Capsaicina/farmacologia , Camundongos , Nitrocompostos/toxicidade , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Propionatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente
17.
Ecotoxicology ; 33(6): 608-621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780664

RESUMO

In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.


Assuntos
Inseticidas , Neonicotinoides , Tiametoxam , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Inseticidas/toxicidade , Tiametoxam/toxicidade , Neonicotinoides/toxicidade , Estações do Ano , Nitrocompostos/toxicidade , Aclimatação , Tiazóis/toxicidade
18.
Sci Total Environ ; 940: 173393, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795984

RESUMO

Bees are important pollinators for ecosystems and agriculture; however, populations have suffered a decline that may be associated with several factors, including habitat loss, climate change, increased vulnerability to diseases and parasites and use of pesticides. The extensive use of neonicotinoids, including imidacloprid, as agricultural pesticides, leads to their persistence in the environment and accumulation in bees, pollen, nectar, and honey, thereby inducing deleterious effects. Forager honey bees face significant exposure to pesticide residues while searching for resources outside the hive, particularly systemic pesticides like imidacloprid. In this study, 360 Apis mellifera bees, twenty-one days old (supposed to be in the forager phase) previously marked were fed syrup (honey and water, 1:1 m/v) containing a lethal dose (0.081 µg/bee) or sublethal dose (0.00081 µg/bee) of imidacloprid. The syrup was provided in plastic troughs, with 250 µL added per trough onto each plastic Petri dish containing 5 bees (50 µL per bee). The bees were kept in the plastic Petri dishes inside an incubator, and after 1 and 4 h of ingestion, the bees were euthanised and stored in an ultra-freezer (-80 °C) for transcriptome analysis. Following the 1-h ingestion of imidacloprid, 1516 genes (73 from lethal dose; 1509 from sublethal dose) showed differential expression compared to the control, while after 4 h, 758 genes (733 from lethal dose; 25 from sublethal) exhibited differential expression compared to the control. All differentially expressed genes found in the brain tissue transcripts of forager bees were categorised based on gene ontology into functional groups encompassing biological processes, molecular functions, and cellular components. These analyses revealed that sublethal doses might be capable of altering more genes than lethal doses, potentially associated with a phenomenon known as insecticide-induced hormesis. Alterations in genes related to areas such as the immune system, nutritional metabolism, detoxification system, circadian rhythm, odour detection, foraging activity, and memory in bees were present after exposure to the pesticide. These findings underscore the detrimental effects of both lethal and sublethal doses of imidacloprid, thereby providing valuable insights for establishing public policies regarding the use of neonicotinoids, which are directly implicated in the compromised health of Apis mellifera bees.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Expressão Gênica/efeitos dos fármacos
19.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805648

RESUMO

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Assuntos
Variação Genética , Inseticidas , Neonicotinoides , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/efeitos dos fármacos , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Tiazóis/toxicidade , Tiametoxam , Guanidinas/toxicidade , Interações Hospedeiro-Parasita , Nitrocompostos/toxicidade
20.
Sci Total Environ ; 931: 172910, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701926

RESUMO

Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.


Assuntos
Inseticidas , Lesão Pulmonar , NF-kappa B , Neonicotinoides , Nitrocompostos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Camundongos , Lesão Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inseticidas/toxicidade , Receptor 4 Toll-Like/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...